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THE CONE OF FUNCTIONALS ON
THE CUNTZ SEMIGROUP

LEONEL ROBERT∗

Abstract
The functionals on an ordered semigroup S in the category Cu – a category to which the Cuntz
semigroup of a C*-algebra naturally belongs – are investigated. After appending a new axiom to
the category Cu, it is shown that the “realification” SR of S has the same functionals as S and,
moreover, is recovered functorially from the cone of functionals of S. Furthermore, if S has a
weak Riesz decomposition property, then SR has refinement and interpolation properties which
imply that the cone of functionals on S is a complete distributive lattice. These results apply to
the Cuntz semigroup of a C*-algebra. At the level of C*-algebras, the operation of realification is
matched by tensoring with a certain stably projectionless C*-algebra.

1. Introduction

From its introduction in [5], the Cuntz semigroup of a C*-algebra has been
understood as a natural carrier of the dimension functions of the C*-algebra:
they correspond to functionals on the Cuntz semigroup. In [3], Coward, Elliott
and Ivanescu define the category Cu and show that the Cuntz semigroup of
a C*-algebra is an object in this category. The idea comes to mind to study
functionals on ordered semigroups in the axiomatic setting of Cu and attempt
to recover (and push further!) known results in the C*-algebraic context. Such
a study was done partly in [6] and [2] and is continued here.

Our starting point is an ordered semigroup S in the category Cu. However,
in order to make progress on questions regarding the functionals on S, we
need to assume that S also has the almost algebraic order property (see axiom
O5 in Subsection 2.1 below). For the Cuntz semigroup of a C*-algebra, this
property was proven in [13, Lemma 7.2] and it was also used repeatedly in the
arguments of [11]. The results of this paper stress further its importance (see
Remark 2.2.4 below).

Assume that S is in the category Cu and has almost algebraic order. Denote
by F(S) the cone of functionals on S (topologized as in [6]). Each s ∈ S induces
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a function on F(S): ŝ(λ) := λ(s) for all λ ∈ F(S). Two natural questions that
can be asked are

(i) what can we say about s, t ∈ S if ŝ = t̂?

(ii) what can we say about the range of the map s �→ ŝ?

The first question is answered in Proposition 2.2.6 below. Regarding the second
question, we consider a set larger than the range of the map s �→ ŝ; namely, the
closure (under sequential suprema) of the R+-linear span of the range of s �→ ŝ.
This set, denoted by SR, may also be characterized as the “realification” of S

and is the main focus of the results of this paper. It will be shown that SR can
be recovered functorially from F(S) as a suitable dual of F(S). If we assume
further that S has a weak decomposition property (à la Riesz), then SR satisfies
a refinement property which in turn implies that F(S) is a complete lattice.

Our results are applicable to C*-algebras. At the level of C*-algebras, the
operation of “realification” is matched by tensoring with the stably projec-
tionless C*-algebra R studied in [8] and [10]. That is, Cu(A)R

∼= Cu(A ⊗
R), where Cu(A) denotes the Cuntz semigroup of the C*-algebra A. Since
F(Cu(A)) is in bijection with the lower semicontinuous 2-quasitraces on A,
it follows that the Cuntz semigroup of an R-absorbing C*-algebra is determ-
ined by its cone of lower semicontinuous 2-quasitraces. Cu(A) has the weak
Riesz decomposition property mentioned above. Thus, the lower semicontinu-
ous 2-quasitraces on A form a complete lattice. This extends Blackadar and
Handelmann’s [1, Theorem II.4.4] that the bounded 2-quasitraces of a unital
C*-algebra A form a lattice.

In Section 2 we prove some preliminary results on ordered semigroups and
we answer question (i) above. In Section 3 we define SR and show that it is
recovered functorially as a dual space of F(S). In Section 4 we prove refinement
and interpolation properties for SR and derive from these that F(S) is a complete
lattice. The last section contains the results relating to the Cuntz semigroups of
C*-algebras. In the last paragraphs we give further evidence of the relevance
of the properties of almost algebraic order and weak Riesz decomposition by
showing that Glimm’s halving property for non-type I simple C*-algebras is
recovered, in the context of ordered semigroups, using these properties.

Acknowledgements. This research was conducted while I was a member
of the Center for Symmetry and Deformation at the University of Copenhagen.
I am grateful to the Center, and in particular to Mikael Rørdam, for their
hospitality and support. The case that A is commutative of the isomorphism
Cu(A)R

∼= Cu(A⊗R) can be derived using the methods of [14]. I am grateful
to Aaron Tikuisis for pointing this out as evidence of the validity of the general
result.



the cone of functionals on the cuntz semigroup 163

2. Preliminaries on ordered semigroups

We call ordered semigroup a monoid endowed with a translation invariant
order relation. We always assume that the semigroup is abelian and positive,
i.e., 0 is the smallest element of the ordered semigroup. By ordered semigroup
map we understand one that preserves the order, the addition operation, and
the 0 element.

2.1. The category Cu

Given elements in an ordered set s and t , we say that s is sequentially compactly
contained in t , and denote it by s � t , if for any increasing sequence (tn) such
that t � supn tn we have s � tn0 for some n0 ∈ N. (We will often drop the
reference to sequences and simply say that s is compactly contained in t .)

The objects of the category Cu – introduced in [3] – are ordered semigroups
satisfying a number of axioms. The ordered semigroup S is an object of Cu if

O1 Every increasing sequence has a supremum.

O2 For every s ∈ S there exists a sequence (sn) such that sn � sn+1 for all
n and s = supn sn.

O3 If si � ti , for i = 1, 2, then s1 + s2 � t1 + t2.

O4 If (sn) and (tn) are increasing sequences then supn(sn + tn) = supn sn +
supn tn.

The primary example of an ordered semigroup in the category Cu is the Cuntz
semigroup of a C*-algebra. That such an object satisfies the axioms O1–O4 is
proven in [3, Theorem 1].

We will also consider the property of almost algebraic order:

O5 If s ′ � s � t then there exists r such that s ′ + r � t � s + r .

It is proven in [13, Lemma 7.2] that the Cuntz semigroup of a C*-algebra
satisfies O5.

A sequence (sn) such that sn � sn+1 for all n is called rapidly increasing.
Thus, O2 may be restated as saying that every element is the supremum of a
rapidly increasing sequence.

