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GROWTH OF LOGARITHMIC DERIVATIVE OF
MEROMORPHIC FUNCTIONS

ZINELAÂBIDINE LATREUCH and BENHARRAT BELAÏDI

Abstract
In this paper, we give some estimations about the growth of logarithmic derivative of meromorphic
and entire functions and their applications in the theory of differential equations. We give also
some examples to explain the sharpness of our results.

1. Introduction and main results

Throughout this paper, we assume that the reader is familiar with the funda-
mental results and the standard notations of the Nevanlinna’s value distribution
theory ([8], [15]). For any nonconstant meromorphic function f , we denote
by S(r, f ) any quantity satisfying

lim
r→+∞

S(r, f )

T (r, f )
= 0,

possibly outside of a set of finite linear measure in [0,+∞), where T (r, f )
is the Nevanlinna characteristic function of f . In the following, we give the
necessary notations and basic definitions.

Definition 1.1 ([5]). Let f be a meromorphic function. Then the order
ρ(f ) and the hyper-order ρ2(f ) of f (z) are defined respectively by

ρ(f ) = lim sup
r→+∞

log T (r, f )

log r
and ρ2(f ) = lim sup

r→+∞
log log T (r, f )

log r
.

Definition 1.2 ([5], [15]). Let f be a meromorphic function. Then the
exponent of convergence of the sequence of zeros of f (z) is defined by

λ(f ) = lim sup
r→+∞

logN
(
r, 1
f

)
log r

,

where N
(
r, 1
f

)
is the counting function of zeros of f (z) in {z : |z| < r}.
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Similarly, the exponent of convergence of the sequence of distinct zeros of
f (z) is defined by

λ(f ) = lim sup
r→+∞

logN(r, 1/f )

log r
,

whereN
(
r, 1
f

)
is the counting function of distinct zeros off (z) in {z : |z| < r}.

The following result is very important in the theory of differential equations.

Theorem A ([6]). Let f be a transcendental meromorphic function with
ρ(f ) = ρ < ∞,H = {(k1, j1), (k2, j2), . . . , (kq, jq)} be a finite set of distinct
pairs of integers that satisfy ki > ji � 0, for i = 1, . . . , q, and let ε > 0 be a
given constant. Then

(i) there exists a set E1 ⊂ [0, 2π) that has linear measure zero, such that
if ψ ∈ [0, 2π) \E1, then there is a constant R0 = R0(ψ) > 1 such that
for all z satisfying arg z = ψ and |z| � R0 and for all (k, j) ∈ H, we
have ∣∣∣∣f

(k)(z)

f (j)(z)

∣∣∣∣ � |z|(k−j)(ρ−1+ε),

(ii) there exists a set E2 ⊂ (1,+∞) that has finite logarithmic measure,
such that for all z satisfying |z| /∈ E2 ∪ [0, 1] and for all (k, j) ∈ H , we
have ∣∣∣∣f

(k)(z)

f (j)(z)

∣∣∣∣ � |z|(k−j)(ρ−1+ε),

(iii) there exists a setE3 ⊂ [0,+∞) that has finite linear measure, such that
for all z satisfying |z| /∈ E3 and for all (k, j) ∈ H , we have

∣∣∣∣f
(k)(z)

f (j)(z)

∣∣∣∣ � |z|(k−j)(ρ−1+ε).

The main purpose of this paper is to give new estimations about the growth
of logarithmic derivative. We also investigate the relationship between them,
the hyper-order and the exponent of convergence.

Theorem 1.1. Suppose that k � 2 is an integer and let f be a meromorphic
function. Then

(1.1)

ρ

(
f ′

f

)
= max

{
ρ

(
f (k)

f

)
, k � 2

}

= max

{
ρ

(
f (k)

f

)
, ρ

(
f (k+1)

f

)
, k � 2

}
.



250 z. latreuch and b. belaïdi

Corollary 1.1. Let f be a meromorphic function. If f ′
f

has finite order,
then for any integer k � 2

(1.2) ρ

(
f (k)

f

)
< ∞.

