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MULTIPLE SOLUTIONS FOR NONLINEAR DIRICHLET
PROBLEMS WITH CONCAVE TERMS

LESZEK GASIŃSKI and NIKOLAOS S. PAPAGEORGIOU∗

Abstract
We consider a nonlinear parametric Dirichlet problem with parameter λ > 0, driven by the p-
Laplacian and with a concave term λ|u|q−2u, 1 < q < p and a Carathéodory perturbation f (z, ζ )
which is asymptotically (p−1)-linear at infinity. Using variational methods combined with Morse
theory and truncation techniques, we show that there is a critical value λ∗ > 0 of the parameter
such that for λ ∈ (0, λ∗) the problem has five nontrivial smooth solutions, four of constant sign
(two positive and two negative) and the fifth nodal. In the semilinear case (p = 2), we show
that there is a sixth nontrivial smooth solution, but we cannot provide information about its sign.
Finally for the critical case λ = λ∗, we show that the nonlinear problem (p �= 2) still has two
nontrivial constant sign smooth solutions and the semilinear problem (p = 2) has three nontrivial
smooth solutions, two of which have constant sign.

1. Introduction

Let � ⊆ RN be a bounded domain with C2-boundary ∂�. In this paper we
study the following nonlinear parametric Dirichlet problem:

(1.1)

{−�pu(z) = λ|u(z)|q−2u(z)+ f (z, u(z)) in �,

u|∂� = 0, 1 < q < p, λ > 0.

Here �p denotes the p-Laplacian differential operator, defined by

�pu = div
(‖∇u‖p−2∇u) ∀u ∈ W 1,p

0 (�),

with p ∈ (1,+∞). In problem (1.1), the term λ|u|q−2u with 1 < q < p is a
(p−1)-sublinear term (“concave term”), while for the perturbation f (z, ζ ), we
assume that it is a Carathéodory function and for almost all z ∈ �, the function
ζ 
−→ f (z, ζ ) exhibits a (p − 1)-linear growth near ±∞. So, problem (1.1)
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is asymptotically (p− 1)-linear. Our goal is to prove the existence of multiple
nontrivial solutions for problem (1.1) and provide precise sign information for
all of them.

In the past, problems with nonlinearities involving concave terms were
studied primarily in the context of semilinear equations (i.e., p = 2). We
mention the works of Perera [24], de Paiva-Massa [4] and Wu-Yang [28], who
have an asymptotically linear perturbation of the concave term. On the other
hand, Ambrosetti-Brezis-Cerami [1] and Li-Wu-Zhou [19] consider equations
with a right hand side nonlinearity of the form

λ|u|q−2u+ |u|r−2u,

with 1 < q < 2 < r < 2∗, where

2∗ =
⎧⎨
⎩

2N

N − 2
if N � 3,

+∞ if N = 1, 2.

So, in this case we have the combined effects of concave and convex nonlinear-
ities. Extensions of their work to problems driven by the p-Laplacian, can be
found in the works of Garcia Azorero-Manfredi-Peral Alonso [8], Guo-Zhang
[16], Filippakis-Kristaly-Papageorgiou [7] and Kyritsi-Papageorgiou [17]. We
should also mention the work of Wang [27], who has an odd perturbation of
the concave term without any growth restriction near ±∞. Finally, we should
also mention the recent works of Gasiński-Papageorgiou [11], [12] and of
Papageorgiou-Rocha [23]. They also deal with problems in which the reaction
f (z, ·) is asymptotically (p− 1)-linear at ±∞ (note that [11] considers Neu-
mann problem). However, their conditions near the origin are different and do
not allow for the presence of concave terms. In fact, in their setting u = 0
is a local minimizer of the energy functional and this changes completely the
geometry of the problem near the origin.

In this paper, we show that there exists a critical value λ∗ > 0, such that
for all λ ∈ (0, λ∗) problem (1.1) has at least five nontrivial smooth solutions,
four of which have constant sign (two positive and two negative) and the fifth
is nodal. Moreover, we show that, if λ = λ∗, then problem (1.1) still has three
nontrivial smooth solutions, two of constant sign (one positive and the other
negative) and the third is nodal. Hence, we could say that the solutions of
problem (1.1) as functions of the parameter λ > 0, exhibit a bifurcation-type
behaviour for small values of λ > 0 (the term “bifurcation” is used only in
a very loose and suggestive way). In the semilinear case (i.e., p = 2), we
produce additional solutions.
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Our approach combines variational methods based on the critical point
theory with Morse theory (critical groups) and suitable truncation techniques.

In the next Section, for the convenience of the reader, we briefly review the
main mathematical tools that we will use in this paper.

2. Mathematical Background

In the analysis of problem (1.1), we will use the Sobolev space W 1,p
0 (�) and

the Banach space

C1
0(�) = {

u ∈ C1(�) : u|∂� = 0
}
.

The latter is an ordered Banach space with positive cone

C+ = {
u ∈ C1

0(�) : u(z) � 0 for all z ∈ �}
.

This cone has a nonempty interior, given by

intC+ = {
u ∈ C+ : u(z) > 0 for all z ∈ � and ∂u

∂n
(z) < 0 for all z ∈ ∂�}

.

Here n(·) denotes the outward unit normal on ∂�.
Throughout this work, for every u ∈ W

1,p
0 (�), we set ‖u‖ = ‖∇u‖p and

for every ζ ∈ R, we set ζ± = max{±ζ, 0}. The notation ‖·‖ will also be used
to denote the RN -norm, but this will not create any confusion, since it will
always be clear from the context, which one we are using. Finally by |·|N we
denote the Lebesgue measure on RN .

Let X be a Banach space and let X∗ be its topological dual. By 〈·, ·〉 we
denote the duality brackets for the pair (X∗, X). Let ϕ ∈ C1(X). A point
x0 ∈ X is called a critical point of ϕ, if ϕ′(x0) = 0. A value c ∈ R is said to be
a critical value of ϕ, if there exists a critical point x0 ∈ X, such that ϕ(x0) = c.
We introduce the following sets:

ϕc = {x ∈ X : ϕ(x) � c},
Kϕ = {x ∈ X : ϕ′(x) = 0},
Kϕ
c = {x ∈ Kϕ : ϕ(x) = c}.

The following compactness-type condition plays a central role in critical
point theory.

Definition 2.1. We say that ϕ ∈ C1(X) satisfies the Palais-Smale condi-
tion at level c ∈ R (the PSc-condition for short), if every sequence {xn}n�1 ⊆ X,
such that

ϕ(xn) −→ c and ϕ′(xn) −→ 0 in X∗,
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has a strongly convergent subsequence. We say that ϕ ∈ C1(X) satisfies the
Palais-Smale condition (the PS-condition for short), if it satisfies the PSc-
condition at every level c ∈ R.

Using this notion, we can have the following theorem known in the literature
as the “mountain pass theorem”.

Theorem 2.2. If X is a Banach space, ϕ ∈ C1(X), x0, x1 ∈ X, r > 0,
‖x1 − x0‖ > r ,

max{ϕ(x0), ϕ(x1)} < inf{ϕ(x) : ‖x − x0‖ = r} = ηr,

c = inf
γ∈
 max

0�t�1
ϕ(γ (t)),

where

 = {γ ∈ C([0, 1];X) : γ (0) = x0, γ (1) = x1}

and ϕ satisfies the PSc-condition, then c � ηr and Kϕ
c �= ∅.

The following notion from nonlinear operator theory, will be useful in prov-
ing that the energy functional of the problem satisfies the PS-condition.

Definition 2.3. A map A:X −→ X∗ is said to be “of type (S)+”, if for
every sequence {xn}n�1 ⊆ X, such that

xn −→ x weakly in X and lim sup
n→+∞

〈A(xn), xn − x〉 � 0,

one has
xn −→ x in X.

Next let us consider the map A:W 1,p
0 (�) −→ W

1,p
0 (�)∗ = W−1,p′

(�)

corresponding to the p-Laplacian and defined by

(2.1) 〈A(u), y〉 =
∫
�

‖∇u‖p−2(∇u,∇y)RN dz ∀u, y ∈ W 1,p
0 (�).

Then for this map, we have the following result (see Gasiński-Papageorgiou
[9]).

Proposition 2.4. The map A:W 1,p
0 (�) −→ W−1,p′

(�) defined by (2.1)
is continuous, strictly monotone (hence maximal monotone too) and of type
(S)+.

Let (Y1, Y2) be a topological pair with Y2 ⊆ Y1 ⊆ X. For every integer
k � 0, byHk(Y1, Y2) we denote the k-th relative singular homology group for
the pair (Y1, Y2) with integer coefficients.
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Definition 2.5. The critical groups of ϕ at an isolated critical point x0 ∈ X
with c = ϕ(x0) are defined by

Ck(ϕ, x0) = Hk(ϕ
c ∩ U, ϕc ∩ U \ {x0}) ∀k � 0,

where U is a neighbourhood of x0, such that Kϕ ∩ ϕc ∩ U = {x0}.
The excision property of singular homology, implies that the above defini-

tion of critical groups is independent of the particular choice of the neighbour-
hood U .

Suppose that ϕ ∈ C1(X) satisfies the PS-condition and −∞ < inf ϕ(Kϕ).
We choose c < inf ϕ(Kϕ).

Definition 2.6. The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X, ϕ
c) ∀k � 0.

The second deformation theorem implies that the above definition is inde-
pendent of the particular choice of the level c < inf ϕ(Kϕ).

Suppose that Kϕ is finite and let us set

M(t, x) =
∑
k�0

rankCk(ϕ, x)t
k ∀x ∈ Kϕ

and
P(t,∞) =

∑
k�0

rankCk(ϕ,∞)tk.

Then the Morse relation says that there is a polynomialQ(t)with nonnegative
integer coefficients, such that

(2.2)
∑
x∈Kϕ

M(t, x) = P(t,∞)+ (1 + t)Q(t).