A subset S ′ ⊆ S is called dense if every element of S is the supremum of
a rapidly increasing sequence of elements in S ′. If a C*-algebra is separable,
then its Cuntz semigroup has a countable dense subset (see Proposition 5.1.1
below).
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2.2. Functionals

We call an ordered semigroup map λ: S → [0, ∞] a functional on S if it
preserves the suprema of increasing sequences. The collection of all functionals
on S forms a cone that we denote by F(S) (addition and scalar multiplication
are defined pointwise).

Lemma 2.2.1. Let S be an ordered semigroup in the category Cu. Let λ: S →
[0, ∞] be additive and order preserving. Then λ̃(s) := sups ′�s λ(s ′) is a
functional on S. (We call λ̃ the supremum preserving regularization of λ.)

Remark 2.2.2. The above lemma is proven in [6, Lemma 4.7]. Notice,
however, that the hypothesis that λ is order preserving is not included in the
statement of [6, Lemma 4.7], although it is tacitly assumed in the proof.

Let us now show that the pointwise order in F(S) coincides with the algeb-
raic order if S is in the category Cu and has almost algebraic order.

Proposition 2.2.3. Let S be an ordered semigroup satisfying the axioms
O1–O5. Let α and β be functionals on S. Then α(s) � β(s) for all s ∈ S if
and only if there exists a functional γ such that α + γ = β.

Proof. Define γ : S → [0, ∞] by

γ (s) =
{

β(s) − α(s) if β(s) < ∞,

∞ otherwise.

It is easy to check that γ is additive. Let us show that it is also order preserving.
Let s, t ∈ S be such that s � t . If β(t) = ∞ then γ (t) = ∞ and clearly
γ (s) � γ (t). Assume that β(t) < ∞. Since sups ′�s β(s ′) = β(s) < ∞, for
any given ε > 0 there exists s ′ � s such that β(s) � β(s ′) + ε. By O5 there
exists r ∈ S such that s ′ + r � t � s + r . Then,

γ (t) = β(t) − α(t) � β(s ′ + r) − α(s + r) � β(s ′) − α(s) � γ (s) − ε.

Since ε can be arbitrarily small we get that γ (t) � γ (s).
We have α + γ = β. Passing to the supremum preserving regularizations

we get α + γ̃ = β.

Remark 2.2.4. It is remarked without proof in [6] – after the proof of
[6, Lemma 4.7] – that the above proposition is true for ordered semigroups
in the category Cu. It is not presently clear to me whether this is the case.
Observe that in the above proof we have made use of the axiom O5 (i.e., the
property of almost algebraic order). Since [6, Theorem 4.8] relies on this fact,
the hypothesis that the ordered semigroups have almost algebraic order must
be appended to the statement of [6, Theorem 4.8].
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For the remainder of this section S denotes an ordered semigroup satisfying
the axioms O1–O5 (i.e., in the category Cu and with almost algebraic order).

The cone F(S) is endowed with the topology such that a net (λi) converges
to λ if and only if

(2.1) lim sup
i

λi(s
′) � λ(s) � lim inf

i
λi(s)

for all s ′, s ∈ S such that s ′ � s. The addition and the scalar multiplication
by positive real numbers are jointly continuous operations (see [6, Proposi-
tion 3.6]). By [6, Theorem 4.8], F(S) is a compact Hausdorff space. If S is the
Cuntz semigroup of a C*-algebra, then F(S) is isomorphic, as a topological
cone, to the cone of lower semicontinuous 2-quasitraces on the C*-algebra
(see [6, Theorem 4.4]).

Let us denote by Lsc(F(S)) the set of functions f : F(S) → [0, ∞] that
are linear and lower semicontinuous. Lsc(F(S)) is endowed with the order of
pointwise comparison and the operations of pointwise addition and pointwise
scalar multiplication by positive (non-zero) real numbers. Each element s ∈ S

induces a function ŝ ∈ Lsc(F(S)) defined by ŝ(λ) = λ(s) for all λ ∈ F(S). The
map s �→ ŝ is additive and preserves sequential suprema (because functionals
are additive and preserve sequential suprema) but may not preserve the relation
of compact containment. However, we do have the following lemma.

Lemma 2.2.5. If s � t ∈ S and α < β ∈ (0, ∞] then αŝ � βt̂ (here the
relation � is taken in Lsc(F(S))).

Proof. Suppose that (λi) is a net in F(S) such that λi → λ and λi(s) > 1
α

for all i. Then
λ(t) � lim sup

i

λi(s) � 1

α
>

1

β
.

This shows that we have the inclusion

{λ ∈ F(S) | αŝ(λ) > 1} ⊆ {λ | βt̂(λ) > 1}.
By [6, Proposition 5.1], this inclusion implies that αŝ � βt̂ in Lsc(F(S)).

The following proposition gives an algebraic characterization of the com-
parison of elements of S by functionals (thus answering question (i) from the
introduction).

Proposition 2.2.6. Let S be an ordered semigroup that satisfies O1–O5
and let s, t ∈ S. Then ŝ � t̂ if and only if for every ε > 0 and s ′ � s there
exist M, N ∈ N such that M

N
> 1 − ε and Ms ′ � Nt .
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Proof. If Ms ′ � Nt , with M/N > 1 − ε, then (1 − ε)ŝ ′ � t̂ . Passing to
the supremum over all ε > 0 and s ′ � s we get that ŝ � t̂ .

Suppose that ŝ � t̂ and let s ′ � s and ε > 0. Comparing s and t on the
functional λ: S → [0, ∞] such that λ(x) = 0 if x � ∞ · t and λ(x) = ∞
otherwise, we conclude that s � ∞ · t , and so s ′ � Ct for some finite C > 0.
Choose P, Q ∈ N such that 1−ε < P/Q < 1. Then Pλ(s) < Qλ(t) for every
λ ∈ F(S) such that λ(t) = 1. Let α: S → [0, ∞] be an ordered semigroup
map such that α(t) = 1. Let α̃ be the supremum preserving regularization
of α (defined as in Lemma 2.2.1). If α̃(t) �= 0 then Pα(s ′) � P α̃(s) <

Qα̃(t) � Qα(t). If α̃(t) = 0 then Pα(s ′) = 0 < Q = Qα(t). In summary,
Pα(s ′) < Qα(t) for any ordered semigroup map α: S → [0, ∞] such that
α(t) = 1. By [9, Proposition 2.1], this implies that (k + 1)P s ′ � kQt for all
k ∈ N large enough. Since we can choose k such that (k+1)P

kQ
> 1 − ε, we are

done.

