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GENERATING RATIONAL LOOP GROUPS WITH
NONCOMPACT REALITY CONDITIONS

OLIVER GOERTSCHES∗

Abstract
We find generators for the full rational loop group of GL(n, C) as well as for the subgroup consisting
of loops that satisfy the reality condition with respect to the noncompact real form GL(n, R). We
calculate the dressing action of some of those generators on the positive loop group, and apply
this to the ZS-AKNS flows and the n-dimensional system associated to GL(n, R)/O(n).

1. Introduction

The interest in finding generators for rational loop groups, i.e. groups of mero-
morphic maps from CP1 into a complex Lie group, originated from dressing
actions [3] and their various geometric applications; cf. the survey [4] and the
references therein. Terng and Uhlenbeck introduced the idea of simple ele-
ments, i.e. rational loops with as few poles as possible that generate the loop
group, in order to obtain explicit formulae for the dressing action.

Uhlenbeck [6] found simple elements for the group of GL(n, C)-valued
rational loops satisfying the U(n)-reality condition, and Terng and Wang [5]
extended this to the twisted loop group associated to U(n)/O(n). Motivated by
this work, Donaldson, Fox and the author [2] found generators for the rational
loop groups of all classical groups and G2 with reality condition given by the
respective compact real form, and most of their twisted loop groups.

Looking at the above results, it suggests itself to ask for generators of
rational loop groups, where the reality condition is given by a noncompact
real form. In this paper, we solve this question for the easiest case, namely
the noncompact real form GL(n, R) of GL(n, C). It turns out that the task of
finding generators is actually easier if we do not impose any reality condition
at all: in Section 3, we show that any GL(n, C)-valued loop can be written as
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a product of loops of the form

pα,β,V,W (λ) =
(

λ − α

λ − β

)
πV + πW,

where the projections πV and πW are defined via a decomposition Cn = V ⊕W

into complex subspaces, and

mα,k,N (λ) = Id +
(

1

λ − α

)k

N,

where k is a positive integer and N is a two-step nilpotent map, i.e. N2 = 0.
Whereas the first type of simple elements is the obvious generalization

of those used in [6], the loops of the form mα,k,N are of a different nature,
mainly because they have only one singularity. This also reflects itself in the
proof, which is split into two parts. Using only the first type and with the same
arguments as in the proofs of the theorems mentioned above, we first reduce to
the case of a loop with only one singularity; afterwards, a different argument
shows that this loop is a product of loops of the second type.

In Section 4 we give a refinement of this proof to generate the subgroup
of loops satisfying the reality condition given by GL(n, R). We need those of
the loops above that satisfy the reality condition, as well as products of two
simple elements of the type pα,β,V,W that do not satisfy the reality condition
by themselves.

We would like to remark that as previously done in the literature, we formu-
late the theorems for groups of negative loops, i.e. loops that are normalized
at ∞. All of them are true without this assumption, if we allow more general
linear fractional transformations in the definition of the simple factors than
those that send ∞ to Id.

Sections 5, 6 and 7 are independent of the generating theorems in Sections 3
and 4. In Section 5 we consider the dressing action of simple elements of the
form mα,k,N with k = 1, and apply this to the ZS-AKNS flows. To apply
dressing to the twisted flows in the SL(n)/SO(n)-hierarchy, we also prove a
permutability formula that enables us to find certain products sα,N of simple
elements mα,1,N that satisfy the twisting condition, see (7). In Section 6 we
briefly consider the case k = 2.

Finally, in Section 7, we make the observation that the n-dimensional system
associated to a symmetric space U/K is equivalent to the system associated
to its dual symmetric space U ∗/K . The space of solutions of the U(n)/O(n)-
system, which by the work of Terng and Wang [5] can be identified with the
space of ∂-invariant flat Egoroff metrics, is therefore acted on by the group of
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negative loops in GL(n, C) satisfying the GL(n)-reality and the GL(n)/O(n)-
twisting condition, in particular by the sα,N . We calculate the action of the
sα,N on those Egoroff metrics and their associated families of flat Lagrangian
immersions in Cn.

2. Preliminaries

For any complex reductive Lie group G and representation ρ : G → GL(V ),
the rational loop group associated to ρ is given by

L (G, V ) = { g : CP1 → G | ρ ◦ g : CP1 → End(V ) is meromorphic };
see [2] for some basic examples on how the rational loop group of G depends
on the chosen representation. If τ is an antiholomorphic involution of G, we
say that a loop g ∈ L (GL(n, C)) satisfies the reality condition with respect to
τ if

τ(g(λ)) = g(λ̄).

If σ additionally is an holomorphic involution on G commuting with τ , then
we say that g is twisted with respect to σ if

σ(g(−λ)) = g(λ).

A loop g is called negative if it is normalized at ∞, i.e. g(∞) = Id. We use
superscripts to denote the reality and twisting conditions, and subscripts to
denote negativity; for example, the group of negative rational loops satisfying
the τ -reality and the σ -twisting condition will be denoted by L

τ,σ
− (G, V ).