Finally let us recall some basic facts about the spectrum of the negative Dirich-
let p-Laplacian, denoted by −�D

p . So, we consider the following nonlinear
weighted eigenvalue problem with weight m ∈ L∞(�)+, m �= 0:

(2.3)

{
−�pu(z) = λ̂m(z)|u(z)|p−2u(z) in �,

u|∂� = 0.

Every λ̂ ∈ R for which problem (2.3) has a nontrivial solution u, is said
to be an eigenvalue of −�D

p and u is a corresponding eigenfunction. The

smallest eigenvalue is denoted by λ̂1(m) and it is positive, isolated (i.e., there
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exists ε > 0 such that the interval [λ̂1(m), λ̂1(m) + ε) contains no other
eigenvalues), simple (i.e., the corresponding set of eigenfunctions is a one-
dimensional space) and it admits the following variational characterization
(Rayleigh quotient):

(2.4) λ̂1(m) = inf

{ ‖∇u‖pp∫
�
m|u|p dz : u ∈ W 1,p

0 (�), u �= 0

}
.

In (2.4) the infimum is attained on the corresponding one-dimensional eigen-
space. By û1 we denote theLp-normalized (i.e., with‖û1‖p = 1) eigenfunction
associated with λ̂1(m) > 0. It is clear from (2.4), that û1 does not change sign
and so we may assume that û1 � 0. Nonlinear regularity theory (see e.g.,
Gasiński-Papageorgiou [9, pp. 737–738]) implies that û1 ∈ C+. In fact, the
nonlinear maximum principle of Vázquez [26] implies that û1 ∈ intC+.

Since the p-Laplacian is (p− 1)-homogeneous map, the Ljusternik-Schni-
relmann theory provides an increasing sequence {λ̂k(m)}n�1 of eigenvalues
of −�D

p , known as the LS-eigenvalues of −�D
p , such that λ̂k(m) −→ +∞

as k → +∞. If p = 2 (linear eigenvalue problem), then these are all the
eigenvalues of −�D

p . If p �= 2 (nonlinear eigenvalue problem), we do not
know if this is the case. Let σ(p,m) denote the set of eigenvalues of (2.3). It
is easily seen that σ(p,m) is closed. Because λ̂1(m) > 0 is isolated, we can
define

λ̂∗
2(m) = inf{λ̂ : λ̂ ∈ σ(p,m), λ̂ > λ̂1(m)} > λ̂1(m).

Evidently λ̂∗
2(m) is the second eigenvalue of −�D

p and we have

λ̂∗
2(m) = λ̂2(m),

i.e., for −�D
p the second eigenvalue and the second LS-eigenvalue coincide.

The function

(L∞(�)+ \ {0}) � m 
−→ λ̂k(m) ∈ R+ \ {0}
is continuous and exhibits the following monotonicity properties:

• Ifm(z) � m′(z) for almost all z ∈ � andm �= m′, then λ̂1(m
′) < λ̂1(m).

• If m(z) < m′(z) for almost all z ∈ �, then λ̂2(m
′) < λ̂2(m).

The following simple lemma can be found in Filippakis-Gasiński-Papageor-
giou [6, Lemma 3.2] (see also Gasiński-Papageorgiou [13, Lemma 2.1]).

Lemma 2.7. If ϑ ∈ L∞(�)+, ϑ(z) � λ1 for almost all z ∈ � and ϑ �= λ1,
then there exists ξ0 > 0, such that

‖∇u‖pp −
∫
�

ϑ |u|p dz � ξ0‖∇u‖pp ∀u ∈ W 1,p
0 (�).
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We will also need the notions of upper and lower solutions for problem
(1.1).

Definition 2.8.
(a) We say that u ∈ W 1,p(�) is an upper solution for problem (1.1), if⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∫
�

‖∇u‖p−2(∇u,∇h)RN dz � λ

∫
�

|u|q−2uh dz+
∫
�

f (z, u)h dz

∀h ∈ W 1,p
0 (�), h � 0,

u|∂� � 0.

We say that u is a strict upper solution, if it is an upper solution for (1.1)
but not a solution.

(b) We say that u ∈ W 1,p
0 (�) is a lower solution for problem (1.1), if⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∫
�

‖∇u‖p−2(∇u,∇h)RN dz � λ

∫
�

|u|q−2uh dz+
∫
�

f (z, u)h dz

∀h ∈ W 1,p
0 (�), h � 0,

u|∂� � 0.

We say that u is a strict lower solution, if it is a lower solution for (1.1)
but not a solution.

Finally recall that, if S ⊆ W 1,p(�), then we say that S is downward directed
(respectively upward directed), if for any u1, u2 ∈ S, we can find u3 ∈ S, such
that u3 � min{u1, u2} (respectively u3 � max{u1, u2}).

3. Solutions of Constant Sign

The hypotheses on the nonlinearity f (z, ζ ) are the following:

H(f )1 f :�× R −→ R is a function, such that:

(i) for all ζ ∈ R, the function z 
−→ f (z, ζ ) is measurable;

(ii) for almost all z ∈ �, the function ζ 
−→ f (z, ζ ) is continuous, f (z, 0) =
0;

(iii) for every r > 0, there exists ar ∈ L∞(�)+, such that∣∣f (z, ζ )∣∣ � ar(z) for almost all z ∈ � and all |ζ | � r;
(iv) there exist functions η1, η2 ∈ L∞(�)+, such that

η1(z) � λ1, η2(z) < λ2 for almost all z ∈ �
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and η1 �= λ1 and

η1(z) � lim inf|ζ |→+∞
f (z, ζ )

|ζ |p−2ζ
� lim sup

|ζ |→+∞
f (z, ζ )

|ζ |p−2ζ
� η2(z)

uniformly for almost all z ∈ �;

(v) there exists ϑ ∈ L∞(�)+, such that ϑ(z) � λ1 for almost all z ∈ �,
ϑ �= λ1 and

lim
ζ→0

pF(z, ζ )

|ζ |p � ϑ(z),

uniformly for almost all z ∈ �, where

F(z, ζ ) =
∫ ζ

0
f (z, s) ds

and

f (z, ζ )ζ � −c0|ζ |p for almost all z ∈ �, all ζ ∈ R,

with c0 > 0.

Remark 3.1. HypothesisH(f )1 (iv) dictates a (p−1)-linear growth at ±∞
in the spectral interval [λ1, λ2]. So, problem (1.1) is asymptotically (p − 1)-
linear at infinity.

Example 3.2. The following function f (ζ ) satisfies hypotheses H(f )1
(for the sake of simplicity we drop the z-dependence):

f (ζ ) =
{
ϑ |ζ |r−2ζ if |ζ | � 1,

η|ζ |p−2ζ + (ϑ − η) sgn(ζ ) if |ζ | > 1,

with 0 < ϑ < λ1 < η < λ2, p � r .

As we already mentioned in the Introduction, our approach involves also
truncation techniques. For this reason we introduce the following truncations
of the reaction term in (1.1):

f λ+(z, ζ ) =
{

0 if ζ � 0,

λζ q−1 + f (z, ζ ) if ζ > 0,
(3.1)

f λ−(z, ζ ) =
{
λ|ζ |q−2ζ + f (z, ζ ) if ζ < 0,

0 if ζ � 0.
(3.2)

Both are Carathéodory functions. We set

Fλ±(z, ζ ) =
∫ ζ

0
f λ±(z, s) ds
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and introduce the C1-functionals ϕλ±:W 1,p
0 (�) −→ R, defined by

(3.3) ϕλ±(u) = 1

p
‖∇u‖pp −

∫
�

Fλ±(z, u(z)) dz ∀u ∈ W 1,p
0 (�).

Also, we consider the C1-energy functional ϕλ:W 1,p
0 (�) −→ R for prob-

lem (1.1), defined by

(3.4) ϕλ(u) = 1

p
‖∇u‖pp − λ

p
‖u‖qq −

∫
�

F(z, u(z)) dz ∀u ∈ W 1,p
0 (�).

We show that the functionals ϕλ± and ϕλ satisfy the PS-condition.

Proposition 3.3. If hypothesesH(f )1 hold andλ > 0, then the functionals
ϕλ±, ϕλ:W

1,p
0 (�) −→ R satisfy the PS-condition.

Proof. We do the proof for ϕλ+, the proofs for ϕλ− and ϕλ being similar.

So, let {un}n�1 ⊆ W
1,p
0 (�) be a sequence, such that {ϕλ+(un)} ⊆ R is

bounded and
(ϕλ+)

′(un) −→ 0 in W−1,p′
(�),

so

(3.5)

∣∣∣∣〈A(un), h〉 −
∫
�

f λ+(z, un)h dz
∣∣∣∣ � εn‖h‖ ∀h ∈ W 1,p

0 (�),

with εn ↘ 0. In (3.5), we choose h = −u−
n ∈ W 1,p

0 (�). Then

‖∇u−
n ‖pp � εn‖u−

n ‖,
and so

(3.6) u−
n −→ 0 in W 1,p

0 (�).

Suppose that ‖un‖ −→ +∞. Then, from (3.6), we have that ‖u+
n ‖ −→ +∞.

We set
yn = u+

n

‖u+
n ‖ ∀n � 1.

So, ‖yn‖ = 1 for all n � 1 and so passing to a suitable subsequence if
necessary, we may assume that

yn −→ y weakly in W 1,p
0 (�),(3.7)

yn −→ y in Lp(�).(3.8)
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From (3.5), we have∣∣∣∣〈A(yn), h〉 −
〈
A(−u−

n )

‖u+
n ‖p−1

, h

〉
−

∫
�

f λ+(z, u+
n )

‖u+
n ‖p−1

h dz

−
∫
�

f λ+(z,−u−
n )

‖u+
n ‖p−1

h dz

∣∣∣∣ � εn
‖h‖

‖u+
n ‖p−1

∀h ∈ W 1,p
0 (�).