3. The ordered semigroup SR

3.1. Definition and properties of SR

Let S be a positive ordered semigroup satisfying axioms O1–O5 (i.e., in the
category Cu and with the almost algebraic order property). We denote by SR

the subset of Lsc(F(S)) of functions expressible as the pointwise supremum of
an increasing sequence (hn), where each hn belongs to the Q+-linear span of
the image of S in Lsc(F(S)). That is, f ∈ SR if there exist si ∈ S and ni ∈ N,
with i = 1, 2, . . ., such that the sequence ( ŝi

ni
)i is increasing and

f (λ) = sup
i

ŝi (λ)

ni

for all λ ∈ F(S).

Proposition 3.1.1. Let S be an ordered semigroup satisfying the axioms
O1–O5. Then SR also satisfies O1–O5 and F(S) ∼= F(SR) as topological cones.

Proof. Let s ∈ S and let (si) be a rapidly increasing sequence with su-
premum s. By Lemma 2.2.5, we have

(
1 − 1

i

)
ŝi � (

1 − 1
i+1

)
ŝi+1, where the

relation � is taken in Lsc(F(S)). It follows that this relation of compact con-
tainment also holds in SR ⊆ Lsc(F(S)). Thus, ŝ is the supremum of a rapidly
increasing sequence. This automatically holds also for ŝ

n
for every n ∈ N. Us-

ing a standard diagonalization argument (see the proofs of [3, Theorem 1 (i)]
and [6, Proposition 5.1 (iii)]) we can then show that SR is closed under the
suprema of increasing sequences (as a subset of Lsc(F(S))), and that every
element of SR is the supremum of a rapidly increasing sequence in SR. Since
the supremum of a sequence in Lsc(F(S)) is the pointwise supremum, it is
clear that SR satisfies O4.
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Let us show that SR satisfies axiom O3. Let fi, gi ∈ SR, i = 1, 2, be such
that fi � gi . In order to prove O3, we may assume that g1 and g2 belong to a
dense subset. Thus, we may assume that they have the form αt̂ , with t ∈ S and
α ∈ Q+. Moreover, multiplying by a suitable integer, we reduce proving O3
to the case that gi = t̂i , i = 1, 2. Let us find ε > 0 and t ′i � ti , with i = 1, 2,
such that fi � (1 − ε)t ′i � ti . Then f1 +f2 � (1 − ε)(t ′1 + t ′2) � t̂1 + t̂2. This
proves O3.

We postpone the proof of O5 to Proposition 3.3.1, where a stronger version
of the almost algebraic order property is obtained.

The map λ �→ (f �→ f (λ)), from F(S) to F(SR) is linear and continuous.
It is also bijective, since any functional on SR is uniquely determined by its
restriction to the image ofS inSR, and thus gives rise to a unique functional onS.
Since both F(S) and F(SR) are compact Hausdorff spaces, λ �→ (f �→ f (λ))

is a homeomorphism.

The ordered semigroup SR can be characterized by a universal property
using the property of real multiplication.

Definition 3.1.2. We say that the ordered semigroup O has real multi-
plication if there exists a map (0, ∞] × O �→ O

(t, s) �→ t · s

that is additive on both variables, order preserving on both variables, supremum
(of sequences) preserving on both variables, and such that 1 · s = s.

SR clearly has real multiplication. An ordered semigroup with real multi-
plication is unperforated by definition, i.e., nx � ny implies x � y. Although
SR is not necessarily cancellative, it has the following form of cancellation (a
direct consequence of unperforation):

f + h � g + h

h ∝ g
⇒ f � g.

Here h ∝ g means that h � ng for some n ∈ N.
The following proposition implies that having real multiplication is a prop-

erty rather than additional structure (thus, the scalar multiplication can be
uniquely defined, if at all).

Proposition 3.1.3. Let S and S ′ be a ordered semigroups satisfying O1–
O5 and suppose that S ′ has real multiplication. Let α: S → S ′ be an ordered
semigroup map that preserves the suprema of increasing sequences. Then there
exists a unique ordered semigroup map α: SR → S ′ that preserves the suprema
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of increasing sequences and such that the following diagram commutes:

S
α

S ′

α

SR

Proof. Let us show the uniqueness of α first. Suppose that α1, α2: SR → S ′
satisfy that α1(ŝ) = α2(ŝ) for all s. Then α1 and α2 also agree on elements of
the form ŝ/n and on the suprema of increasing sequences of such elements.
Thus, α1 = α2.

Let α: S → S ′ be given as in the statement of the proposition. Let s1, s2 ∈ S

be such that ŝ1 � ŝ2. Using Proposition 2.2.6, we can see that (1 − ε)α(s ′
1) �

α(s2) for all ε > 0 and s ′
1 � s1. Passing to the supremum over all such ε and

s ′
1 we obtain that α(s1) � α(s2).

Let f ∈ SR. Let (ŝi/ni) and (t̂i/mi) be rapidly increasing sequences with
supremum f . Then these sequences intertwine: for every i there exists j such
that ŝi/ni � t̂j /mj and t̂i/mi � ŝj /nj . Thus, the sequences (α(si)/ni) and
(α(ti)/mi) are also intertwined, and so they have the same supremum. We can
thus define

α(f ) := sup
i

α(si)

ni

.

A straightforward, but tedious, analysis show that this map is additive, order
preserving, and supremum preserving.

Corollary 3.1.4. Let S be an ordered semigroup satisfying O1–O5. Then
(SR)R

∼= SR.

Remark 3.1.5. The case can be made that SR is nothing but the tensor
product S ⊗ [0, ∞] in the category of ordered semigroups that satisfy the
axioms O1–O5. However, tensor products in this category remain a subject
yet to be investigated. So we will not pursue this point of view here.

Let us introduce a strengthening of the compact containment relation among
the elements of SR. Let f, g ∈ SR. Let us write f � g if f � (1 − ε)g for
some ε > 0 and f is continuous at each λ ∈ F(S) for which g(λ) is finite. We
will make repeated use of this relation in the coming sections. We remark that

(i) f � g � h implies f � h.

(ii) f � g implies that f � g, where the relation � is taken in Lsc(F(S)).
This is proven in [6, Proposition 5.1].

(iii) f � g and f ′ � g′ imply f + f ′ � g + g′.
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Proposition 3.1.6. For each f ∈ SR there exists a sequence h1 � h2 �
h3 . . . in SR with supremum f .

Proof. It suffices to show that if f ′ � f then there exists l such that
f ′ � l � f . Let us choose, recursively, elements f k

2n
∈ SR indexed by the

dyadic rationals in [0, 1] in the following manner: f0 = f ′, f1 � f , and
f k

2n
� f k′

2n′
if k

2n < k′
2n′ . Finally, for each n ∈ N let

ln = 1

2n

2n−1∑
k=0

f k
2n

, ln = 1

2n

2n∑
k=1

f k
2n

.