If g ∈ L (G, V ) is given, we say that α ∈ CP1 is a pole of g if α is a pole
of ρ ◦ g : CP1 → End(V ). If α is not a pole of g, we say that α is a zero of g

if ρ(g(α)) ∈ End(V ) is singular. Finally, α is a singularity of g if it is a pole
or a zero.

If α ∈ CP1 is a pole of g, there is a unique number k ≥ 1 such that the map
(λ−α)k−1g has a pole at α, but (λ−α)kg has none. If we denote the evaluation
of this map at α by A ∈ End(V ), we call the pair (k, rk A) the pole data of g at
α. There is a natural ordering on the possible pole data: (k1, n1) < (k2, n2) if
and only if k1 < k2 or (k1 = k2 and n1 < n2). It thus makes sense to compare
degrees of poles.

3. The full rational loop group

In this section we prove a Generating Theorem for the full rational loop group of
GL(n, C) associated to the standard representation on Cn. The simple elements
needed for that are given in Table 1.
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Table 1. Simple elements for L−(GL(n, C), Cn)

Name Definition Conditions

pα,β,V,W

(
λ − α

λ − β

)
πV + πW Cn = V ⊕ W

mα,k,N Id +
(

1

λ − α

)k

N N : Cn → Cn, N 2 = 0

Here α and β are distinct complex numbers. and the maps π are projections
along the decomposition in the column ‘Conditions’ onto the subspace in the
subscript. Note that the pα,β,V,W have two singularities, whereas the mα,k,N

have only one; furthermore, the determinant of mα,k,N is 1 at each value λ 	= α.

Theorem 3.1. The rational loop group L−(GL(n, C), Cn) is generated by
the simple elements given in Table 1.

Remark 3.2. In the case n = 1, no simple factors of the form mα,k,N exist.
The theorem becomes the well-known statement that any meromorphic map
f : CP1 → CP1 with f (∞) = 1 is of the form f (λ) = p(λ)

q(λ)
, where p and q

are monic polynomials of equal degree.

Proof. Let g ∈ L−(GL(n, C), Cn). The first step in the proof is to mul-
tiply simple elements pα,β,V,W to the left of g to remove all but at most one
singularity. This works similarly to the proofs of existing generating theorems:

Assume first that g has at least two singularities. Let α ∈ C be a pole of
g – which exists since otherwise g had to be constant – and β ∈ C another
singularity. If we define ϕ(λ) = λ−α

λ−β
, the map g ◦ ϕ−1 has a pole at 0, so we

can write its Laurent expansion around 0 as g ◦ ϕ−1(λ) = ∑∞
j=−k λjgj with

g−k 	= 0. Composing with ϕ, we obtain the Laurent expansion of g in λ−α
λ−β

around α:

g(λ) =
∞∑

j=−k

(
λ − α

λ − β

)j

gj .

Let V = im g−k , choose an arbitrary complement W of V , and regard

pα,β,V,W (λ)g(λ) =
((

λ − α

λ − β

)
πV + πW

)((
λ − β

λ − α

)k

g−k + · · ·
)

,

which obviously has a pole at α of lower degree. Inductively, we can remove
the pole at α by multiplying simple elements of the first type and are left with
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a loop (which we again call g) whose Laurent expansion around α in λ−α
λ−β

is
of the form

g(λ) = g0 +
(

λ − α

λ − β

)
g1 + · · ·

If g0 is invertible, we have completely removed the singularity α. If g0 is
not invertible, we continue as follows: The map λ 
→ det g(λ) has a zero at
α of a certain order, say l. If we set W = im g0 and let V be an arbitrary
complement, the loop g̃ = pβ,α,V,Wg has no pole at α, and the order of the
zero of λ 
→ det g̃(λ) is lower than l. Using induction, we arrive at a loop
whose evaluation at α is invertible, i.e., in GL(n, C). This loop has strictly less
singularities than the one we started with.

For this procedure, it was essential to be able to choose two distinct sin-
gularities. Therefore we can only repeat this process until we are left with a
loop g that has exactly one pole, say α ∈ C, and no other singularity, i.e.,
g(λ) ∈ GL(n, C) for all λ ∈ CP1, λ 	= α. We can therefore write g explicitly
as

g(λ) = (λ − α)−rAr + · · · + (λ − α)−1A1 + A0

with Ar 	= 0. The normalization condition says A0 = Id. Since det g(λ) is a
polynomial in (λ − α)−1, and complex nonconstant polynomials always have
at least one pole and one zero on CP1, it follows that det g(λ) = 1 for all λ 	= α.

For the second part of the proof, we need some notation. For any i ≥ 0, we
define Ki = ⋂

j≥i ker Aj and

Vi :=
∑
j≥i

Aj (Kj+1).

We have filtrations

(1) 0 = K0 ⊂ K1 ⊂ · · · ⊂ Kr ⊂ Kr+1 = Cn

and
0 = Vr+1 ⊂ Vr ⊂ · · · ⊂ V1 ⊂ V0 ⊂ Cn.

Let K be the set of tuples of nonnegative integers (ai)i≥0 satisfying
∑

i ai = n.
We introduce a total ordering on K by setting

(ai)i < (bi)i ⇐⇒ There exists j ≥ 0 such that ai = bi for i > j and aj < bj .