By virtue of (3.6), we have

A(−u−
n )

‖u+
n ‖p−1

−→ 0 in W−1,p′
(�)

f λ+(·,−u−
n (·))

‖u+
n ‖p−1

−→ 0 in Lp
′
(�).

Therefore

(3.9)

∣∣∣∣〈A(yn), h〉 −
∫
�

f λ+(z, u+
n )

‖u+
n ‖p−1

h dz

∣∣∣∣ � ε′
n

‖h‖
‖u+

n ‖p−1
∀h ∈ W 1,p

0 (�),

with ε′
n ↘ 0. Note that

u+
n (z) −→ +∞ for almost all z ∈ {y > 0}.

Using hypothesis H(f )1 (iv) and reasoning as in Motreanu-Motreanu-Papa-
georgiou [22] (proof of Proposition 5), we can show that

(3.10)
f λ+(·, u+

n (·))
‖u+

n ‖p−1
−→ g yp−1 weakly in Lp

′
(�),

with g ∈ L∞(�)+, η1 � g � η2. In (3.9) we choose h = yn−y and then pass
to the limit as n → +∞. Using (3.10), we obtain

lim
n→+∞〈A(yn), yn − y〉 = 0.

From Proposition 2.4, we have that

yn −→ y in W 1,p
0 (�)

and so ‖y‖ = 1. Therefore, if in (3.9) we pass to the limit as n → +∞ and
use (3.10), then

〈A(y), h〉 =
∫
�

gyp−1h dz ∀h ∈ W 1,p
0 (�),
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so
A(y) = gyp−1

and so

(3.11)

{−�py(z) = g(z)y(z)p−1 in �,

y|∂� = 0, y � 0, y �= 0.

From the monotonicity properties of the principal eigenvalues, we have

λ̂1(g) � λ̂1(η1) < λ̂1(λ1) = 1,

so y must change sign, a contradiction to (3.11). This proves that the sequence
{u+
n }n�1 ⊆ W

1,p
0 (�) is bounded, hence the sequence {un}n�1 ⊆ W

1,p
0 (�) is

bounded (see (3.6)). So, passing to a subsequence if necessary, we may assume
that

un −→ u weakly in W 1,p
0 (�),

un −→ u in Lp(�).

In (3.5) we choose h = un − u and then pass to the limit as n → +∞. We
obtain

lim
n→+∞〈A(un), un − u〉 = 0.

Using Proposition 2.4, we have that

un −→ u in W 1,p
0 (�)

and so ϕλ+ satisfies the PS-condition.
Similarly, we show that ϕλ− and ϕλ satisfy the PS-condition.

Proposition 3.4. If hypothesesH(f )1 hold, then there exists λ∗+ > 0, such
that for all λ ∈ (0, λ∗+), we can find a number �λ > 0 for which

inf
∂B�λ

ϕλ+ = ηλ+ > 0,

where ∂B�λ = {u ∈ W 1,p
0 : ‖u‖ = �λ}.

Proof. By virtue of hypotheses H(f )1 (iii) and (iv), we have

(3.12) |F(z, ζ )| � a(z)+ c|ζ |p for almost all z ∈ �, all ζ ∈ R,

with a ∈ L∞(�)+, c > 0. From (3.12) and hypothesisH(f )1 (v), we see that
for a given ε > 0, we can find cε > 0, such that

(3.13) F (z, ζ ) � ϑ(z)+ ε

p
ζp + cεζ

τ for almost all z ∈ �, all ζ � 0,
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with τ > p. Then for every u ∈ W 1,p
0 (�), we have

ϕλ+(u) = 1

p
‖∇u‖pp −

∫
�

Fλ+(z, u(z)) dz

� 1

p
‖∇u‖pp − λ

q
‖u‖qq − 1

p

∫
�

ϑ |u|p dz− ε

p
‖u‖p − ĉε‖u‖τ ,

for some ĉε > 0. Invoking Lemma 2.7 and choosing ε ∈ (0, ξ0), we obtain

(3.14)
ϕλ+(u) � c1‖u‖p − λc2‖u‖q − ĉε‖u‖τ

= (c1 − λc2‖u‖q−p − ĉε‖u‖τ−p)‖u‖p,
for some c1, c2 > 0.

We consider the function

(3.15) σλ(t) = λc2t
q−p + ĉεt

τ−p t > 0.

Note that
σλ(t) −→ +∞ as t → +∞,

σλ(t) −→ +∞ as t → 0+,

(since q < p < τ ). Of course σλ is continuous on (0,+∞). Therefore, we
can find t0 > 0, such that

σλ(t0) = inf
R+
σλ,

so
σ ′
λ(t0) = 0

and thus

t0 = t0(λ) =
(
λc2(p − q)

ĉε(τ − p)

) 1
τ−q
.

We consider σλ(t0) in (3.15) and we see that we can find λ∗+ > 0, such that

σλ(t0) < c1 ∀λ ∈ (0, λ∗
+).

So, from (3.14), it follows that

ϕλ+(u) � η+
λ > 0 ∀‖u‖ = �λ = t0(λ), λ ∈ (0, λ∗

+).

In a similar fashion, we also show the following proposition.



218 leszek gasiński and nikolaos s. papageorgiou

Proposition 3.5. If hypothesesH(f )1 hold, then there exists λ∗− > 0, such
that for all λ ∈ (0, λ∗−), we can find a number �λ > 0 for which

inf
∂B�λ

ϕλ− = ηλ− > 0.

Recall that û1 ∈ intC+ is the Lp-normalized principal eigenvalue of −�D
p .

Proposition 3.6. If hypotheses H(f )1 hold and λ > 0, then ϕλ±(tû1) −→
−∞ as t → ±∞.

Proof. We do the proof for ϕλ+, the proof for ϕλ− being similar.
By virtue of hypothesesH(f )1 (iii) and (iv), for a given ε > 0, we can find

cε > 0, such that

(3.16) F (z, ζ ) � η1(z)− ε

p
|ζ |p−cε for almost all z ∈ � and all ζ ∈ R.

Hence, using (3.16), for t > 0, we have

(3.17)

ϕλ+(tû1) = tp

p
‖∇û1‖pp −

∫
�

Fλ+(z, tû+) dz

� tp

p

(∫
�

(λ1 − η1(z))û1(z)
p dz+ ε

)
+ cε|�|N.

From the hypothesis on η1 (see H(f )1 (iv)) and since û1 ∈ intC+, we have

ξ1 =
∫
�

(λ1 − η1(z))û1(z)
p dz < 0.

We choose ε ∈ (0,−ξ1). Then from (3.17), it follows that

ϕλ+(tû1) −→ −∞ as t → +∞.

In a similar fashion, we show that

ϕλ+(tû1) −→ −∞ as t → −∞.

We are ready to produce the constant sign solutions for problem (1.1).

Proposition 3.7. If hypothesesH(f )1 hold and λ∗± > 0 are as postulated
in Propositions 3.4 and 3.5, then

(a) for all λ ∈ (0, λ∗+), problem (1.1) has a solution u0 ∈ intC+;

(b) for all λ ∈ (0, λ∗−), problem (1.1) has a solution v0 ∈ − intC+;
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(c) for all λ ∈ (0, λ∗), where λ∗ = min{λ∗+, λ∗−}, problem (1.1) has two non-
trivial smooth constant sign solutions: u0 ∈ intC+ and v0 ∈ − intC+.

Proof. (a) Propositions 3.3, 3.4 and 3.6 permit the use of the mountain
pass theorem (see Theorem 2.2). So, for λ ∈ (0, λ∗+) (see Proposition 3.4), we

can find u0 ∈ W 1,p
0 (�), such that

(3.18) ϕλ+(0) = 0 < ηλ+ � ϕλ+(u0)

and

(3.19) (ϕλ+)
′(u0) = 0.

From (3.18), it follows that u0 �= 0. From (3.19), we have that

(3.20) A(u0) = Nλ
+(u0),

where Nλ+(u)(·) = f λ+
(·, u(·)) for all u ∈ W 1,p

0 (�).

On (3.20), we act with −u−
0 ∈ W 1,p

0 (�). Then

‖∇u−
0 ‖pp = 0,

so u−
0 = 0, i.e.,

u0 � 0, u0 �= 0.

Hence (3.20) becomes

A(u0) = λu
q−1
0 +N(u0),

where N(u)(·) = f (·, u(·)) for all u ∈ W 1,p
0 (�), so

(3.21)

{−�pu0(z) = λu0(z)
q−1 + f (z, u0(z)) in �,

u|∂� = 0.

and using hypothesis H(f )1 (v), we have

(3.22) �pu0(z) � c0u0(z)
p−1 for almost all z ∈ �.

From (3.21) and the nonlinear regularity theory (see e.g., Gasiński-Papageor-
giou [9, pp. 737–738]), we have u0 ∈ C+, while from (3.22) and the nonlinear
maximum principle of Vázquez [26], we have that u0 ∈ intC+.

(b) The proof is similar with that of (a), working this time with ϕλ−, λ ∈
(0, λ∗−) and using Proposition 3.5 (instead of Proposition 3.4). So, we obtain
a solution v0 ∈ − intC+ for problem (1.1), for λ ∈ (0, λ∗−).
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(c) This part follows by combining (a) and (b).

Proposition 3.8. If hypotheses H(f )1 hold and λ ∈ (0, λ∗+) (respectively
λ ∈ (0, λ∗−)), then infB�λ ϕ

λ+ < 0 (respectively infB�λ ϕ
λ− < 0).

Proof. We do the proof for ϕλ+, the proof for ϕλ− being similar.
Let t > 0 be small, such that t‖û1‖ < �λ. Then, using hypothesisH(f )1 (v)

and recalling that ‖û1‖p = 1, for λ ∈ (0, λ∗+), we have

ϕλ+(tû1) = tp

p
‖∇û1‖pp −

∫
�

Fλ+(z, tû1) dz

� tq
(
λ1 + c0

p
tp−q − λ

r
‖û1‖qq

)
.