Then (ln) is increasing, (ln) is decreasing, and f ′ � ln � ln � f for all n.
Let l = supn ln. Let us show that l is continuous at each λ where f is finite.
Suppose that f (λ) < ∞ and let λi → λ. Since l is lower semicontinuous,
l(λ) � lim inf i l(λi). On the other hand, for every n we have

ln � l � ln � ln + f

2n
.

Thus,

lim sup
i

l(λi) � lim sup
i

ln(λi) + 1

2n
· lim sup

i

f1(λi) � l(λ) + f (λ)

2n
.

Since n is arbitrary and f (λ) < ∞, we have lim supi l(λi) � l(λ). Thus, l is
continuous on λ. In order to arrange that l � f , we first find ε > 0 such that
f ′ � (1−ε)f . We then find l such that f ′ � l � (1−ε)f and l is continuous
on each λ where f is finite.

Lemma 3.1.7. Let f � g and let (fn)n be an increasing sequence with
supremum f and such that fn � f for all n. The for every ε > 0 there exists
N such that f � fn + εg for all n � N .

Proof. This follows from the fact that fn converges uniformly to f on the
set {λ ∈ F(S): g(λ) � 1} (by Dini’s theorem).

3.2. SR as dual of F(S)

In this subsection S continues to denote an ordered semigroup satisfying ax-
ioms O1–O5. Here we show how SR may be recovered solely from the topo-
logical cone F(S). Indeed, SR coincides with the ordered semigroup L(F(S))

introduced in [6].
By L(F(S)) we denote the subset of Lsc(F(S)) of functions f expressible

as the supremum of an increasing sequence (fn), with fn ∈ Lsc(F(S)) and
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fn � fn+1 for all n. Proposition 3.1.6 implies that SR is contained in L(F(S)).
Following the same approach used to prove [6, Theorem 5.7], we can show
that they are in fact equal:

Theorem 3.2.1. Let S be an ordered semigroup satisfying O1–O5. Then
SR = L(F(S)).

Before proving this theorem, we need some preliminary results.

Lemma 3.2.2. Let S be an ordered semigroup satisfying O1–O5. Let f, g ∈
Lsc(F(S)) be such that f � g. Then there exists s ∈ S such that f � ŝ �
∞ · g.

Proof. Consider the set {λ ∈ F(S) | g(λ) = 0}. This set is closed under
addition (whence upward directed) and under upward directed suprema (since
g is lower semicontinuous). Therefore, it contains a maximum element λ0.
The set of functions {ŝ | λ0(s) = 0} is closed under addition, whence upward
directed. Moreover, the pointwise supremum of these functions is equal to
∞ · g (if g(γ ) �= 0 for some functional γ then γ (s) > 0 = λ0(s) for some
s ∈ S and so ∞ · ŝ(γ ) = ∞ · g(γ )). Since f � ∞ · g, the function f is
compactly contained in ∞·g, and so there exists ŝ ′ ∈ {ŝ | λ0(s) = 0} such that
f � ŝ ′ � ∞ · g. Hence, there exists s � s ′ such that f � ŝ � 2ŝ ′ � ∞ · g.
This proves the lemma.

The following proposition and lemma are analogs of [6, Proposition 5.5]
and [6, Lemma 5.6] (which are stated in the C*-algebraic context). In proving
them we will follow the proofs of those results closely.

Let I ⊆ S be an ideal of S, i.e., a hereditary subsemigroup closed under the
supremum of increasing sequences. Let λI : S → [0, ∞] denote the functional
such that λI (s) = 0 if s ∈ I and λI (s) = ∞ otherwise. Finally, let FI (S) ⊆
F(S) be the subcone defined by

(3.1) FI (S) := λI +{ λ ∈ F(S) | λ(s) < ∞ for all s � s ′ for some s ′ ∈ I }.
Notice that FI (S) is a cancellative cone: if λ1 + λ = λ2 + λ, with λ1, λ2, λ ∈
FI (S) then λ1(s) = λ2(s) for all s such that s � s ′ ∈ I for some s ′. Hence,
λ1(s) = λ2(s) for all s ∈ I and so λ1 = λ2 (since both functionals are infinite
outside I ).

Proposition 3.2.3. Let V(FI (S)) denote the ordered vector space of lin-
ear, real-valued, continuous functions on FI (S). Let �: V(FI (S)) → R be a
positive linear functional on V(FI (S)). Then there exists λ ∈ FI (S) such that
�(f ) = f (λ) for all f ∈ V(FI (S)).

Proof. We will show that the relative topology on FI (S) induced by the
topology of F(S) is the weak topology σ(FI (S), V(FI (S))). This will imply
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that FI (S) is a weakly complete cancellative cone in the class S of Choquet
(see [4, page 194]). The proposition will then follow from [4, Proposition 30.7].

It suffices to show that the relative topology on FI (S) agrees with the topo-
logy of pointwise convergence on the functions

(3.2) PI := { f ∈ SR | f � f ′ � ŝ for some f ′ ∈ SR, s ∈ I }.
First observe that f ′ � ŝ, with s ∈ I , implies that f ′ is finite on FI (S).

Thus, if f � f ′ � ŝ then f is continuous on FI (S).
Assume, on the other hand, that (λi) is a net in FI (S) and that f (λi) → f (λ)

for every f ∈ PI . Let s ′, s ∈ S be such that s ′ � s and let us show that
the inequalities (2.1) defining the topology of F(S) hold true. If s /∈ I then
λi(s) = λ(s) = ∞ for all i and so the inequalities (2.1) hold trivially. Suppose
that s ∈ I . Let s ′′ be such that s ′ � s ′′ � s and let ε > 0. Since (1−ε)ŝ ′′ � ŝ,
there exist f1, f2 ∈ SR such that (1 − ε)ŝ ′′ � f1 � f2 � ŝ. Notice that
f1 ∈ PI . So

(1 − ε) lim sup ŝ ′(λi) � lim sup
i

f1(λi) = f1(λ) � ŝ(λ).

Passing to the supremum over all ε > 0 establishes one half of (2.1). Also,

(1 − ε)ŝ ′′(λ) � f1(λ) = lim inf
i

f1(λi) � lim inf ŝ(λi).

Passing to the supremum over all s ′′ � s and ε > 0 we get the other half of
(2.1).