Note that the unique minimum with respect to this ordering of K is the tuple
(n, 0, 0, . . .). For a loop g as above, we define an associated tuple ε(g) =
(ai)i ∈ K by ai := dim Ki+1 − dim Ki = dim Ai(Ki+1); the tuple ε(g) really
is an element of K since

∑
i≥0(dim Ki+1−dim Ki) = dim Kr+1−dim K0 = n.
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The only loop g whose associated tuple ε(g) is the minimum (n, 0, 0, . . .) is
the constant loop g(λ) = Id. We show by induction on ε(g) that g can be
written as a product of simple elements of the form mα,k,N , the induction basis
being trivial.

Let s ≥ 0 be the smallest number such that im Ai ⊂ Vi for all i ≥ s. Since
im Ar = Vr by definition, we have s ≤ r .

Let us first regard the case that s > 0; the case s = 0 will be treated later.
By definition of Vs−1, the space As−1(Ks) is a subset of Vs−1, but by definition
of s, the space As−1(Kr+1) = im As−1 is not, so the smallest number l such
that im As−1(Kl) 	⊂ Vs−1 satisfies s < l ≤ r + 1. Let v ∈ Kl be such that
As−1(v) /∈ Vs−1, and note that Al−1(v) 	= 0.

Let N be a two-step nilpotent map satisfying N(Vs−1) = 0 and N(As−1(v))

= −Al−1(v) ∈ Vl−1 ⊂ Vs−1. It follows that NAi = 0 for all i ≥ s since
im Ai ⊂ Vi ⊂ Vs−1 for such i. Therefore, the product

g̃(λ) = mα,l−s,N (λ)g(λ) = (Id + (λ − α)s−lN)

r∑
i=0

(λ − α)−iAi

= Id + . . . + (λ − α)−l+1(NAs−1 + Al−1) +
∑
i≥l

(λ − α)−iAi

coincides with g starting with the (λ − α)−l-coefficient. The (λ − α)−l+1-
coefficient satisfies

(NAs−1 + Al−1)(Kl−1) = NAs−1(Kl−1) ⊂ N(Vs−1) = 0

and
(NAs−1 + Al−1)(v) = −Al−1(v) + Al−1(v) = 0,

so ε(g̃) < ε(g), and induction may be applied.
It remains to regard the case s = 0, i.e. im Ai ⊂ Vi for all i ≥ 0. In

particular, V0 = Cn. For dimensional reasons, we have a direct decomposition

(2) Cn =
⊕
i≥0

Ai(Ki+1).

Let B be a basis of Cn compatible with the filtration (1). More precisely, let
Wi be a complement of Ki in Ki+1, i.e.

Cn = Kr ⊕ Wr = Kr−1 ⊕ Wr−1 ⊕ Wr = · · · =
⊕
i≥0

Wi,

choose bases Bi of Wi , and let B = ⋃
i Bi . Note that Ai(Ki+1) = Ai(Wi), so

by (2), we get a second basis B ′ of Cn by defining B ′ = ⋃
i Ai(Bi ). We have
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that Bj is in the kernel of Ai whenever j < i, that Ai sends Bi to B ′
i , and that

im Ai ⊂ Vi . Thus the matrix representation of Ai with respect to these bases
(B as basis of the domain of definition, and B ′ as basis of the target) is of the
form ⎛

⎝ 0 0 0
0 1 ∗
0︸︷︷︸

dim Ki

0︸︷︷︸
dim Ki+1−dim Ki

∗︸︷︷︸
n−dim Ki+1

⎞
⎠

where ∗ signifies unknown entries and 1 represents a diagonal matrix of the
appropriate dimension.

From this, we can calculate the leading term of det g(λ) as a polynomial in
(λ − α)−1:

det g(λ) = (λ − α)−
∑

i≥0 i dim Wi + · · ·
On the other hand, we know that det g(λ) = 1 for all λ 	= α, which is therefore
only possible if dim Wi = 0 for all i ≥ 1, i.e. g(λ) = Id for all λ.

4. The GL(n, R)-reality condition

In this section we prove a generating theorem for the group of GL(n, C)-
valued loops satisfying the reality condition with respect to the noncompact
real form GL(n, R). Denote by τ : GL(n, C) → GL(n, C) the antiholomorphic
involution τ(A) = Ā; we are interested in the loop group L τ−(GL(n, C), Cn),

i.e., the group of rational loops g : CP1 → GL(n, C) satisfying g(λ̄) = g(λ)

and the normalization condition g(∞) = Id.
To generate this group, we need several types of simple elements, see

Table 2.