Since q < p, by choosing t > 0 even smaller if necessary, we have

λ1 + c0

p
tp−q − λ

r
‖û1‖qq < 0,

so
ϕλ+(tû1) < 0

and thus
inf
B�λ

ϕλ+ < 0.

Similarly for ϕλ−, with λ ∈ (0, λ∗−).

Next we use Proposition 3.8 and the Ekeland variational principle (see e.g.,
Gasiński-Papageorgiou [9, p. 582]), in order to produce two more nontrivial
smooth solutions of constant sign.

Proposition 3.9. If hypotheses H(f )1 hold, then

(a) for all λ ∈ (0, λ∗+), problem (1.1) has two nontrivial positive smooth
solutions u0, û ∈ intC+ and û is a local minimizer of ϕλ;

(b) for all λ ∈ (0, λ∗−), problem (1.1) has two nontrivial negative smooth
solutions v0, v̂ ∈ − intC+ and v̂ is a local minimizer of ϕλ;

(c) for all λ ∈ (0, λ∗), where λ∗ = min{λ∗+, λ∗−}, problem (1.1) has four
nontrivial smooth constant sign solutions: u0, û ∈ intC+ and v0, v̂ ∈
− intC+.

Proof. (a) Let
β = inf

∂B�λ

ϕλ+ − inf
B�λ

ϕλ+ > 0
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(see Propositions 3.4 and 3.8). Then for ε ∈ (0, β), we apply the Ekeland
variational principle (see e.g., Gasiński-Papageorgiou [9, p. 582]) and obtain
uε ∈ B�λ , such that

(3.23) ϕλ+(uε) � inf
B�λ

ϕλ+ + ε

and

(3.24) ϕλ+(uε) � ϕλ+(u)+ ε‖u− uε‖ ∀u ∈ B�λ.
From (3.23) and the choice of ε ∈ (0, β), we have

ϕλ+(uε) < inf
∂B�λ

ϕλ+,

so uε ∈ B�λ \ ∂B�λ .
Let h ∈ W 1,p

0 (�). Since uε ∈ B�λ , for t > 0 small, we have uε + th ∈ B�λ .
Substituting in (3.24), dividing by t and letting t → 0, we obtain

〈(ϕλ+)′(uε), h〉 � −ε‖h‖ ∀h ∈ W 1,p
0 (�)

and thus

(3.25) ‖(ϕλ+)′(uε)‖∗ � ε.

Let εn = 1
n

and un = uεn . Then from (3.23) and (3.25), it follows that

(3.26) ϕλ+(un) −→ inf
B�λ

ϕλ+

and

(3.27) (ϕλ+)
′(un) −→ 0 in W 1,p

0 (�).

From (3.26), (3.27), Proposition 3.3 and by passing to a subsequence if neces-
sary, we may assume that

un −→ û in W 1,p
0 (�).

Using (3.26) and Propositions 3.4 and 3.8, we obtain

ϕλ+(un) −→ ϕλ+(û) = inf
B�λ

ϕλ+ < 0 = ϕλ+(0) < inf
∂B�λ

ϕλ+.

Therefore û ∈ B�λ \ ∂B�λ , û �= 0 and we can say that

(ϕλ+)
′(û) = 0,
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so
A(û) = Nλ

+(û).

Acting with −û− ∈ W 1,p
0 (�), we obtain û � 0, û �= 0. Hence

A(û) = λûq−1 +N(û),

so {−�pû(z) = λû(z)q−1 + f
(
z, û(z)

)
in �,

û|∂� = 0.

Therefore û ∈ C+ (nonlinear regularity theory) and by the nonlinear maximum
principle of Vázquez [26] (see hypothesisH(f )1 (v)), we have that û ∈ intC+.

Since
ϕλ+|C+ = ϕλ|C+ ,

we see that û ∈ intC+ is a local C1
0(�)-minimizer of ϕλ. Invoking The-

orem 1.2 of Garcia Azorero-Manfredi-Peral Alonso [8], we infer that û is a
local W 1,p

0 (�)-minimizer of ϕλ.
(b) The proof of this part is similar to that of (a), using this time the func-

tional ϕλ−.
(c) This part is obtained by combining (a) and (b).

Next we show that for fixed λ ∈ (0, λ∗+) (respectively λ ∈ (0, λ∗−)) problem
(1.1) has a smallest positive solution (respectively biggest negative solution).
To do this, we shall need the following lemma which can be found in Gasiński-
Papageorgiou [10].

Lemma 3.10.
(a) The set of upper solutions for problem (1.1) is downward directed. More

precisely for any two upper solutions y1, y2 ∈ W 1,p(�), the function
y = min{y1, y2} ∈ W 1,p(�) is an upper solution too.

(b) The set of lower solutions for problem (1.1) is upward directed. More pre-
cisely for any two lower solutions v1, v2 ∈ W 1,p(�), v = max{v1, v2} ∈
W 1,p(�) is a lower solution too.

Using this lemma, we can produce extremal constant sign solutions for prob-
lem (1.1). For this, we will need the following stronger version of hypotheses
H(f )1.

H(f )2 f :�× R −→ R is a function, such that:

(i)–(iv) the same as hypotheses H(f )1 (i)–(iv);
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(v) there exists ϑ ∈ L∞(�)+, such that ϑ(z) � λ1 for almost all z ∈ �,
ϑ �= λ1 and

lim
ζ→+∞

pF(z, ζ )

|ζ |p � ϑ(z),

uniformly for almost all z ∈ � and

f (z, ζ )ζ � 0 for almost all z ∈ �, all ζ ∈ R.

Remark 3.11. The function given in Example 3.2 still satisfies hypotheses
H(f )2.

Proposition 3.12. If hypotheses H(f )2 hold and λ ∈ (0, λ∗), where λ∗ =
min{λ∗+, λ∗−}, then problem (1.1) has a smallest positive solution u+ ∈ intC+
and a biggest negative solution v− ∈ − intC+.

Proof. Choose ε ∈ (0, 1) small, such that

(3.28) λ1ε
p−1û1(z)

p−1 < λεq−1û1(z)
q−1 ∀z ∈ �

(recall q < p). We set u = εû1 ∈ intC+. Then, using (3.28) and hypothesis
H(f )2(v), we have

−�pu(z) = −�p(εû1)(z) = λ1ε
p−1û1(z)

p−1

< λεq−1û1(z)
q−1 � λu(z)q−1 + f (z, u(z))

for almost all z ∈ �, so u ∈ intC+ is a lower solution for problem (1.1).
Let S+ be the set of solutions u of problem (1.1), such that u � u. By

choosing ε ∈ (0, 1) small, such that εû1 � min{u0, û}, we see that S+ �= ∅.
We will show that S+ is downward directed. To this end, let u1, u2 ∈

S+. Evidently both are upper solutions for problem (1.1) and so according

to Lemma 3.10(a), u = min{u1, u2} ∈ W 1,p
0 (�) is an upper solution too and

of course u � u. We set

(3.29) f̂λ(z, ζ ) =

⎧⎪⎨
⎪⎩
λu(z)q−1 + f (z, u(z)) if ζ < u(z),

λζ q−1 + f (z, ζ ) if u(z) � ζ � u(z),

λu(z)q−1 + f (z, u(z)) if u(z) < ζ .

Evidently f̂λ(z, ζ ) is a Carathéodory function. Let

F̂λ(z, ζ ) =
∫ ζ

0
f̂λ(z, s) ds.
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We consider the C1-functional ϕ̂λ:W
1,p
0 (�) −→ R, defined by

ϕ̂λ(u) = 1

p
‖∇u‖pp −

∫
�

F̂λ(z, u(z)) dz ∀u ∈ W 1,p
0 (�).

Because of (3.29), we have

ϕ̂λ(u) � 1

p
‖∇u‖pp − c3 ∀u ∈ W 1,p

0 (�),

for some c3 > 0, so the functional ϕ̂λ is coercive.
In addition, exploiting the compactness of the embedding W 1,p

0 (�) ⊆
Lp(�), we can easily verify that the functional ϕ̂λ is sequentially weakly lower
semicontinuous. So, by the Weierstrass theorem, we can find û0 ∈ W 1,p

0 (�),
such that

ϕ̂λ(û0) = inf
u∈W 1,p

0 (�)

ϕ̂λ(u),

so
ϕ̂′
λ(û0) = 0

and thus

(3.30) A(û0) = N̂λ(û0),

where
N̂λ(u)(·) = f̂λ(·, u(·)) ∀u ∈ W 1,p

0 (�).

On (3.30), we act with (u − û0)
+ ∈ W

1,p
0 (�). Then, using (3.29) and the

fact that u ∈ intC+ is a lower solution of (1.1), we have

〈A(û0), (u− û0)
+〉 =

∫
{u>u0}

f̂λ(z, û0)(u− û0) dz

= λ

∫
{u>u0}

uq−1(u− û0) dz

+
∫

{u>u0}
f (z, u)(u− û0) dz

� 〈A(u), (u− û0)
+〉,

so ∫
{u>u0}

(‖∇û0‖p−2∇û0 − ‖∇u‖p−2∇u,∇u− ∇û0
)

RN
� 0,

thus |{u > û0}|N = 0. So, finally

u � û0.
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Similarly, acting on (3.30) with (û0 − u)+ ∈ W 1,p
0 (�), we show that û0 � u.

So, from (3.29) and (3.30), it follows that{
−�pû0(z) = λû0(z)

q−1 + f
(
z, û0(z)

)
in �,

û0|∂� = 0,

so
û0 ∈ S+.

This proves that the set S+ is downward directed.
We consider a chain C ⊆ S+ (i.e., the set C is totally ordered). From

Dunford-Schwartz [5, Corollary 7, p. 336], we know that there exists a se-
quence {un}n�1 ⊆ C, such that

inf
n�1

un = inf C.