Lemma 3.2.4. Let h1, h2, h3 ∈ Lsc(F(S)) be such that h1 � h2 � h3. Then
for every δ > 0 there is f ∈ SR such that f � h3 and h1 � δh3 + f .

Proof. Let I := {s ∈ S | ŝ � ∞ · h3}. Observe that I is an ideal of S,
i.e., it is a hereditary subsemigroup closed under the suprema of increasing
sequences. Consider the compact subset K ⊆ F(S) defined by

K := { λ ∈ F(S) | h3(λ) � 1 } + λI .

Observe that K is contained in FI (S). Indeed, if λ ∈ K and s � s ′ ∈ I then
ŝ ∝ h3, whence λ(s) < ∞.

The function h1 is continuous on K by hypothesis. Since K ⊆ FI (S),
the functions in the set PI (as defined in (3.2)) are also continuous on K .
Let us show that h1 can be uniformly approximated on K by functions in
PI . Suppose the contrary. Then there is a real measure m on K such that∫
f dm = 0 for all f ∈ PI and

∫
h1 dm = 1. Let m = m+ − m− denote the

Jordan decomposition of m. Then
∫
f dm+ = ∫

f dm− for all f ∈ PI and
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∫
h1 dm+ = ∫

h1 dm− + 1. Since K ⊆ FI (S), we can define positive linear
functionals �+, �−: V(FI (S) → R by

�+(g) :=
∫

K

g dm+ and �−(g) :=
∫

K

g dm−.

By Proposition 3.2.3, �+ and �− are given by the evaluation on functionals
λ+ and λ− belonging to FI (S). Thus, f (λ+) = f (λ−) for all f ∈ PI . Every
ŝ with s ∈ I is the supremum of an increasing sequence of elements of PI .
(To see this, find a sequence (fn) in SR such that fn � fn+1 for all n and with
supremum ŝ. Then fn ∈ PI for all n.) Thus, λ+(s) = λ−(s) for all s ∈ I . Since
λ+ and λ− are in FI (S), they are both infinite outside of I . Thus, λ+ = λ−.

By Lemma 3.2.2, there exist s, s ′ ∈ I such that h2 � ŝ ′, and s ′ � s. It
follows that h2 is finite on FI (S). So h1 is continuous on FI (S). In particular,
the restriction of h1 to FI (S) belongs to V(FI (S)). But h1(λ+) = h1(λ−) + 1.
This contradicts the earlier conclusion λ+ = λ−. Therefore, the restriction
of h1 to K must belong to the norm closure of the functions in PI . That is,
for every δ > 0 there exists f ∈ PI such that ‖h1 − f ‖K < δ. Equivalently,
h1 � f +δh3 and f � h1 +δh3 on K . It is easily shown that these inequalities
also hold on all F(S). Changing f to f/(1 + δ) we can arrange that f � h3.

Proof of Theorem 3.2.1. The inclusion SR ⊆ L(F(S)) follows from
Proposition 3.1.6. Let us prove the opposite inclusion. Let (hn) be a sequence
in Lsc(F(S)) with supremum h and satisfying hn � hn+1 for all n. Let μn > 0
be such that that hn � (1 − μn)hn+1 for all n. By Lemma 3.2.2, there exists
t ∈ S such that h3 � t̂ � ∞ · h4. Let us choose M > 0 such that t̂ � Mh4

and then δ > 0 such that δM < μ3. Finally, using Lemma 3.2.4, let us find
g ∈ SR such that g � h3 and h1 � δh3 + g.

Let g1 = g + δt̂ . Then g1 ∈ SR and

g1 = g + δt̂ � (1 − μ3 + δM)h4 � h4.

Also
g1 = g + δt̂ � g + δh3 � h1.

So h1 � g1 � h4. In the same way we may find g2 ∈ SR such that h4 �
g2 � h7. Continuing in this way we get a sequence (gn), with gn ∈ SR and
h = supn gn. Thus, h ∈ SR.

A question left unanswered in these paragraphs is what axioms are needed
on a topological cone C so that the ordered semigroup L(C) satisfies axioms
O1–O5. Furthermore, one can ask if in such a case C is recovered by passing
to the cone of functionals F(L(C)).
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Problem 3.2.5. Describe the category of non-cancellative cones dual to
the category of ordered semigroups that satisfy axioms O1–O5 and have real
multiplication.

3.3. Almost algebraic order of SR

Here we show that SR has almost algebraic order (thus completing the proof of
Proposition 3.1.1). We will show that, in fact, SR has the following strength-
ening of the almost algebraic order property:

Proposition 3.3.1. Let S be an ordered semigroup satisfying axioms O1–
O5. Let f ′, f, g ∈ SR be such that f ′ � f � g. Then there exist h, h′ ∈ SR

such that f ′ � h � f and h + h′ = g.

This proposition is an immediate consequence of Proposition 3.1.6 com-
bined with the following lemma:

Lemma 3.3.2. Let f, g ∈ SR be such that f � g′ � g for some g′ ∈ SR.
Then there exists h ∈ SR such that f + h = g. The element h may be chosen
such that f ∝ h.

Proof. Let (gn) be a sequence in SR such that g = supn gn and gn � gn+1

for all n. We may assume that g′ � g1, and so f � g1. Let us define the
functions hn: F(S) → [0, ∞] by

hn(λ) :=
{

gn(λ) − f (λ) if gn(λ) < ∞,

∞ otherwise.

It is easily verified that hn is linear. Let us show that it is also lower semicontinu-
ous. Let (λi) be a net converging to a functional λ. Suppose that gn(λ) < ∞.
Then f is continuous at λ. So,

lim inf
i

(gn(λi) − f (λi)) = lim inf
i

gn(λi) − f (λ) � gn(λ) − f (λ).

Thus, hn is lower semicontinuous at λ. Suppose that gn(λ) = ∞. Since
f � (1 − εn)gn for some εn > 0, we have gn(λi) − f (λi) � εngn(λi) if
gn(λi) is finite. This implies that hn(λi) � εngn(λi), whether gn(λi) is finite
or not. Passing to the limit with respect to i we get that lim inf i hn(λi) �
lim inf i εngn(λi) = ∞. Thus, hn is lower semicontinuous at λ.