Table 2. Simple elements for the GL(n, R)-reality condition

Name Definition Conditions

pα,β,V,W

(
λ − α

λ − β

)
πV + πW

α, β ∈ R, Cn = V ⊕ W

V̄ = V, W̄ = W

qα,β,V,W

(λ − α)(λ − ᾱ)

(λ − β)(λ − β̄)
πV + πW

α or β /∈ R, Cn = V ⊕ W

V̄ = V, W̄ = W

rα,β,V,W

(
λ − α

λ − β

)
πV + πW +

(
λ − ᾱ

λ − β̄

)
πV̄

Cn = V ⊕ W ⊕ V̄

V ∩ V̄ = 0, W̄ = W

mα,k,N Id +
(

1

λ − α

)k

N α ∈ R, N 2 = 0, N̄ = N
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Note that all of these simple elements are either GL(n, C)-simple factors or
products of two GL(n, C)-simple factors that do not satisfy the reality condition
by themselves: qα,β,V,W = pα,β,V,Wpᾱ,β̄,V ,W and rα,β,V,W = pα,β,V,Wpᾱ,β̄,V̄ ,W .

Theorem 4.1. The rational loop group L τ−(GL(n, C), Cn) is generated by
the simple elements given in Table 2.

Proof. Let g ∈ L τ−(GL(n, C), Cn). Observe that if α ∈ C is a singularity
of g, then so is ᾱ. We first regard the case that g has at least two singularities,
not all of which are real. Let α ∈ C \ R be a singularity of g. If α and ᾱ are
the only singularities of g, let β be a random real number; otherwise let β be
a (real or complex) singularity of g different from α and ᾱ. We will remove
the singularity at α (and simultaneously at ᾱ) by multiplying with simple
elements of the type q and r , so although in the first case we might introduce
a new singularity at the real value β, we will have reduced the total number of
singularities in any case.

If g has a pole at α, write the Laurent expansion of g in λ−α
λ−β

around α as

g(λ) =
∞∑

j=−k

(
λ − α

λ − β

)j

gj

with g−k 	= 0; otherwise continue with (3) below. If there exists a nonzero
space V ⊂ im g−k with V = V̄ , let W be an arbitrary complement of V in Cn

with W̄ = W , and regard

qα,β,V,W (λ)g(λ) =
(

(λ − α)(λ − ᾱ)

(λ − β)(λ − β̄)
πV + πW

)((
λ − β

λ − α

)k

g−k + · · ·
)

=
(

λ − β

λ − α

)k

πW ◦ g−k + · · · .

This loop has a pole of lower degree at α, since the kernel of πW ◦g−k contains
not only the kernel of g−k , but also the preimage of V under g−k .

If such a space does not exist, let V = im g−k be the full image of g−k .
We have V ∩ V̄ = 0 and can therefore choose an arbitrary complement W of
V ⊕ V̄ with W̄ = W . Regard

rα,β,V,W (λ)g(λ)

=
((

λ − α

λ − β

)
πV + πW +

(
λ − ᾱ

λ − β̄

)
πV̄

)((
λ − β

λ − α

)k

g−k + · · ·
)

,

which has a pole of lower degree; in fact, its
(

λ−β

λ−α

)k
-coefficient vanishes com-

pletely.
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Continuing this, we obtain a loop (again denoted by g) without pole at α,
whose Laurent expansion in λ−α

λ−β
around α we write as

(3) g(λ) = g0 +
(

λ − α

λ − β

)
g1 + · · ·

If g0 is invertible, α is no singularity, so assume that g0 is singular. Denote
by k the order of the zero α of the map λ 
→ det g(λ). Let W0 ⊂ im g0 be a
maximal subspace with W0 = W̄0, and write im g−k = W0 ⊕W1, where W1 is
an arbitrary complement of W0 in im g−k . We have necessarily W1 ∩ W̄1 = 0.

If W1 is not empty, let V = W̄1 and W = W0 ⊕W2, where W2 is an arbitrary
complement of W0 ⊕ W1 ⊕ W̄1 in Cn with W2 = W̄2. We have constructed a
decomposition

Cn = V ⊕ W ⊕ V̄

with im g−k ⊂ W ⊕ V̄ . Then, the loop g̃ = rβ,α,V,Wg has no pole at α since
α 	= ᾱ; furthermore, the map λ 
→ det g̃(λ) has a zero at α of lower order than
k.

If W1 is empty, we have im g−k = W0, i.e. im g−k = im g−k . In this case,
let W = im g−k and V be an arbitrary complement with V = V̄ . Then we
reduce the order of the zero by regarding g̃ = qβ,α,V,Wg.

By induction, we have removed the singularity α (and simultaneously ᾱ).
Repeating this step removes all nonreal singularities.

After having removed all nonreal singularities, we have to deal with the
case of several real singularities. If α 	= β are two real singularities of g, we
can continue as in the first step, the difference being that the reality condition
implies that the image of g−k (and the image of g0, after having removed the
pole) is invariant under conjugation. This simplifies matters insofar as we only
need to make use of the simple factors p; in the notation of the previous step,
there always exists a nonzero V ⊂ im g−k with V̄ = V (in fact, we may choose
V = im g−k), and the space W1 is always empty.