In fact, since C is totally ordered, we may assume that the sequence {un}n�1

is decreasing. We have

(3.31) A(un) = λuq−1
n +N(un) ∀n � 1.

Recalling that 0 � un � u1 for n � 1, we have

‖∇un‖pp � c4‖u1‖qq ∀n � 1,

for c4 > 0 and so the sequence {un}n�1 ⊆ W
1,p
0 (�) is bounded.

Hence we may assume that

un −→ u weakly in W 1,p
0 (�),

un −→ u in Lp(�).

On (3.31) we act with un − u ∈ W 1,p
0 (�) and pass to the limit as n → +∞.

We obtain
lim

n→+∞〈A(un), un − u〉 = 0,

so using Proposition 2.4, we have

un −→ u in W 1,p
0 (�).

So, if we pass to the limit in (3.31) as n → +∞, we obtain

A(u) = λuq−1 +N(u), u � u,
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so {−�pu(z) = λu(z)q−1 + f (z, u(z)) in �,

u|∂� = 0, u � u,

thus
u ∈ S+ and u = inf C.

Invoking the Kuratowski-Zorn lemma, we infer that the set S+ has a minimal
element x∗ ∈ S+. But recall that S+ is downward directed. Therefore we
conclude that u∗ � u must be the smallest solution of (1.1) in

I+ = {u ∈ W 1,p
0 (�) : u � u}.

Now let εn ↘ 0 and let us set

un = εnû1

and
I n+ = {u ∈ W 1,p

0 (�) : un � u}.
From the above argument, we know that problem (1.1) has a smallest solution
un∗ in I ∗+. Evidently, the sequence {un∗}n�1 ⊆ W

1,p
0 (�) is bounded and so we

may assume that

un∗ −→ u+ weakly in W 1,p
0 (�),

un∗ −→ u+ in Lp(�).

We have

(3.32) A(un∗) = λ(un∗)
q−1 +N(un∗) ∀n � 1.

On (3.32) we act with un∗ − u+ and then pass to the limit as n → +∞. We
obtain

lim
n→+∞〈A(un∗), un∗ − u+〉 = 0.

Using Proposition 2.4, we have

un∗ −→ u+ in W 1,p
0 (�).

So, if we pass to the limit as n → +∞, and using (3.32), we obtain

A(u+) = λ(u+)q−1 +N(u+),

so {−�pu+(z) = λu+(z)q−1 + f (z, u+(z)) in �,

u+|∂� = 0,
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thus u+ ∈ C+ (by the nonlinear regularity theory) is a solution of problem
(1.1).

Next we show that u+ ∈ intC+. To this end we consider the following
auxiliary Dirichlet problem:

(3.33)

{−�pu(z) = λu(z)q−1 in �,

u|∂� = 0, u � 0.

The Euler functional for problem (3.33) is of the form

ψλ(u) = 1

p
‖∇u‖pp − λ

q
‖u+‖qq ∀u ∈ W 1,p

0 (�).

Since q < p, ψλ is coercive and of course sequentially weakly lower semi-
continuous. So, we can find uλ ∈ W 1,p

0 (�), such that

(3.34) ψλ(u
λ) = inf

u∈W 1,p
0 (�)

ψλ(u).

Note that since q < p, for ε ∈ (0, 1) small enough, we have

ψλ(εû1) < 0 = ψλ(0),

hence from (3.34), it follows that uλ �= 0 and

(ψλ)
′(uλ) = 0,

so

(3.35) A(uλ) = λ((uλ)+)q−1.

Acting on (3.35) with −(uλ)−, we obtain

uλ � 0, uλ �= 0.

Also, the nonlinear regularity theory and nonlinear maximum principle of Váz-
quez [26] implies that uλ ∈ intC+. Since un∗ ∈ intC+, we can find ξn > 0,
such that

(3.36) ξnu
λ � un∗ ∀n � 1.

We take ξn > 0 to be the biggest number for which (3.36) holds. Suppose that
ξn ∈ (0, 1). Then, using hypothesis H(f )2 (v), (3.36) and (3.33), we have

(3.37)
−�pun∗(z) � λun∗(z)

q−1 � λ(ξnu
λ(z))q−1

> λξp−1
n uλ(z)q−1 = −�p(ξnuλ)(z)

for almost all z ∈ �.
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Invoking Proposition 2.2 of Guedda-Veron [15], we have

un∗ − ξnu
λ ∈ intC+,

which contradicts the maximality of ξn > 0. Therefore ξn � 1 for all n � 1
and so

uλ � un∗ ∀n � 1,

so
uλ � u+, i.e., u+ ∈ intC+.

We claim that u+ is the smallest positive solution of (1.1). To this end,
let u ∈ W

1,p
0 (�) be a positive solution of (1.1). Nonlinear regularity and the

maximum principle of Vázquez [26], imply that u ∈ intC+. Hence for all
n � 1 large enough, we have

un = εnû1 � u,

so
un∗ � u

and thus u+ � u. So, indeed u+ ∈ intC+ is the smallest positive solution of
problem (1.1).

Similarly, using this time Lemma 3.10 (b), we can produce the biggest
negative solution v− ∈ − intC+ of problem (1.1) and v− � vλ, where vλ ∈
− intC+ is a solution of the following auxiliary Dirichlet problem:

(3.38)

{−�pv(z) = λ|v(z)|p−2v(z) in �,

v|∂� = 0, v � 0.

A solution vλ ∈ − intC+ of (3.38) can be obtained using the direct method on
the Euler functional

ψ̂λ(v) = 1

p
‖∇v‖pp − λ

q
‖v−‖qq ∀v ∈ W 1,p

0 (�)

of problem (3.38) (see also problem (3.33) earlier in the proof).

4. Nodal Solutions

In this section, using Proposition 3.12, we prove the full multiplicity theorem
for problem (1.1), which produces a fifth nontrivial smooth solution for prob-
lem (1.1), which is nodal (see Proposition 3.9 (c)). We need the following
stronger hypotheses on f (z, ζ ):

H(f )3 f :�× R −→ R is a function, such that:



multiple solutions for nonlinear dirichlet problems 229

(i)–(v) the same as hypotheses H(f )2 (i)–(v);

(vi) there exist μ, r, ĉ0 > 0, such that q � μ < p < r and

μF(z, ζ )−f (z, ζ )ζ � −ĉ0|ζ |r for almost all z ∈ � and all ζ ∈ R.

Remark 4.1. The function f given in Example 3.2 still satisfies hypotheses
H(f )3 provided that r > p.

First we compute the critical groups of ϕλ at u = 0. Our proof uses some
ideas of Moroz [21].

Proposition 4.2. If hypotheses H(f )3 hold and λ > 0, then

Ck(ϕ
λ, 0) = 0 ∀k � 0.

Proof. Let
fλ(z, ζ ) = λ|ζ |q−2ζ + f (z, ζ )

and

Fλ(z, ζ ) =
∫ ζ

0
fλ(z, s) ds.

Because of the sign condition in hypothesis H(f )3 (v), we have

Fλ(z, ζ ) � λ

q
|ζ |q for almost all z ∈ �, all ζ ∈ R.

If u ∈ W 1,p
0 (�), u �= 0 and t > 0, then

(4.1)

ϕλ(tu) = tp

p
‖∇u‖pp −

∫
�

Fλ(z, tu) dz

� tp

p
‖∇u‖pp − λtq

q
‖u‖qq .

Because q < p, it is clear from (4.1) that we can find t∗ = t∗(u) ∈ (0, 1),
such that

(4.2) ϕλ(tu) < 0 ∀t ∈ (0, t∗).
Let u ∈ W 1,p

0 (�), u �= 0 be such that ϕλ(u) = 0. Then

(4.3) −μ
p

‖∇u‖pp + λμ

q
‖u‖qq +

∫
�

μF(z, u) dz = 0.
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Also, using (4.3), hypothesis H(f )2 (vi) and recalling that μ < p, we have

(4.4)

d

dt
ϕλ(tu)

∣∣∣∣
t=1

= 〈(ϕλ)′(u), u〉 = 〈A(u), u〉 −
∫
�

fλ(z, u)u dz

=
(

1 − μ

p

)
‖∇u‖pp + λ

(
μ

q
− 1

)
‖u‖qq

+
∫
�

(μF(z, u)− f (z, u)u) dz

�
(

1 − μ

p

)
‖∇u‖pp − ĉ0‖u‖rr

� c5‖u‖p − c6‖u‖r ,
for some c5, c6 > 0. Because r > p (see hypothesis H(f )3 (vi)), from (4.4),
we see that we can find � ∈ (0, 1) small, such that

(4.5)
d

dt
ϕλ(tu)

∣∣∣∣
t=1

> 0 ∀u ∈ W 1,p
0 (�),with 0 < ‖u‖ � �, ϕλ(u) = 0.

Now, let u ∈ W 1,p
0 (�) with 0 < ‖u‖ � � and ϕλ(u) � 0. We will show that

(4.6) ϕλ(tu) � 0 ∀t ∈ [0, 1].

We argue by contradiction. So, suppose that we can find t0 ∈ (0, 1), such that
ϕλ(t0u) > 0. Since ϕλ(u) � 0, by virtue of the continuity of ϕλ(·), we can
find t1 ∈ (t0, 1], such that

ϕλ(t1u) = 0.

Let t1 ∈ [t0, 1] be the smallest such number. Evidently 0 < t0 < t1 and

(4.7) ϕλ(tu) > 0 ∀t ∈ [t0, t1).

Let us set y = t1u. Then 0 < ‖y‖ � ‖u‖ � � and ϕλ(y) = 0. Therefore, by
virtue of (4.5), we have

(4.8)
d

dt
ϕλ(ty)

∣∣∣∣
t=1

> 0.