Let us now show that hn � hn+1 for all n. If hn+1(λ) < ∞ then gn+1(λ) <

∞, and so gn and f are both finite and continuous at λ. It follows from the
definition of hn that it is also continuous at λ. Also, from gn � (1−εn)gn+1 for
some εn > 0 and the definition of hn we easily deduce that hn � (1− εn)hn+1.
It follows that hn � hn+1.
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Let h = supn hn. Then h ∈ L(F(S)) = SR. Since gn = f + hn for all n, we
conclude that g = f + h. Finally, in order to arrange for f ∝ h, find ε > 0
such that f � g′ � (1 − ε)g. Find then h′ such that f + h′ = (1 − ε)g and
set h = h′ + εg. This concludes the proof of the lemma.

4. Refinement and interpolation properties

Let S be an ordered semigroup. In this section, in addition to the axioms
O1–O5, we assume that S satisfies the following axiom:

O6 If s, t, r ∈ S are such that s � r + t , then for every s ′ � s there exist r ′
and t ′ such that

s ′ � r ′ + t ′, r ′ � r, s and t ′ � t, s.

Notation convention. In order to state multiple inequalities more com-
pactly, we will often use the notation a, b, c, . . . � x, y, z, . . . to mean that
every element listed on the left side is less than or equal to every element listed
on the right side.

Lemma 4.0.1. Let S be an ordered semigroup satisfying axioms O1–O6.
Then SR also satisfies O1–O6.

Proof. We have already shown in Proposition 3.1.1 that SR satisfies O1–O5.
Let f, g, h ∈ SR be such that f � g+h. In order to prove axiom O6, it suffices
to verify that it holds for f , g, and h belonging to a dense subsemigroup of SR.
So we may assume that they all belong to the Q+-linear span of the image of
S in SR. Moreover, multiplying by a sufficiently large integer, we may assume
that f , g and h belong to the image of S in SR. So let us suppose that ŝ � r̂ + t̂ .
Let s ′′ � s ′ � s. By Proposition 2.2.6, given ε > 0 there exist M, N ∈ N
such that M/N > 1 − ε and Ms ′ � Nr + Nt . Thus, by axiom O6 applied to
S there exist r ′ and t ′ such that

Ms ′′ � r ′ + t ′, r ′ � Nr, Ms ′ and t ′ � Nt, Ms ′.

Thus, setting r̂ ′
N

= g and t̂ ′
N

= h, we get that

(1 − ε)ŝ ′′ � g + h, g � r̂ , ŝ and h � t̂ , ŝ.

Since the elements of the form (1−ε)ŝ ′′, with ε > 0 and s ′′ � s, are compactly
contained in ŝ and have supremum ŝ, the proof is complete.

In what follows SR denotes the realification of an ordered semigroup S

that satisfies axioms O1–O6. Since SR satisfies the same axioms (by Propos-
ition 3.3.1 and Lemma 4.0.1), and (SR)R

∼= SR, we may alternatively regard
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SR as an arbitrary ordered semigroup with real multiplication and satisfying
axioms O1–O6.

4.1. Refinement

The following form of refinement property holds in SR and suffices to conclude
that F(S) is a lattice.

Theorem 4.1.1. Let S be an ordered semigroup satisfying axioms O1–O6.
Let (fi)

n
i=1 and (gj )

m
j=1 be elements of SR such that

n∑
i=1

fi �
m∑

j=1

gj .

Let (f ′
i )

n
i=1 be such that f ′

i � fi for all i. Then there exist elements hij , with
i = 1, 2, . . . , n and j = 1, 2, . . . , m, such that

f ′
i �

m∑
j=1

hi,j � fi for all i,(4.1)

n∑
i=1

hi,j � gj for all j.(4.2)

Proof. Notice that it suffices to prove the theorem with the inequality
relation � in place of the compact containment relation � in (4.1). Once the
inequalities are obtained, the compact containment is easily arranged by finding
interpolating elements f ′

i � f ′′
i � f ′′′

i � fi and applying the theorem, with
inequality relations, for the pairs f ′′

i � f ′′′
i .

Let us first prove the theorem for n = 1 andm = 2. Letf ′, f, g ∈ SR be such
that f ′ � f � g1 +g2. Let us assume that f ∝ g2. By Proposition 3.1.6, there
exists l such that f ′ � l � f . Let ε > 0 be such that l � (1−ε)f . Since l � f ,
for any δ > 0 we can apply Lemma 3.1.7 to get l′ such that f ′ � l′ � l and
l � l′ + δf . Since f ∝ g2, we can choose δ small enough so that l � l′ + εg2.
In summary, we first find l and ε > 0 such that f ′ � l � (1 − ε)f and then
find l′ such that f ′ � l′ � l and l � l′ + εg2.

By axiom O6 applied to

l′ � l � (1 − ε)g1 + (1 − ε)g2,

there exist g′
1 and g′

2 such that l′ � g′
1 + g′

2 and

g′
1 � (1 − ε)g1, l,

g′
2 � (1 − ε)g2, l.
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Let us chooseh1 � g′
1 such that l′ � h1+g′

2. Sinceg′
1 � l, by Proposition 3.3.1

we may choose h1 that is algebraically complemented in l, i.e., such that there
exists h2 such that l = h1 + h2. Then

h1 + h2 = l � l′ + εg2 � h1 + g′
2 + εg2 � h1 + g2.

Since h1 � f ∝ g2, we can cancel h1 to obtain h2 � g2. This proves the case
n = 1, m = 2 of the theorem under the assumption that f ∝ g2.

It follows by induction that if f ′ � f �
∑n

i=1 gi , and f ∝ gn then there
exist (hi)

n
i=1 such that f ′ �

∑n
i=1 hi � f and hi � gi for all i.

Let us now go back to the case n = 1 and m = 2 and remove the assumption
f ∝ g2. Suppose again that f ′ � f � g1 + g2. Let l and ε > 0 be such that
f ′ � l � (1 − ε)f . By axiom O6 there exist g′

1 and g′
2 such that l � g′

1 + g′
2

and
g′

1 � (1 − ε)g1, (1 − ε)f,

g′
2 � (1 − ε)g2, (1 − ε)f.

Then we trivially have l � g′
1 + g′

2 + ε
2 (g′

1 + g′
2) and l ∝ ε

2 (g′
1 + g′

2). So, there
exist h′

1, h′
2 and h′

3 such that

f ′ � h′
1 + h′

2 + h′
3 � l, h′

1 � g′
1, h′

2 � g′
2 and h′

3 � ε

2
(g′

1 + g′
2).

Set h′
1 + ε

2g′
1 = h1 and h′

2 + ε
2g′

2 = h2. Then h1 � g1, h2 � g2, and
f ′ � h1 + h2. Also,

h1 + h2 = h′
1 + h′

2 + ε

2
(g′

1 + g′
2) � l + ε

2
(g′

1 + g′
2).