Finally, we are left with a loop g ∈ L τ−(GL(n, C), Cn) with exactly one
singularity α ∈ R. We can therefore write g explicitly as

g(λ) = (λ − α)−rAr + · · · + (λ − α)−1A1 + A0

with Ar 	= 0. The reality condition implies immediately that Āi = Ai for all
i. We may continue the proof exactly as in Theorem 3.1, because due to the
reality of the Ai , the nilpotent endomorphisms N constructed there may all be
chosen to be real.
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5. Nilpotent dressing: Simple poles

Recall how the Birkhoff factorization theorem yields the dressing action [3] of
the negative loop group L−(GL(n, C)) on the positive loop group L+(GL(n,

C)): Given generic g± ∈ L±(GL(n, C)), there exist ĝ± ∈ L±(GL(n, C))

such that g−g+ = ĝ+ĝ−; the dressing action of g− on g+ is then defined
by g− ∗ g+ := ĝ+. Under presence of a τ -reality and/or a σ -twisting condi-
tion, the dressing action restricts correspondingly (e.g. we obtain an action of
L

τ,σ
− (GL(n, C)) on L

τ,σ
+ (GL(n, C))). Let us consider the dressing action of a

nilpotent simple element

mα,1,N = Id +
(

1

λ − α

)
N,

where N2 = 0.

Proposition 5.1. Let f ∈ L+(GL(n, C)), i.e. f : C → GL(n, C) is holo-
morphic on all of C. Let f1 := d

dλ

∣∣
λ=α

f (λ)f (α)−1 ∈ ��(n, C), and assume

that Id + Nf1 is invertible. If we define Ñ := f (α)−1(Id + Nf1)
−1Nf (α),

then Ñ2 = 0 and

mα,1,N ∗ f = mα,1,Nf m−1
α,1,Ñ

∈ L+(GL(n, C)).

Proof. To prove that Ñ is two-step nilpotent, multiply its defining equation

(4) (Id + Nf1)f (α)Ñf (α)−1 = N

from the left with N to obtain

(5) Nf (α)Ñf (α)−1 = 0.

Then, multiplying (4) from the right with f (α)Ñf (α)−1, we get

(Id + Nf1)f (α)Ñ2f (α)−1 = 0,

which is only possible if Ñ2 = 0.
To show holomorphicity, we only need to show that the loop is holomorphic

at α, i.e. that the negative terms in its Laurent series expansion at α vanish.
But the (λ − α)−2-coefficient is

−Nf (α)Ñ = 0

using (5), and the (λ − α)−1-coefficient is

Nf (α)−f (α)Ñ−Nf1f (α)Ñ = Nf (α)−(Id+Nf1)(Id+Nf1)
−1Nf (α) = 0.

Thus, the new loop is holomorphic.
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To give some first application of this proposition, let us quickly review the
construction of the ZS-AKNS flows, developed by Zakharov and Shabat [7]
and Ablowitz, Kaup, Newell and Segur [1]. See e.g. Section 2 of [3] for a
detailed exposition. For a non-zero diagonal matrix a ∈ ��(n, C), define

��(n, C)a = {y ∈ ��(n, C) | [a, y] = 0},
��(n, C)⊥a = {y ∈ ��(n, C) | tr(ay) = 0},

and denote by S(R, ��(n, C)⊥a ) the space of rapidly decaying maps. For b ∈
��(n, C) such that [a, b] = 0 and any positive integer j , there is a unique family
of ��(n, C)-valued maps Qb,j such that

(Qb,j (u))x + [u, Qb,j (u)] = [Qb,j+1(u), a]

and the asymptotic expansion
∑∞

j=0 Qb,j (u)λ−j is conjugate to b. Then, the
(b, j)-flow on S(R, ��(n, C)⊥a ), also called the j -th flow in the ��(n, C)-hier-
archy defined by b, is given by

ut = (Qb,j (u))x + [u, Qb,j (u)].

If u is a solution of the j -th flow defined by b, then there exists a unique
trivialization of u, i.e. a solution E(x, t, λ) of

E−1Ex = aλ + u

E−1Et = bλj + Qb,1(u)λj−1 + · · · + Qb,j (u)

E(0, 0, λ) = Id.

Assume that u is a solution admiting a local reduced wave function ω(x, t, λ),
as in Definition 2.4 of [3]. In particular,

E(x, t, λ) = ω(0, 0, λ)−1eaλx+bλj tω(x, t, λ).

Then we can adapt Theorem 4.3 of [3] to our situation:

Proposition 5.2. Let u be a local solution of the j -th flow defined by b with
trivialization E that admits a local reduced wave function ω. Choose α ∈ C
and a two-step nilpotent map N : Cn → Cn. Let E1(x, t) = d

dλ

∣∣
λ=α

E(x, t, λ)

E(x, t, α)−1, and define Ñ as in Proposition 5.1:

Ñ(x, t) = E(x, t, α)−1(Id + NE1(x, t))−1NE(x, t, α),

wherever this is well-defined. Then, ũ(x, t) = u(x, t)− [a, Ñ(x, t)] is another
solution of the j -th flow. Its trivialization is

Ẽ(x, t) = mα,1,NE(x, t)m−1
α,1,Ñ(x,t)
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and it has the local reduced wave function

ω̃(x, t, λ) = ω(x, t, λ)mα,1,Ñ(x,t)(λ)−1.

Proof. The proof is as in [3]. Since m is a local reduced wave function of
u, we have

E(x, t, λ) = ω(0, 0, λ)−1eaλx+bλj tω(x, t, λ).