On the other hand, from (4.7), we have

ϕλ(y) = ϕλ(t1u) = 0 < ϕλ(tu) ∀t ∈ [t0, t1),
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so

(4.9)
d

dt
ϕλ(ty)

∣∣∣∣
t=1

= t1
d

dt
ϕλ(tu)

∣∣∣∣
t=t1

= t1 lim
t→t−1

ϕλ(tu)

t − t1
� 0.

Combining (4.8) and (4.9) we reach a contradiction. This proves (4.6).
By taking � ∈ (0, 1) even smaller if necessary, we may assume that u = 0

is the only critical point of ϕλ in B�, otherwise we have a whole sequence of
distinct nontrivial smooth solutions of (1.1) and so we are done (here B� =
{u ∈ W 1,p

0 (�) : ‖u‖ � �}). Let h: [0, 1] × (B� ∩ (ϕλ)0) −→ B� ∩ (ϕλ)0 be
defined by

h(t, u) = (1 − t)u.

By virtue of (4.6), this map is well defined and continuous (hence a homotopy).
It follows that B� ∩ (ϕλ)0 is contractible in itself.

Suppose that u ∈ B� with ϕλ(u) > 0. We will show that there exists a
unique t (u) ∈ (0, 1), such that

(4.10) ϕλ(t (u)u) = 0.

The existence of t (u) ∈ (0, 1) follows from (4.2), the continuity of ϕλ(·) and
the fact that ϕλ(u) > 0. We show the uniqueness of t (u) ∈ (0, 1). So, suppose
that

0 < t1(u) < t2(u) < 1 and ϕλ(tk(u)u) = 0 for k = 1, 2.

From (4.6), we have

ϕλ(t t2(u)u) � 0 ∀t ∈ [0, 1].

Therefore, if we consider the function t 
−→ ϕλ(t t2(u)u) on [0, 1], then this
function achieves its maximum at t1(u)

t2(u)
∈ (0, 1) and so

(4.11)
d

dt
ϕλ(tt1(u)u)

∣∣∣∣
t=1

= t1(u)

t2(u)

d

dt
ϕλ(tt2(u)u)

∣∣∣∣
t= t1(u)

t2(u)

= 0.

Comparing (4.11) and (4.5), we reach a contradiction (recall ϕλ(t1(u)u) = 0).
This proves the uniqueness of t (u) ∈ (0, 1). Evidently, using (4.6) and (4.10),
we have

(4.12)

{
ϕλ(tu) < 0 ∀t ∈ (0, t (u)),
ϕλ(tu) > 0 ∀t ∈ (t (u), 1].
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Let ξ :B� \ {0} −→ (0, 1] be defined by

ξ(u) =
{

1 if u ∈ B� \ {0}, ϕλ(u) � 0,

t (u) if u ∈ B� \ {0}, ϕλ(u) > 0.

We claim that ξ is continuous. We need to check the continuity only at those
u, such that ϕλ(u) = 0, since at the other points the continuity follows from
the implicit function theorem. So, suppose that

un −→ u and ϕλ(un) > 0 ∀n � 1.

Arguing by contradiction, suppose that

t (un) � t∗ < 1 ∀n � 1.

Then, from (4.12), we have

ϕλ(tun) > 0 ∀t ∈ (t∗, 1], n � 1,

so
ϕλ(tu) � 0 ∀t ∈ (t∗, 1].

Using also (4.6) and recalling that ϕλ(u) = 0, we have

ϕλ(tu) = 0 ∀t ∈ (t∗, 1],

so
d

dt
ϕλ(tu)

∣∣∣∣
t=1

= 0,

which contradicts (4.5).
This proves the continuity of the map ξ .
Consider the map σ :B� \ {0} −→ (B� ∩ (ϕλ)0) \ {0}, defined by

σ(u) = ξ(u)u.

Then σ is continuous and

σ
∣∣
(B�∩(ϕλ)0)\{0} = identity.

This proves that (B� ∩ (ϕλ)0) \ {0} is a retraction of B� \ {0} and the latter
is contractible. Recall that a retract of a contractible set, is itself contractible.
Therefore (B� ∩ (ϕλ)0)\ {0} is contractible and so from Granas-Dugundji [14,
p. 389], we have

Ck(ϕ
λ, 0) = Hk

(
B� ∩ (ϕλ)0, (B� ∩ (ϕλ)0) \ {0}) = 0 ∀k � 0.
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Theorem 4.3. If hypotheses H(f )3 hold, λ∗ is as postulated in Proposi-
tion 3.7 and λ ∈ (0, λ∗), then problem (1.1) has at least five nontrivial smooth
solutions

u0, û ∈ intC+, v0, v̂ ∈ − intC+ and y0 ∈ C1
0(�) nodal.

Proof. From Proposition 3.9(c), we already have four nontrivial constant
sign smooth solutions

u0, û ∈ intC+, v0, v̂ ∈ − intC+.

Let u+ ∈ intC+ and v− ∈ − intC+ be the two extremal constant sign solutions
of problem (1.1), obtained in Proposition 3.12. We introduce the following
truncations of the nonlinearity f (z, ζ ):

f̂ λ+(z, ζ ) =

⎧⎪⎨
⎪⎩

0 if ζ < 0,

λζ q−1 + f (z, ζ ) if 0 � ζ � u+(z),

λu+(z)q−1 + f (z, u+(z)) if u+(z) < ζ ,

f̂ λ−(z, ζ ) =

⎧⎪⎨
⎪⎩
λ|v−(z)|q−2v−(z)+ f (z, v−(z)) if ζ < v−(z),

λ|ζ |q−2ζ + f (z, ζ ) if v−(z) � ζ � 0,

0 if 0 < ζ ,

f̂ λ(z, ζ ) =

⎧⎪⎨
⎪⎩
λ|v−(z)|q−2v−(z)+ f (z, v−(z)) if ζ < v−(z),

λ|ζ |q−2ζ + f (z, ζ ) if v−(z) � ζ � u+(z),

λu+(z)q−1 + f (z, u+(z)) if u+(z) < ζ .

These are Carathéodory functions. We set

F̂ λ±(z, ζ ) =
∫ ζ

0
f̂ λ±(z, s) ds,

F̂ λ(z, ζ ) =
∫ ζ

0
f̂ λ(z, s) ds

and introduce the C1-functionals ϕ̂λ±, ϕ̂λ:W
1,p
0 (�) −→ R, defined by

ϕ̂λ±(u) = 1

p
‖∇u‖pp −

∫
�

F̂ λ±(z, u(z)) dz ∀u ∈ W 1,p
0 (�),

ϕ̂λ(u) = 1

p
‖∇u‖pp −

∫
�

F̂ λ(z, u(z)) dz ∀u ∈ W 1,p
0 (�).
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Claim 1. The critical points of ϕ̂λ+ are {0, u+} and the critical points of ϕ̂λ−
are {v−, 0}.

We give the proof for ϕ̂λ+, the proof for ϕ̂λ− being similar.

So, suppose that u ∈ W 1,p
0 (�) is a nontrivial critical point of ϕ̂λ+. Then

(ϕ̂λ+)
′(u) = 0,

so

(4.13) A(u) = N̂λ
+(u),

where N̂λ+(y)(·) = f̂ λ+(·, y(·)) for all y ∈ W 1,p
0 (�).

On (4.13), we act with (u− u+)+ ∈ W 1,p
0 (�). Then

〈A(u), (u− u+)+〉 =
∫

{u>u+}
f̂ λ+(z, u)(u− u+) dz

=
∫
�

(λu
q−1
+ + f (z, u+))(u− u+)+ dz

= 〈A(u+), (u− u+)+〉,
so 〈A(u)− A(u+), (u− u+)+〉 = 0,

thus ∫
{u>u+}

(‖∇u‖p−2∇u− ‖∇u+‖p−2∇u+, ∇u− ∇u+
)

RN
dz = 0,

so |{u > u+}|N = 0 and finally we get that u � u+.
Also acting on (4.13) with −u− ∈ W 1,p

0 (�), we obtain

‖∇u−‖pp = 0,

i.e., u− = 0, hence
u � 0, u �= 0.

Due to the extremality of u+, we must have u = u+.
Similarly, we show that the critical points of ϕ̂λ− are {0, v−}. This proves

Claim 1.

Let

[v−, u+] = {
u ∈ W 1,p

0 (�) : v−(z) � u(z) � u+(z) for almost all z ∈ �}
.

Claim 2. The critical points of ϕ̂λ are in [v−, u+].
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Indeed, if u ∈ W 1,p
0 (�) is a critical point of ϕ̂λ, then

(ϕ̂λ)′(u) = 0,

so

(4.14) A(u) = N̂λ(u),

where N̂λ(y)(·) = f̂ λ
(·, y(·)) for all y ∈ W 1,p

0 (�).

Acting on (4.14), first with (u−u+)+ ∈ W 1,p
0 (�) and then with (v−−u)+ ∈

W
1,p
0 (�) as above, we obtain u ∈ [v−, u+]. This proves Claim 2.

Claim 3. u+ and v− are local minimizers of the functional ϕ̂λ.

Choose t ∈ (0, 1) small, such that t û1 � u+ (recall that u+ ∈ intC+).
Then, from hypothesis H(f )2 (v), for almost all z ∈ �, we have

(4.15) F̂ λ+(z, tû1) = λtq

q
û1(z)

q + F(z, tû1(z)) � λtq

q
û1(z)

q .

Therefore, from (4.15) and the fact that ‖û1‖p = 1, we have

ϕ̂λ+(tû1) � tp

p
λ1 − λtq

q
‖û1‖qq .

Since q < p, by choosing t ∈ (0, 1) even smaller if necessary, we have

ϕ̂λ+(tû1) < 0,

so

(4.16) inf
u∈W 1,p

0 (�)

ϕ̂λ+(u) = m̂λ+ < 0.