But l � (1 − ε)f and ε
2 (g′

1 + g′
2) � εf . So, h1 + h2 � f . This proves the

theorem for n = 1 and m = 2.
The reader may verify that the case n = 1 and arbitrary m now follows by

induction, building on the case that was just established.
Finally, let us consider the general case of the theorem. Let us assume that

the theorem has been proved for certain n and m and then show that it is also
valid for n + 1 and m. Suppose that

∑n+1
i=1 fi �

∑m
j=1 gj and let f ′

1 � f1.
Then there exist (hj )

m
j=1 such that f ′

1 � ∑m
j=1 hj � f1 and hj � gj for all j .

For each j let us find h′
j � hj and g′

j such that h′
j + g′

j � gj � hj + g′
j and

f ′
1 �

∑m
j=1 h′

j . Then

f1 +
n+1∑
i=2

fi �
m∑

j=1

gj �
m∑

j=1

hj +
m∑

j=1

g′
j � f1 +

m∑
j=1

g′
j .
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Thus,

(4.3) f1 +
n+1∑
i=2

fi � f1 +
m∑

j=1

g′
j

By Lemma 3.3.2, the elements g′
j may be chosen such that gj ∝ g′

j . So
f1 ∝ ∑m

j=1 g′
j and we can cancel f1 on both sides of (4.3). By induction, there

exist (hi,j ), i = 2, . . . , n + 1, j = 1, . . . , m, such that f ′
i � ∑m

j=1 hi,j � fi

for i = 2, 3, . . . , n + 1 and
∑n

i=1 hi,j � gj for all j . We now set h1,j = h′
j .

The elements hi,j have the desired properties. This completes the induction.

Theorem 4.1.2. Let S be an ordered semigroup satisfying axioms O1–
O6. Then F(S) is a complete distributive lattice. Furthermore, addition is
distributive with respect to ∧ and ∨:

(λ1 ∨ λ2) + λ3 = (λ1 + λ3) ∨ (λ2 + λ3),(4.4)

(λ1 ∧ λ2) + λ3 = (λ1 + λ3) ∧ (λ2 + λ3)(4.5)

Proof. Since F(S) ∼= F(SR), it suffices to prove the same properties for
F(SR) (or alternatively, to assume that S has real multiplication). The pointwise
supremum of an upward directed set of functionals is also a functional, and
so the supremum of the set. Thus, in order to show that F(SR) is a complete
lattice, it suffices to show that any two functionals have a least upper bound.

Let λ1 and λ2 be in F(SR). Let us define λ: SR → [0, ∞] by

(4.6) λ(f ) := sup{λ1(f1) + λ2(f2) | f1 + f2 � f }.
That λ is sub-additive follows from general considerations. The inequality
λ(f ) + λ(g) � λ(f + g) follows from the refinement property obtained in
Theorem 4.1.1. Thus, λ is additive. It is clear thatλ is the least upper bound ofλ1

and λ2 among all the ordered semigroup maps from SR to [0, ∞]. Let λ̃ denote
the supremum preserving regularization of λ. That is, λ̃(f ) := supf ′�f λ(f ′).
Then λ is a functional on SR (see [6, Lemma 4.7]) and λ1 ∨ λ2 = λ̃.

The identity (4.4) follows from the fact that λ1 ∨ λ2 is the lower semicon-
tinuous regularization of the functional given by (4.6). The reader is referred
to the proof of [6, Theorem 3.3] for the details of this argument. Similarly, in
order to prove (4.5) we need a Kantorovich-type formula for λ1 ∧λ2. Consider
the map λ: SR → [0, ∞] defined by

λ(f ) := inf{λ1(f1) + λ2(f2) | f � f1 + f2}.
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That λ is sub-additive follows again from general considerations. The refine-
ment property of Theorem 4.1.1 can then be used to show that

λ(f ′) + λ(g′) � λ(f + g),

for all f ′ � f and g′ � g. It follows that λ̃(f ) := supf ′�f λ(f ′) is additive.

Moreover, proceeding as in the proof of [6, Lemma 4.7] we get that λ̃ is a
functional on SR. If γ ∈ F(SR) is such that γ � λ1, λ2 then clearly γ � λ.
Since γ (f ) = supf ′�f γ (f ′), we also have that γ � λ̃. Therefore, λ̃ = λ1∧λ2.
Identity(4.5) can now be derived proceeding as in the proof of [6, Theorem 3.3].
Finally, the identities (4.4) and (4.5) imply that F(SR) is a distributive lattice
(by [6, Proposition 3.4]).

4.2. Interpolation

Here we show that if S satisfies axioms O1–O6 and has a countable dense
subset then there exists a greatest lower bound f ∧ g for any two elements
f, g ∈ SR.

Lemma 4.2.1. Let f, g ∈ SR with f ∝ g. Then the set of elements h ∈ SR

such that h � h′ � f, g for some h′, is an upward directed set.

Proof. Let p and q be elements of SR such that p � p′ � f, g and
q � q ′ � f, g. Writing p′ as the supremum of a rapidly increasing sequence
as in Proposition 3.1.6, we can find p1 and p2 such that p � p1 � p2 � p′.
Similarly, we find q1 and q2 such that q � q1 � q2 � q. In order to prove the
lemma, it suffices to find r1 ∈ SR such that p1, q1 � r1 � f, g, for then there
exists r such that p, q � r � r1 � f, g.

Let us prove the existence of r1 satisfying that p1, q1 � r1 � f, g. In what
follows, the relevant properties of p1 and q1 are that

(i) there exists ε > 0 such that p1, q1 � (1 − ε)f, (1 − ε)g, and

(ii) p1 and q1 have algebraic complements in both (1 − ε)f and (1 − ε)g

(this follows from Lemma 3.3.2).

Let us choose pf , qf , and qg such that

p1 + pf = q1 + qf = (1 − ε)f,

q1 + qg = (1 − ε)g.

Then
q1 + qf = (1 − ε)f = p1 + pf

� (1 − ε)g + pf

= q1 + qg + pf .
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So,
q1 + qf � q1 + qg + pf .

We can choose qg such that g ∝ qg (see Lemma 3.3.2). Thus, we can cancel
q1 in the above inequality:

qf � qg + pf .