Thus, if we define Ẽ and m̃ as in the proposition, we have

Ẽ(x, t, λ) = mα,1,N (λ)E(x, t, λ)mα,1,Ñ(x,t)(λ)−1

= mα,1,N (λ)ω(0, 0, λ)−1eaλx+bλj tω(x, t, λ)mα,1,Ñ(x,t)(λ)−1

= ω̃(0, 0, λ)−1eaλx+bλj t ω̃(x, t, λ).

Therefore, Proposition 2.11 of [3] shows that if

ω̃(x, t, λ) = Id + ω̃1(x, t)λ−1 + ω̃2(x, t)λ−2 + · · ·
is the expansion of ω̃ at ∞, then ũ = [a, ω̃1] is a solution of the j -th flow with
trivialization Ẽ and local reduced wave function ω̃. We have

mα,1,Ñ(x,t)(λ)−1 = Id − Ñ(x, t)(λ − α)−1 = Id − Ñ(x, t)λ−1 + · · · ,

and hence ω̃1 = ω1 − Ñ . Thus, ũ = u − [a, Ñ ].

Example 5.3. Let us apply Proposition 5.2 to the vacuum solution u = 0 of

the j -th flow in the ��(2, C)-hierarchy defined by a =
(

1 0
0 −1

)
. Its trivialization

E is given by E(x, t, λ) = ea(λx+λj t), and its local reduced wave function is
ω(x, t, λ) = Id. If we denote

ξ(x, t) = x + jαj−1t,

then the power series expansion of E(x, t, λ)E(x, t, α)−1 in λ = α reads

E(x, t, λ)E(x, t, α)−1 = Id + aξ(x, t)(λ − α) + · · · ,
hence

Ñ(x, t)

=
(

e−αx−αj t 0
0 eαx+αj t

)
(Id + Naξ(x, t))−1N

(
eαx+αj t 0

0 e−αx−αj t

)
.
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We write the nilpotent matrix N in the form N =
(

n1 n2

n3 −n1

)
, with det N =

−n2
1 − n2n3 = 0. A direct calculation shows that

Ñ(x, t) = 1

1 + 2n1ξ(x, t)

(
n1 n2e

−2αx−2αj t

n3e
2αx+2αj t −n1

)
,

and hence

ũ(x, t) = −[a, Ñ(x, t)] = 2

1 + 2n1ξ(x, t)

(
0 −n2e

−2αx−2αj t

n3e
2αx+2αj t 0

)
.

We see that the new solution ũ is smooth on all of R2 if and only if n1 = 0,

i.e. N =
(

0 n2

0 0

)
or N =

(
0 0
n3 0

)
. If n1 	= 0, then ũ is singular along the line

x + jαj−1t = − 1
2n1

.

Consider the involutions σ and τ on ��(n, C), given by τ(A) = A and
σ(A) = −At . The Cartan decomposition of the symmetric space SL(n)/SO(n)

is the eigenspace decomposition ofσ , restricted to ��(n, R): ��(n, R) = ��(n)⊕
�. For odd positive integer j , the j -th flow in the SL(n)/SO(n)-hierarchy
defined by b is given by the restriction of the j -th flow in the SL(n, C)-hierarchy
to S(R, ��(n, R)⊥a,σ ), where ��(n, R)⊥a,σ = ��(n) ∩ ��(n, C)⊥a .

To apply dressing to twisted hierarchies, we need to find products of simple
elements that satisfy the twisting condition. For that, a permutability formula
is essential:

Proposition 5.4. Let α 	= β and N, M satisfy N2 = M2 = 0. If

N̂ =
(

Id +
(

1

α − β

)
M

)(
Id +

(
1

α − β

)2

NM

)−1

N

(
Id −

(
1

α − β

)
M

)
and

M̂ =
(

Id +
(

1

β − α

)
N

)(
Id +

(
1

β − α

)2

MN

)−1

M

(
Id −

(
1

β − α

)
N

)
.

are well-defined, then we have

mβ,1,M̂mα,1,N = mα,1,N̂mβ,1,M.

Proof. This follows from Proposition 5.2 as usual.

For α ∈ C and a two-step nilpotent map N such that

(6) N ′ =
(

Id − 1

2α
N

)(
Id + 1

4α2
NtN

)−1

Nt

(
Id + 1

2α
N

)
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is well-defined, let

(7) sα,N := m−α,1,N ′mα,1,N .

Corollary 5.5. For α ∈ R and N a two-step nilpotent map with N = N

such that (6) is well-defined, we have sα,N ∈ L
τ,σ
− (GL(n, C)).