Clearly ϕ̂λ+ is coercive and we can easily verify that it is sequentially weakly
lower semicontinuous. So, applying the Weierstrass theorem, we can find ũ ∈
W

1,p
0 (�), such that

ϕ̂λ+(ũ) = m̂λ+ < 0 = ϕ̂λ+(0)

(see (4.16)), so ũ �= 0 and from Claim 1, we get that

ũ = u+.

But u+ ∈ intC+ (see Proposition 3.12). So, we can find r > 0 small, such that

ϕ̂λ+
∣∣
B
C1

0 (�)
r (u+)

= ϕ̂λ
∣∣
B
C1

0 (�)
r (u+)

,
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where
B
C1

0 (�)(u+) = {
u ∈ C1

0(�) : ‖u− u+‖C1
0 (�)

� r
}
.

Hence u+ is a local C1
0(�)-minimizer of ϕ̂λ and by Theorem 1.2 of Garcia

Azorero-Manfredi-Peral Alonso [8], we infer that u+ is a localW 1,p
0 (�)-mini-

mizer of ϕ̂λ.
Similarly, we show that v− ∈ − intC+ is a localW 1,p

0 (�)-minimizer of ϕ̂λ.
This proves Claim 3.

Exploiting the coercivity of ϕ̂λ, we can easily check that ϕ̂λ satisfies the
PS-condition. This fact together with Claim 1, permit the use of the mountain
pass theorem (see Theorem 2.2). So, we obtain y0 ∈ W 1,p

0 (�)\{v−, u+}, such
that

(ϕ̂λ)′(y0) = 0,

so from Claim 2, we have
y0 ∈ [v−, u+].

Therefore y0 solves problem (1.1) and y0 ∈ C1
0(�) by the nonlinear regularity

theory. Moreover, y0 being a critical point of mountain pass type, we must
have

C1(ϕ̂
λ, y0) �= 0.

On the other hand, from Proposition 4.2, we have

Ck(ϕ̂
λ, 0) = 0 ∀k � 0.

Therefore y0 �= 0. Since y0 ∈ [v−, u+], y0 �∈ {0, v−, u+}, by virtue of the
extremality of v− and u+, we have that y0 ∈ C1

0(�) is nodal.

In the next section, we will use this result in the framework of semilinear
equations (i.e., p = 2) to produce one more nontrivial smooth solution.

5. Semilinear Problem

In this section, we deal with the case p = 2 (semilinear equation). So, the
problem under consideration is the following:

(5.1)

{−�u(z) = λ|u(z)|q−2u(z)+ f (z, u(z)) in �,

u|∂� = 0, 1 < q < 2, λ > 0.

In what follows {λk}k�1 are the distinct eigenvalues of −�D . The hypo-
theses on f (z, ζ ) are the following:



multiple solutions for nonlinear dirichlet problems 237

H(f )4 f :�× R −→ R is a function, such that:

(i) for all ζ ∈ R, the function z 
−→ f (z, ζ ) is measurable;

(ii) for almost all z ∈ �, the function ζ 
−→ f (z, ζ ) is C1, f (z, 0) = 0;

(iii) there exist a ∈ L∞(�)+, c > 0 and 2 < r < 2∗, such that

|f ′
ζ (z, ζ )| � a(z)+ c|ζ |r−2 for almost all z ∈ � and all ζ ∈ R;

(iv) there exist integer m � 2 and functions η1, η2 ∈ L∞(�)+, such that
η1 �= λm, η2 �= λm+1,

λm � η1(z) � η2(z) � λm+1 for almost all z ∈ �
and

η1 � lim inf|ζ |→+∞
f (z, ζ )

ζ
� lim sup

|ζ |→+∞
f (z, ζ )

ζ
� η2(z),

uniformly for almost all z ∈ �;

(v) there exists ϑ ∈ L∞(�)+, such that � �= λ1,

ϑ(z) � λ1 for almost all z ∈ �
and

lim sup
ζ→0

2F(z, ζ )

ζ 2
� ϑ(z),

uniformly for almost all z ∈ � and

f (z, ζ )ζ � 0 for almost all z ∈ �, all ζ ∈ R;
(vi) there exist μ, r > 0 and ĉ0 > 0, such that q � μ < 2 < r and

μF(z, ζ )− f (z, ζ )ζ � −ĉ0|ζ |r for almost all z ∈ �, all ζ ∈ R.

Example 5.1. The following function f (ζ ) satisfies hypotheses H(f )4
(again for the sake of simplicity we drop the z-dependence):

f (ζ ) =
{
η|ζ |τ−2ζ − ζ + |ζ |q−2ζ if |ζ | � 1,

ηζ if |ζ | > 1,

with η ∈ (λm, λm+1), m � 1, 1 < τ < 2 < q.

In what follows by E(λk) we denote the eigenspace corresponding to the
eigenvalues λk > 0.
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Theorem 5.2. If hypothesesH(f )4 hold, λ∗ is as postulated in Proposition
3.7 and λ ∈ (0, λ∗), then problem (5.1) has at least six nontrivial smooth
solutions

u0, û ∈ intC+, v0, v̂ ∈ − intC+, y0, w0 ∈ C1
0(�) nodal with

u0 − y0, û− y0 ∈ intC+, y0 − v0, y0 − v̂ ∈ − intC+.

Proof. From Theorem 4.3, we already have five nontrivial smooth solu-
tions

u0, û ∈ intC+, v0, v̂ ∈ − intC+ and y0 ∈ C1
0(�) nodal.

Also, by virtue of hypotheses H(f )4 (ii) and (iii), we can find c7 > 0, such
that for almost all z ∈ �,

the function [−β, β] � ζ 
−→ f (z, ζ )+ c7ζ is nondecreasing,

with β = max{‖v−‖∞, ‖u+‖∞}, where v− and u+ are the extremal solutions
postulated in Proposition 3.12. Then, recalling that y0 ∈ [v−, u+], for almost
all z ∈ �, we have

−�y0(z)+ c7y0(z) = f (z, y0(z))+ c7y0(z)

� f (z, u+(z))+ c7u+(z)

= −�u+(z)+ c7u+(z),

so
�(u+ − y0)(z) � c7(u+ − y0)(z) for almost all z ∈ �.

Invoking the strong maximum principle of Vázquez [26], we obtain

(5.2) u+ − y0 ∈ intC+.

In a similar fashion, we show that

(5.3) y0 − v− ∈ intC+.

Therefore, due to the extremality of u+ and v−, we have

u0 − y0, û− y0 ∈ intC+, y0 − v0, y0 − v̂ ∈ − intC+.

Then from Liu-Wu [20], we know that

(5.4) Ck(ϕ̂
λ|C1

0 (�)
, y0) = Ck(ϕ̂

λ, y0) ∀k � 0
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and

(5.5) Ck(ϕ
λ|C1

0 (�)
, y0) = Ck(ϕ

λ, y0) ∀k � 0.

From (5.2) and (5.3), we see that u0 ∈ intC1
0 (�)

[v−, u+]. Also note that

ϕ̂λ|[v−,u+] = ϕλ|[v−,u+].

So from the definition of critical groups, we have

Ck(ϕ̂
λ|C1

0 (�)
, y0) = Ck(ϕ

λ|C1
0 (�)

, y0) ∀k � 0,

so, from (5.4) and (5.5), we have

(5.6) Ck(ϕ̂
λ, y0) = Ck(ϕ

λ, y0) ∀k � 0.

We have ϕ̂λ ∈ C2−0(H 1
0 (�)). Suppose that the spectrum of (ϕ̂λ)′′(y0) is in

[0,+∞). Then

‖∇u‖2
2 �

∫
�

mu2 dz ∀u ∈ H 1
0 (�),

where m(·) = f ′
ζ (·, y0(·)) ∈ L∞(�). If u ∈ ker(ϕ̂λ)′′(y0) and m+ = 0, then

u = 0. If u ∈ ker(ϕ̂λ)′′(y0) and m+ �= 0, then principal eigenvalue of the
weighted problem {−�u(z) = λ̂mu in �,

u|∂� = 0

is given by

λ̂1(m) = inf

{
‖∇u‖2

2 :
∫
�

mu2 dz = 1, u ∈ H 1
0 (�)

}
,

so λ̂1(m) � 1 and it is simple, so

dim ker(ϕ̂λ)′′(y0) � 1.

Hence, from Theorem 2.7 of Li-Li-Liu [18], we have

Ck(ϕ̂
λ, y0) = δk,1Z ∀k � 0,

so, using (5.6), we have

(5.7) Ck(ϕ
λ, y0) = δk,1Z ∀k � 0.
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Similarly, {u0, v0} are critical points of mountain pass type for the functional
ϕλ and by virtue of hypotheses H(f )4, ϕλ ∈ C2(H 1

0 (�) \ {0}). Hence

(5.8) Ck(ϕ
λ, u0) = Ck(ϕ

λ, v0) = δk,1Z ∀k � 0.

Moreover, û, v̂ are local minimizers of ϕλ and so

(5.9) Ck(ϕ
λ, û) = Ck(ϕ

λ, v̂) = δk,0Z ∀k � 0.

From Proposition 4.2, we have

(5.10) Ck(ϕ
λ, 0) = 0 ∀k � 0.

Finally we need to compute the critical groups of ϕλ at infinity. To this end,
we consider the homotopy

hλ(t, u) = (1 − t)ϕλ(u)+ tψ(u) ∀(t, u) ∈ [0, 1] ×H 1
0 (�),

where ψ :H 1
0 (�) −→ R is the C2-functional, defined by

ψ(u) = 1

2
‖∇u‖2

2 − 1

2

∫
�

g0u
2 dz,

with g0 ∈ L∞(�)+, η1 � g0 � η2. Suppose that we can find two sequences
{tn}n�1 ⊆ [0, 1] and {un}n�1 ⊆ H 1

0 (�), such that

(5.11) tn −→ t in [0, 1], ‖un‖ −→ +∞
and

(5.12) (hλ)
′
u(tn, un) −→ 0.