Corollary 1.2. Let f be meromorphic function. If there exists an integer
k � 1 such that ρ

(
f (k)

f

) = ρ(f ) and ρ(f ) > ρ2(f ), then

(1.3) max

{
λ(f ), λ

(
1

f

)}
= max

{
λ(f ), λ

(
1

f

)}
= ρ(f ).

Furthermore, if f is entire function, then

λ(f ) = λ(f ) = ρ(f ).

Example 1.1. It’s clear that the entire function f (z) = ez − 1 satisfies

ρ

(
f ′

f

)
= ρ

(
ez

ez − 1

)
= ρ(f ) = 1

and ρ(f ) = 1 > ρ2(f ) = 0. Then by Corollary 1.2, we have

λ(f ) = λ(f ) = ρ(f ) = 1.

On the other hand, the meromorphic function f (z) = 1
ez−1 satisfies

ρ

(
f ′

f

)
= ρ

(
− ez

ez − 1

)
= ρ(f ) = 1, ρ(f ) = 1 > ρ2(f ) = 0

and
λ

(
1

f

)
= λ

(
1

f

)
= 1, λ(f ) = λ(f ) = 0.

We see that

max

{
λ(f ), λ

(
1

f

)}
= max

{
λ(f ), λ

(
1

f

)}
= ρ(f ) = 1.

Remark 1.1. The condition ρ(f ) > ρ2(f ) in Corollary 1.2 is necessary.
For example, if we take f (z) = exp(exp(exp z)), then f satisfies

ρ

(
f ′

f

)
= ρ(f ) = ρ2(f ) = ∞
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and
λ(f ) = λ

(
1

f

)
= 0.

Corollary 1.3. Let f be a meromorphic function such that for any integer
k � 1, we have

(1.4) ρ

(
f (2k)

f

)
< ρ

(
f ′

f

)
.

Then

(1.5) ρ

(
f (2k+1)

f

)
= ρ

(
f ′

f

)
(k � 1).

Example 1.2. Let f (z) = sin z, it’s clear that f (2k)

f
is constant, for any

integer k � 1. Then by Corollary 1.3

ρ

(
f (2k+1)

f

)
= ρ

(
f ′

f

)
(k � 1)

and since ρ
(
f ′
f

) = ρ(f ) = 1, then we obtain that

ρ

(
f (2k+1)

f

)
= ρ(f ) = 1 (k � 1).

Theorem 1.2. Let f be an entire function with finite number of zeros. Then
for any integer k � 1

(1.6) ρ

(
f (k)

f

)
= ρ2(f ).

Corollary 1.4. Let f be an entire function and c be a nonzero constant.
Then

(1.7) ρ

(
f ′ + cf 2

)
= ρ(f ).

Remark 1.2. Corollary 1.4 was proved by S. Bank and I. Laine in [2].
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2. Applications in differential equations

Theorem 2.1. Let k � 1 be an integer and let f be a solution of the differential
equation

(2.1) f (k) + Ak−1f
(k−1) + · · · + A1f

′ + A0f = F,

where Aj (j = 0, . . . , k − 1), F �≡ 0 are entire functions satisfying

(2.2) max{ρ(F ), ρ(Aj ) (j = 0, . . . , k − 1)} < ρ(f ).

Then

(2.3) ρ(f ) = ρ

(
f ′

f

)
= λ(f ) = λ(f ).

Furthermore, if f
(j)

f
is not constant (j � 2 is an integer), then

(2.4) ρ(f ) = ρ

(
f (j)

f

)
(j � 2).

Remark 2.1. In Theorem 2.1, we obtain the result due to S. A. Gao, Z. X.
Chen and T. W. Chen [5], but our simple proof is quite different.

Theorem 2.2. Let k � 1 be an integer, and let f be a finite order mero-
morphic solution of the differential equation

(2.5) f (k) = A1f + A2f
2 + · · · + An−1f

n−1 + Anf
n,

where Aj (j = 1, . . . , n) (n � 2 is an integer) are meromorphic functions
satisfying

(2.6) max{ρ(Aj ) : j = 1, . . . , n} < ρ(f ).

Then

(2.7) ρ(f ) = max

{
λ(f ), λ

(
1

f

)}
= max

{
λ(f ), λ

(
1

f

)}
.