Example 5.6. The third flow in the SL(2, R)/SO(2)-hierarchy defined by

a =
(

1 0
0 −1

)
is the modified KdV equation

qt = 1

4
(qxxx + 6q2qx),

where u =
(

0 q

−q 0

)
, see [3], Example 3.12. Let α ∈ R and N =

(
n1 n2

n3 −n1

)
with

det N = 0. To perform dressing with sα,N on the vacuum solution u = 0,
we need to apply Proposition 5.2 twice. Using notation and the calculations
of Example 5.3, one finds the new solution q̂ as the upper right entry of û =
ũ − [a, Ñ ′], where Ñ ′ is constructed as follows:

Ñ ′(x, t) = Ẽ(x, t, −α)−1(Id + N ′Ẽ1(x, t))−1N ′Ẽ(x, t, −α),

where
Ẽ(x, t) = mα,1,NE(x, t)m−1

α,1,Ñ(x,t)

and Ẽ1(x, t) = d
dλ

∣∣
λ=−α

Ẽ(x, t, λ)Ẽ(x, t, −α)−1. With the help of a computer
one finds

q̂ = −αe2αx+2α3t (A(x, t) − 8n1)n3e
4αx+4α3t + (A(x, t) + 8n1)n2

n2
3e

8ax+8a3t + B(x, t)e4ax+4a3t + n2
2

,

where
A(x, t) = 16n1αx + 48n1α

3t + 8α

and

B(x, t) = 16α2n2
1x

2 + 96α4n2
1xt + 16α2n1x

+ 48α4n1t + 144α6n2
1t

2 + 4α2 + 2n2
1.

6. Nilpotent dressing: Higher pole order

Dressing with simple elements mα,k,N with k ≥ 2 is still possible, but the
formulas become more and more complicated as k grows. We only give an
idea for k = 2.
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Proposition 6.1. Let f ∈ L+(GL(n, C)), choose α ∈ C and a two-step
nilpotent map N , and write the power series expansion of f in α as f (λ) =∑∞

i=0 fi(λ − α)i . If X = (Nf3 + f1)(Nf2 + f0)
−1,

M1 = (Nf2 + f0 − XNf1)
−1(XNf0 − Nf1)

and
M2 = −(Nf2 + f0)

−1(Nf1M1 + Nf0)

are well-defined, then the loop

mα,2,Nf

(
Id +

(
1

λ − α

)
M1 +

(
1

λ − α

)2

M2

)
is holomorphic at α.

Proof. The principal part of the Laurent series in α of the new loop reads(
1

λ − α

)4

Nf0M2(8)

+
(

1

λ − α

)3

[Nf1M2 + Nf0M1](9)

+
(

1

λ − α

)2

[(Nf2 + f0)M2 + Nf1M1 + Nf0](10)

+
(

1

λ − α

)1

[(Nf3 + f1)M2 + (Nf2 + f0)M1 + Nf1].(11)

If the terms (10) and (11) vanish, then also (8) and (9), as one can see by
multiplying them from the left with the two-step nilpotent map N . But (10)
and (11) vanish if M1 and M2 are chosen as in the statement of the proposition.

Example 6.2. Already the formulas in Example 5.3 become very com-
plicated if one replaces the simple element mα,1,N by mα,2,N . Therefore, we
restrict ourselves to the case of the third flow, and the simple element having

its pole at 0. For u =
(

0 q

r 0

)
, the third flow in the ��(2, C)-hierarchy defined by

a =
(

1 0
0 −1

)
is given by

qt = 1

4
(qxxx − 6qrqx), rt = 1

4
(rxxx − 6qrrx),

see [3], Example 2.8. Applying Proposition 6.1 to the vacuum solution u = 0

and the simple element m0,2,N , with N =
(

n1 n2

n3 −n1

)
satisfying det N = 0, a
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direct calculation provides the solution

ũ = 4

4n2
1x

4 − 12n2
1xt + 3

·
(

0 n2(2n1x
3 + 3x + 3n1t)

−n3(2n1x
3 − 3x + 3n1t) 0

)
.

7. The n-dimensional systems

Let U/K be a rank n symmetric space with Cartan decomposition � = � ⊕ �,
and choose a maximal abelian subalgebra 	 ⊂ � with basis a1, . . . , an. Recall
that the n-dimensional system associated to U/K is the following system of
first order partial differential equations for v : Rn → 	⊥ ∩ �:

[ai, vxj
] − [aj , vxi

] = [[ai, v], [aj , v]],

which is independent of the choice of basis.
Associated to any symmetric space U/K is its dual symmetric space U ∗/K ,

which has the Cartan decomposition �∗ = � ⊕ i�. Choosing the maximal
abelian subspace i	 ⊂ i� with basis ia1, . . . , ian, we see

Lemma 7.1. v : Rn → 	⊥ ∩ � is a solution of the U/K-system if and only
if −iv : Rn → (i	)⊥ ∩ i� is a solution of the U ∗/K-system.

Therefore, the U/K-system and the U ∗/K-system are the same, and we
do not only have a dressing action of the rational loop group L

τ,σ
− (U) on

the space of solutions of the U/K-system, but also one of L
τ,σ
− (U ∗). Fur-

thermore, whatever geometric interpretation of the solutions of the particular
U/K-system has been found, also applies to the U ∗/K-system.