So,

(5.13)

∣∣∣∣〈A(un), h〉 − (1 − tn)

(
λ

∫
�

|un|q−2unh dz−
∫
�

f (z, un)h dz

)

− tn

∫
�

g0unh dz

∣∣∣∣ � εn‖h‖ ∀h ∈ H 1
0 (�),

with εn ↘ 0. Let
yn = un

‖un‖ ∀n � 1.

Then ‖yn‖ = 1 for all n � 1 and so we may assume that

yn −→ y weakly in H 1
0 (�),

yn −→ y in L2(�).
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From (5.13), we have

(5.14)

∣∣∣∣〈A(yn), h〉 − (1 − tn)

(
λ

∫
�

|un|q−2ynh dz−
∫
�

f (z, un)

‖un‖ h dz

)

− tn

∫
�

g0ynh dz

∣∣∣∣ � εn

‖un‖‖h‖ ∀h ∈ H 1
0 (�).

Note that

|un(z)| −→ +∞ for almost all z ∈ {y �= 0}.
Hence, since q ∈ (1, 2), we have∫

�

|un|q−2ynh dz −→ 0.

Also, we have

f (·, un(·))
‖un‖ −→ gy weakly in L2(�),

where g ∈ L2(�)+, η1 � g � η2 (see Motreanu-Motreanu-Papageorgiou
[22]). So, if in (5.14) we pass to the limit as n → +∞, then

〈A(y), h〉 =
∫
�

gtyh dz ∀h ∈ H 1
0 (�),

where gt = (1 − t)g + tg0, so

A(y) = gty

and thus

(5.15)

{−�y(z) = gt (z)y(z) in �,

y|∂� = 0.

Note that η1 � gt � η2 and by virtue of the unique continuation principle and
hypothesis H(f )4 (iv), we have

(5.16) λ̂m(gt ) < λ̂m(λm) = 1 and λ̂m+1(gt ) > λ̂m+1(λm+1) = 1.

Then from (5.15) and (5.16), we infer that y = 0.
Next on (5.14) we choose h = yn − y ∈ H 1

0 (�) and pass to the limit as
n → +∞. We obtain

lim
n→+∞〈A(yn), yn − y〉 = 0,
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so, from Proposition 2.4, we have

yn −→ y in H 1
0 (�)

and so ‖y‖ = 1, a contradiction.
Therefore, there are no sequences {tn}n�1 ⊆ [0, 1] and {un}n�1 ⊆ H 1

0 (�)

for which (5.12) is true. So, we can apply Lemma 2.4 of Perera-Schechtera
[25] and have

(5.17) Ck(ϕ
λ,∞) = Ck(ψ,∞) ∀k � 0.

Since η1 � g0 � η2, u = 0 is the only critical point of ψ and so

(5.18) Ck(ψ,∞) = Ck(ψ, 0) ∀k � 0.

But u = 0 is a nondegenerate critical point of ψ with Morse index

dm = dim
m⊕
k=1

E(λk)

(see e.g., Gasiński-Papageorgiou [9, p. 718]). Therefore

(5.19) Ck(ψ, 0) = δk,dmZ ∀k � 0.

Combining (5.17), (5.18) and (5.19), we infer that

(5.20) Ck(ϕ
λ,∞) = δk,dmZ ∀k � 0.

Suppose that {0, u0, û, v0, v̂, y0} are the only critical points of ϕλ. Otherwise,
we already have a sixth nontrivial smooth (by regularity theory) solution of
(5.1). Then, from (5.7), (5.8), (5.9), (5.10), (5.20) and the Morse relation (2.2),
we have

2 + 3t = tdm + (1 + t)Q(t),

a contradiction, since dm � 2.
This means that ϕλ has one more critical point w0 �∈ {0, u0, û, v0, v̂, y0},

which is the sixth nontrivial solution of (5.1) and standard regularity theory
implies w0 ∈ C1

0(�)

6. The Critical Case λ = λ∗

In this section we examine what happens in the critical case λ = λ∗. In the next
theorem we show that, if λ = λ∗, then we can still guarantee two nontrivial
solutions of constant sign, one positive and the other negative.
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Theorem 6.1.
(a) If hypotheses H(f )2 hold and λ = λ∗+, then problem (1.1) has at least

one positive smooth solution u0 ∈ intC+.

(b) If hypotheses H(f )2 hold and λ = λ∗−, then problem (1.1) has at least
one negative smooth solution v0 ∈ − intC+. smallskip

(c) If hypotheses H(f )2 hold and λ = λ∗ = min{λ∗+, λ∗−}, then problem
(1.1) has at least two nontrivial constant sign smooth solutions u0 ∈
intC+, v0 ∈ − intC+.

Proof. (a) Let λn < λ∗+ for all n � 1 and suppose that

λn −→ λ∗
+.

From Proposition 3.7(a), we know that problem (1.1), with λ = λn, has a
solution un0 ∈ intC+ for n � 1. Then

(6.1) A(un0) = λn(u
n
0)
q−1 +N(un0) ∀n � 1.

Suppose that ‖un0‖ −→ +∞ as n → +∞. We set

yn = un0

‖un0‖
∀n � 1.

Since ‖yn‖ = 1 for all n � 1, passing to a subsequence if necessary, we may
assume that

yn −→ y weakly in W 1,p
0 (�),(6.2)

yn −→ y in Lp(�).(6.3)

From (6.1), we have

(6.4) A(yn) = λn
1

‖un‖p−q y
q−1
n + N(un0)

‖un‖p−1
∀n � 1.

Acting on (6.4) with yn − y ∈ W
1,p
0 (�) and then passing to the limit as

n → +∞, we obtain

lim
n→+∞〈A(yn), yn − y〉 = 0

(recall that q < p) and using Proposition 2.4, we have

(6.5) yn −→ y in W 1,p
0 (�),
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hence ‖y‖ = 1. We know that

(6.6)
N(un0)

‖un0‖p−1
−→ g yp−1 weakly in W 1,p

0 (�),

where g ∈ L∞(�)+, η1 � g � η2 (see the proof of Proposition 3.3 and Perera
[24]). So, if in (6.4) we pass to the limit as n → +∞ and we use (6.5), (6.6)
and the fact that q < p, we obtain

A(y) = gyp−1,

so

(6.7)

{−�py(z) = g(z)y(z) in �,

y|∂� = 0, y � 0, y �= 0.

But by virtue of hypothesis H(f )2 (iv), λ̂1(g) < λ̂1(λ1) = 1 and so y must
change sign, a contradiction to (6.7). This proves that the sequence {un0}n�1 ⊆
H 1

0 (�) is bounded and so we may assume that

un0 −→ u0 weakly in W 1,p
0 (�),

un0 −→ u0 in Lp(�).

Acting on (6.1) with un0 − u0 ∈ W
1,p
0 (�), passing to the limit as n → +∞

and using Proposition 2.4, we obtain

(6.8) un0 −→ u0 in W 1,p
0 (�),

hence u0 � 0. We may assume that 0 < β � λn for all n � 1. Choose ε > 0
small enough, such that

λ1ε
p−1û1(z)

p−1 < βεq−1û1(z)
q−1 ∀z ∈ �.

If we set u = εû1 ∈ intC+. Then from the proof of Proposition 3.12, we know
that we can assume that u � un0 for all n � 1. So, u � u0, hence u0 �= 0.

Passing to the limit as n → +∞ in (6.1) and using (6.8), we obtain

A(un) = λ∗
+u

q−1
0 +N(u0),

so {−�pu0(z) = λ∗
+u0(z)

q−1 + f (z, u0(z)) in �,

u0|∂� = 0, u0 �= 0,

so u0 ∈ intC+ (nonlinear regularity theory).
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(b) The proof of this part is similar to that of (b) and so it is omitted.
(c) Combining (a) and (b), we have (c).

Again in the semilinear case (p = 2) and using hypothesesH(f )4, we can
have more solutions.

Theorem 6.2. If hypotheses H(f )4 hold and λ = λ∗ = min{λ∗+, λ∗−}, then
problem (1.1) has at least three nontrivial smooth solutions

u0 ∈ intC+, v0 ∈ − intC+, and y0 ∈ C1
0(�).

Proof. From Theorem 6.1, we already have two nontrivial constant sign
solutions

u0 ∈ intC+ and v0 ∈ − intC+.

From the proof of Theorem 6.1, we know that

un0 −→ u0 and vn0 −→ v0 in H 1
0 (�),

where un0 and vn0 are critical points of ϕλn of mountain pass type (here λn < λ∗
for all n � 1 and λn −→ λ∗). So, we have

Ck(ϕ
λn, un0) = Ck(ϕ

λn, vn0 ) = δk,1Z ∀k � 0, n � 1.

Since ϕλn −→ ϕλ
∗

in C1(H 1
0 (�)) as n → +∞, exploiting the continuity of

the critical groups on the C1-norm (see Chang [2, p. 336]), we have

(6.9) Ck(ϕ
λ∗
, u0) = Ck(ϕ

λ∗
, v0) = δk,1Z ∀k � 0.

From Proposition 4.2, we know that

(6.10) Ck(ϕ
λ∗
, 0) = 0 ∀k � 0.

Finally, as in the proof of Theorem 5.2, using Lemma 2.4 of Perera-Schechtera
[25], we obtain

(6.11) Ck(ϕ
λ∗
,∞) = δ

k,dm
Z ∀k � 0.

Suppose that {0, u0, v0} are the only critical points of ϕλ
∗

(otherwise we are
done). Then, from (6.9), (6.10), (6.11) and the Morse relation (2.2) with t =
−1, we have

2(−1)1 = (−1)dm,

a contradiction.
This proves that ϕλ

∗
has one more critical point y0 �∈ {0, u0, v0}. This solves

problem (5.1) and regularity theory implies that y0 ∈ C1
0(�).
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Remark 6.3. It is an interesting open question whether y0 ∈ C1
0(�) can be

shown to be a nodal solution.
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