Example 2.1. It’s clear that the function f (z) = 1
ez−1 satisfies the differ-

ential equation
f ′ = −f − f 2

and
max{ρ(Aj ) : j = 1, 2} = 0 < ρ(f ) = 1.
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Hence, by Theorem 2.2, we have

ρ(f ) = max

{
λ(f ), λ

(
1

f

)}
= max

{
λ(f ), λ

(
1

f

)}
= 1.

3. Some auxiliary lemmas

Lemma 3.1 ([7]). Let ϕ : [0,+∞) → R and ψ : [0,+∞) → R be monotone
non-decreasing functions such that ϕ(r) � ψ(r) for all r /∈ E4 ∪ [0, 1], where
E4 ⊂ (1,+∞) is a set of finite logarithmic measure. Let γ > 1 be a given
constant. Then there exists an r1 = r1(γ ) > 0 such that ϕ(r) � ψ(γ r) for all
r > r1.

Lemma 3.2 ([10, pp. 36–37], [11, p. 51]). Letf (z) = ∑∞
n=0 anz

n be an entire
function of order ρ, μ(r) be the maximum term, i.e., μ(r) = max{|an|rn; n =
0, 1, . . .}, and let νf (r) be the central index of f , i.e., νf (r) = max{m;μ(r) =
|am|rm}. Then

(3.1) lim sup
r→+∞

log νf (r)

log r
= ρ.

Lemma 3.3 ([4]). Let f (z) be an entire function of infinite order with the
hyper-order ρ2(f ) = σ < +∞. Then

(3.2) lim sup
r→+∞

log log νf (r)

log r
= σ.

Lemma 3.4 (Wiman-Valiron, [9], [14]). Let f (z) = ∑∞
n=0 an z

n be a tran-
scendental entire function, and let νf (r) be the central index of f . Let z be a
point with |z| = r at which |f (z)| = M(r, f ). Then the estimation

(3.3)
f (k)(z)

f (z)
=

(
νf (r)

z

)k
(1 + o(1)) (k � 1 is an integer)

holds for all |z| outside a set E5 of r of finite logarithmic measure.

Lemma 3.5 ([3]). Suppose that k � 2 and A0, A1, . . . , Ak−1, F �≡ 0 are
entire functions of finite order. If f is a solution of equation (2.1), then ρ2(f ) �
max{ρ(Aj ) : j = 0, . . . , k − 1, ρ(F )} = σ .
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4. Proof of Theorem 1.1

First, we prove the inequality

max

{
ρ

(
f (k)

f

)
, k � 2

}
� ρ

(
f ′

f

)
.

We have

(4.1)
f (k)

f
=

(
f (k−1)

f

)′
+

(
f ′

f

)(
f (k−1)

f

)
(k � 2).

Then

(4.2) ρ

(
f (k)

f

)
� max

{
ρ

(
f ′

f

)
, ρ

(
f (k−1)

f

)}
(k � 2).

By the same method, we can deduce that

(4.3)

ρ

(
f (k)

f

)
� max

{
ρ

(
f ′

f

)
, ρ

(
f (k−1)

f

)}

� max

{
ρ

(
f ′

f

)
, ρ

(
f (k−2)

f

)}

� · · · � max

{
ρ

(
f ′

f

)
, ρ

(
f ′′

f

)}

� max

{
ρ

(
f ′

f

)
, ρ

(
f ′

f

)}
= ρ

(
f ′

f

)
(k � 2).

Now we prove the equality. We divide the proof in three cases.
(i) Suppose that ρ

(
f (k)

f

)
< ρ

(
f (k+1)

f

)
. By (4.1), we have

(4.4)
f (k+1)

f
−

(
f (k)

f

)′
=

(
f ′

f

)(
f (k)

f

)
(k � 1).

Since ρ
(
f (k)

f

)
< ρ

(
f (k+1)

f

)
� ρ

(
f ′
f

)
, then by (4.4) we obtain

ρ

(
f (k+1)

f

)
= ρ

(
f ′

f

)
.