Let us apply this observation to the system associated to the symmetric space
GL(n)/O(n), which we now have seen to be the same as the system associated
to U(n)/O(n). The Cartan decomposition of GL(n)/O(n) is ��(n) = ��(n)⊕�,
where � is the space of symmetric matrices. Let ai = eii be the standard basis
of the Cartan subalgebra 	 ⊂ � of diagonal matrices, i.e. ai is the matrix with
zeros everywhere except a 1 at the ii-entry. Then, β : Rn → � is a solution of
the GL(n)/O(n)-system if and only if

(12)

{
(βij )xk

= βikβkj i, j, k distinct

(βij )xi
+ (βij )xj

+ ∑
k βikβkj = 0 i 	= j ,

see [5]. On the other hand, β is a solution of the GL(n)/O(n)-system if and
only if ωλ = ∑

i (λai + [ai, β]) dxi is flat for all λ. In this case, there is a
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unique frame E(x, λ) satisfying

E−1dE =
∑

i

(λai + [ai, β]) dxi, E(0, λ) = Id.

This frame satisfies the GL(n, R)-reality and the O(n)-twisting condition:

E(x, λ̄) = E(x, λ), E(x, −λ)tE(x, λ) = Id.

Remark 7.2. Observe that F(x, λ) = E(x, iλ) satisfies the U(n)-reality
condition:

F(x, λ)∗F(x, λ) = E(x, iλ)∗E(x, iλ) = E(x, −iλ)tE(x, iλ) = Id.

This is not surprising as F−1dF = ∑
i (iλai + [ai, β]) dxi , i.e. F is the frame

of the solution −iβ of the U(n)/O(n)-system.

Let α ∈ R and N be a two-step nilpotent map with N = N such that both

Ñ(x) = E(x, α)−1(Id + NE1(x))−1NE(x, α)

and
Ñ ′(x) = Ẽ(x, −α)−1(Id + N ′Ẽ1(x))−1NẼ(x, −α)

are well-defined. Here, E1 and Ẽ1 are given by E1(x) := d
dλ

∣∣
λ=α

E(x, λ)

E(x, α)−1 and Ẽ1(x) := d
dλ

∣∣
λ=−α

Ẽ(x, λ)Ẽ(x, −α)−1, and N ′ is given by (6).
Now we may consider the dressing action of a simple element sα,N on E (see
(7) for the definition of sα,N ) and obtain the new frame

Ê = sα,N ∗ E = m−α,1,N ′mα,1,NEm−1
α,1,Ñ

m−1
−α,1,Ñ ′ .

The calculation of Ê−1dÊ is then implicit in Proposition 5.2:

Ê−1dÊ =
∑

i

(λai + [ai, β − Ñ − Ñ ′]) dxi,

We have proved:

Proposition 7.3. Let β be a solution of the GL(n)/O(n)-system, and
E(x, λ) its frame. Then

sα,N ∗ β = β − (Ñ + Ñ ′)∗

is the solution of the GL(n)/O(n)-system obtained by dressing with sα,N . Here,
we denote by (Ñ + Ñ ′)∗ the trace-free part of Ñ + Ñ ′.
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Let us quickly review parts of the connection between solutions of the
U(n)/O(n)-system (resp. the GL(n)/O(n)-system) and Egoroff metrics, as
found by Terng and Wang [5]. A local orthogonal system (xi) of Rn is called
Egoroff if there exists a function φ(x) such that the Euclidean metric ds2

written in this coordinate system is of the form ds2 = ∑
i h

2
i (x) dx2

i , where
h2

i (x) = ∂φ

∂xi
. The rotation coefficient matrix β of the Egoroff metric

∑
h2

i dx2
i

is defined by βij = (hi )xj
hj

for i 	= j , and βii = 0. If β is the rotation coefficient
matrix of a flat Egoroff metric, then β solves (12), i.e. is a solution of the
GL(n)/O(n)-system. Conversely, if β is a solution of the GL(n)/O(n)-system,
then β is the rotation coefficient matrix of a flat Egoroff metric.

A flat Egoroff metric is called ∂-invariant or spherical, if ∂hi = 0, where ∂ =∑
j

∂
∂xi

– see Proposition 2.4 of [5], where four equivalent conditions for being
∂-invariant are listed. Recall also statements (1) and (3) of Theorem 2.5 of [5]:
If

∑
i h

2
i dx2

i is a ∂-invariant flat Egoroff metric, and E the frame of
∑

i (λai +
[ai, β]) dxi , then h can be reconstructed via the formula E(x, 0)h(x) = h(0).
Furthermore, there is an associated family of flat Lagrangian immersions into
Cn given by

X(x, λ) = −iλ−1(E(x, iλ)h(x) − h(0)).

Note that the additional factor i in front of λ is explained by Remark 7.2. Then,
we have the following analogue of Theorem 4.2 of [5]:

Proposition 7.4. Let
∑

i h
2
i dx2

i be a ∂-invariant flat Egoroff metric with
coefficient matrix β and frame E(x, λ). Let c = h(0). If Ê = sα,N ∗ E and ĉ

is a constant, then we have a new ∂-invariant flat Egoroff metric

ĥ(x) = Ê(x, 0)c

with associated family of flat Lagrangian submanifolds

X̂(x, λ) = −iλ−1(Ê(x, iλ)Ê(x, 0)−1ĉ − ĉ).
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