(ii) If ρ
(
f (k)

f

)
> ρ

(
f (k+1)

f

)
, then by (4.4) we have

(4.5) ρ

(
f (k)

f

)
= ρ

(
f ′

f

f (k)

f

)
.
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By (4.3) we have ρ
(
f (k)

f

)
� ρ

(
f ′
f

)
. If we suppose that ρ

(
f (k)

f

)
< ρ

(
f ′
f

)
, then

(4.6) ρ

(
f (k)

f

)
= ρ

(
f ′

f

f (k)

f

)
= ρ

(
f ′

f

)
,

which is a contradiction. Hence

ρ

(
f (k)

f

)
= ρ

(
f ′

f

)
.

(iii) Suppose that ρ
(
f (k)

f

) = ρ
(
f (k+1)

f

)
. By (4.3), we have ρ

(
f (k)

f

)
� ρ

(
f ′
f

)
.

If we suppose that ρ
(
f (k)

f

)
< ρ

(
f ′
f

)
, then by (4.4) we obtain

(4.7) ρ

(
f (k)

f

)
= ρ

(
f ′

f

)
,

which is a contradiction. Thus, by (i),(ii) and (iii) we deduce that

(4.8) max

{
ρ

(
f (k)

f

)
, ρ

(
f (k+1)

f

)}
= ρ

(
f ′

f

)
.

By (4.8) we can conclude that there exists always some integer j � 1 such
that

ρ

(
f (j)

f

)
= ρ

(
f ′

f

)
.

Thus

(4.9) ρ

(
f ′

f

)
= max

{
ρ

(
f (k)

f

)
, k � 2

}
.

5. Proof of Corollary 1.2

Since there exists an integer k � 1 such that

ρ

(
f (k)

f

)
= ρ(f ),

then by Theorem 1.1, we have

(5.1) ρ

(
f ′

f

)
= ρ(f ).
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On the other hand, for any given ε > 0

(5.2)

T

(
r,
f ′

f

)
= m

(
r,
f ′

f

)
+N

(
r,
f ′

f

)

= m

(
r,
f ′

f

)
+N

(
r,

1

f

)
+N(r, f )

� m

(
r,
f ′

f

)
+ rλ1+ε + rλ2+ε

� m

(
r,
f ′

f

)
+ 2rmax{λ1,λ2}+ε,

where λ1 = λ(f ), λ2 = λ
(

1
f

)
. Then by the lemma of logarithmic derivative

[8] and (5.2), we have

(5.3) T

(
r,
f ′

f

)
� O(log T (r, f )+ log r)+ 2rmax{λ1,λ2}+ε

holds for all r outside of a set E ⊂ (0,+∞) of finite linear measure. By the
standard lemma of removing an exceptional set of finite linear measure [1] and
(5.3) we obtain

(5.4)

ρ(f ) = ρ

(
f ′

f

)
� max

{
ρ2(f ), λ(f ), λ

(
1

f

)}

� max

{
ρ2(f ), λ(f ), λ

(
1

f

)}
� ρ(f ),

which implies

(5.5) ρ(f ) = max

{
λ(f ), λ

(
1

f

)}
= max

{
λ(f ), λ

(
1

f

)}
.

If f is entire function, then λ
(

1
f

) = λ
(

1
f

) = 0, so from (5.5), we obtain

λ(f ) = λ(f ) = ρ(f ).

6. Proof of Theorem 1.2

Suppose that f is an entire function with finite number of zeros. Then f can
be represented by

(6.1) f (z) = p(z)eg,
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where p is a polynomial and g is an entire function, and

(6.2) f (k) = �eg,

where� is an entire function. It’s clear that f satisfies the differential equation

(6.3) pf (k) −�f = 0.

(i) If f is an entire solution of finite order, then g and�must be polynomials
and by (6.3)

(6.4) ρ

(
f (k)

f

)
= ρ

(
�

p

)
= 0 = ρ2(f ).

(ii) If f is an entire solution of infinite order, then g and � must be tran-
scendental entire functions and

(6.5) ρ

(
f (k)

f

)
= ρ

(
�

p

)
= ρ(�).

We have also by (6.3)

(6.6) � = p
f (k)

f
,

then by (6.6) and the lemma of logarithmic derivative [8]

(6.7)
T (r,�) = m(r,�) � m(r, p)+m

(
r,
f (k)

f

)

= O(log r)+O(log rT (r, f ))

holds for all r outside of a set E ⊂ (0,+∞) of finite linear measure. By the
standard lemma of removing an exceptional set of finite linear measure [1] and
(6.7) we obtain

(6.8) ρ(�) � ρ2(f ).

On the other hand by Lemma 3.4, there exists a set E5 ⊂ (1,+∞) with
finite logarithmic measure lm(E5) < +∞ and we can choose z satisfying
|z| = r /∈ [0, 1]∪E5 and |f (z)| = M(r, f ), such that (3.3) holds. Substituting
(3.3) into (6.6) we obtain

(6.9) |p(z)|
(
vf (r)

r

)k
|1 + o(1)| = |�(z)| � M(r,�)
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holds for all z satisfying |z| = r /∈ [0, 1]∪E5 and |f (z)| = M(r, f ). By using
Lemma 3.1 and Lemma 3.3 from (6.9) we get

(6.10) ρ2(f ) � ρ(�).

By (6.5), (6.8) and (6.10) we deduce that

(6.11) ρ2(f ) = ρ(�) = ρ

(
f (k)

f

)
.

This proves Theorem 1.2.

7. Proof of Corollary 1.4

We define the entire function G

(7.1) G(z) = 1

c
exp{cF (z)},

where F is the primitive of the entire function f . We have

(7.2) G′′(z) = (f ′ + cf 2) exp{cF (z)}.
Then

(7.3) ρ

(
G′′

G

)
= ρ(f ′ + cf 2).

Since ρ2(G) = ρ(F ) = ρ(f ), then by Theorem 1.2 we obtain

(7.4) ρ(f ) = ρ(f ′ + cf 2).

8. Proof of Theorem 2.1

By (2.1), we can write

(8.1)
1

f
= 1

F

(
f (k)

f
+ Ak−1

f (k−1)

f
+ · · · + A1

f ′

f
+ A0

)
.

Then
(8.2)

ρ(f ) � max

{
ρ(F ), ρ(Aj ) (j = 0, . . . , k − 1), ρ

(
f (i)

f

)
(i = 1, . . . , k)

}
.

By using (2.2) and Theorem 1.1, we obtain from (8.2)

(8.3) ρ(f ) � max

{
ρ

(
f (i)

f

)
: i = 1, . . . , k

}
= ρ

(
f ′

f

)
� ρ(f )
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and by Corollary 1.2 and Lemma 3.5 we can deduce easily that

(8.4) ρ(f ) = ρ

(
f ′

f

)
= λ(f ) = λ(f ).

Now, we denote respectively by n(r, 0, f ) and n(r, 0, f ) the number of zeros
and distinct zeros of f in the disc {z : |z| < r}. It’s clear that if f (j)

f
(j � 2) is

not a constant, then

(8.5) n(r, 0, f ) � n

(
r, 0,

f

f (j)

)
.

Hence

(8.6) N

(
r,

1

f

)
� N

(
r,
f (j)

f

)
� T

(
r,
f (j)

f

)
,

which implies

(8.7) λ(f ) � ρ

(
f (j)

f

)
.

By (8.4) and (8.7), we deduce

(8.8) ρ(f ) = λ(f ) = λ(f ) � ρ

(
f (j)

f

)
� ρ(f ),

it follows that

ρ(f ) = λ(f ) = λ(f ) = ρ

(
f (j)

f

)
(j � 2).

9. Proof of Theorem 2.2

By (2.5), we can write

(9.1)
f (k)

f
= A1 + A2f + · · · + An−1f

n−2 + Anf
n−1,

which implies by using the theorem due to Valiron [13] and Mohon’ko [12]

(9.2) T

(
r,
f (k)

f

)
= T (r, A1 + A2f + · · · + An−1f

n−2 + Anf
n−1)

= (n− 1)T (r, f )+ S(r, f ).
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By using the standard lemma of removing an exceptional set of finite linear
measure [1] and Corollary 1.2, we obtain from (9.2)

ρ

(
f (k)

f

)
= ρ(f ) = max

{
λ(f ), λ

(
1

f

)}
= max

{
λ(f ), λ

(
1

f

)}
.
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