Since qf � f , by Lemma 3.1.7 there exists q ′
f � qf such that qf � q ′

f + ε0f ,
where ε0 > 0 is small enough (how small will be specified later). Axiom O6
applied to

q ′
f � qf � qg + pf

implies that there exist r ′ and t ′ such that q ′
f � r ′ + t ′, r ′ � qf , qg , and

t ′ � qf , pf . Let us set r2 = r ′ + q1. Then we have q1 � r2 and r2 �
(1 − ε)f, (1 − ε)g. As for comparing to p1, we have

p1 + pf = (1 − ε)f = q1 + qf

� q1 + q ′
f + ε0f

� q1 + r ′ + t ′ + ε0f

� r2 + pf + ε0f.

So
p1 + pf � r2 + pf + ε0f

Since pf ∝ ε0f , we can cancel pf :

p1 � r2 + ε0f.

Let us choose ε0 > 0 such that ε0 � ε and ε0f � εg. Its existence is guaranteed
by the hypothesis f ∝ g. Then r1 = r2 + ε0f has the desired properties.

Theorem 4.2.2. Let S be an ordered semigroup satisfying axioms O1–O6
and with a countable dense subset.

(i) For each pair f, g ∈ SR there exists a greatest lower bound f ∧ g.

(ii) For any f ∈ SR and any increasing sequence (gn) in SR we have that

sup
n

(f ∧ gn) = f ∧ (sup
n

gn).

(iii) For all f, g, h ∈ SR we have that

f ∧ g + h = (f + h) ∧ (g + h).
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Proof. (i) The existence of a countable dense subset in S implies that such
a set exists also in SR. The intersection of a dense subset with an order ideal
is dense in the ideal. Thus, every order ideal O of SR (i.e., a subset such that
f � g ∈ O implies f ∈ O) contains a countable dense subset. If O is also
upward directed, then we can find a cofinal increasing sequence in O. Finally,
if in addition O is closed under the suprema of increasing sequences, then O

has a maximum element.
Let f, g ∈ SR. Let us first establish the existence of (∞ · f ) ∧ (∞ · g).

Observe that the set of elements h ∈ SR such that h � ∞ · f, ∞ · g is upward
directed, as it is closed under addition. Since it is also an order ideal and closed
under the suprema of increasing sequences, it contains a maximum element
(∞ · f ) ∧ (∞ · g). (Along the same lines, one can show that ∞ · S and ∞ · SR

are complete lattices.)
Next, let us prove the existence of f ∧ g under the assumption that f ∝ g.

By the previous lemma, the set of elements h such that h � h′ � f, g is
upward directed. Since it is also an order ideal, it contains a cofinal increasing
sequence (hn). Let h = supn hn. Since hn � f, g for all n, we have h � f, g.
On the other hand, if l � f, g then for every l′ � l we have l′ � hi for some
i, and so l′ � h. Passing to the supremum over all such l′ we get that l � h.
This shows that h = f ∧ g.

Suppose now that f � ∞ · g. Let (fn) be a rapidly increasing with su-
premum f . Then fn ∝ g for all n and so fn ∧ g exists for all n. The sequence
(fn ∧ g) is increasing. Let h = supn fn ∧ g. We clearly have that h � f, g.
On the other hand, if l � f, g and l′ � l then l′ � fn for some n, and so
l′ � fn ∧ g � h. Passing to the supremum over all such l′ we get that l � h.
Thus, h = f ∧ g.

Finally, let f and g be arbitrary elements of SR. Consider the element

(f ∧ (∞f ∧ ∞g)) ∧ g.

This element is well defined, since the existence of each greatest lower bound
has been justified previously. A simple analysis reveals that this element must
be f ∧ g.

(ii) We clearly have supn(f ∧ gn) � f ∧ supn gn. Let l � f ∧ supn gn.
Then l � gn0 for some n0 ∈ N. Thus, g � f ∧ gn0 � supn f ∧ gn. Passing
to the supremum over all l such that l � f ∧ supn gn we get f ∧ supn gn �
supn(f ∧ gn).

(iii) Let us first establish a preliminary inequality:

(4.7) (f + g) ∧ h � f ∧ h + g ∧ h.
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Let l � (f + g) ∧ h. Applying O6 in

l � (f + g) ∧ h � f + g

we find f ′ and g′ such that

l � f ′ + g′, f ′ � (f + g) ∧ h, f and g′ � (f + g) ∧ h, g.

We have f ′ � f ∧ h and g′ � g ∧ h. Hence l � f ∧ h + g ∧ h. Passing to the
supremum over all l such that l � (f + g) ∧ h we get (4.7).

The inequality

f ∧ g + h � (f + h) ∧ (g + h)

follows trivially from first principles.
Let us prove that

(4.8) (f + h) ∧ (g + h) � f ∧ g + h.

We first consider the case that h ∝ f, g. Let l ∈ SR be such that l � (f + h) ∧
(g + h). Let ε > 0. Let us find l′ � l such that l � l′ + εf and l � l′ + εg.
Such an element l′ exists by Lemma 3.1.7 and the fact that (f + h) ∝ f and
(g + h) ∝ g. By (4.7) we have that l � f + (h ∧ l) and l � g + (h ∧ l). Let
h′ � (h ∧ l) be such that

l′ � f + h′, g + h′.

By Lemma 3.3.2, we can choose h′ such that it is algebraically complemented
in l. Let d be such that l = d + h′. Then

d + h′ = l � l′ + εf � f + h′ + εf = (1 + ε)f + h′.

Cancelling h′ we get that d � (1 + ε)f . Similarly, we get that d � (1 + ε)g.
So d � (1 + ε)(f ∧ g) (here we have used that αf ∧ αg = α(f ∧ g) for
α > 0, which follows from the fact that scalar multiplication by α is an ordered
semigroup isomorphism of SR). So

l � d + h � (1 + ε)(f ∧ g) + h.

Since ε is arbitrary, we get that l � f ∧ g + h. Passing to the supremum over
all l such that l � (f + h) ∧ (g + h) we get (4.8).

Let us now drop the assumption that h ∝ f, g. Let ε > 0. We have

(4.9) (f + h) ∧ (g + h) = (f + εh) ∧ (g + εh) + (1 − ε)h.
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On the other hand, applying (4.7) twice we have

(4.10) (f + εh) ∧ (g + εh) � f ∧ g + 2εh.

Thus, combining (4.9) and (4.10) we get

(f + h) ∧ (g + h) � f ∧ g + (1 + ε)h.

Since ε > 0 is arbitrary, we are done.

5. Further remarks

5.1. The Cuntz semigroup of C*-algebras

Given a C*-algebra A, we denote by Cu(A) the Cuntz semigroup of A.

Proposition 5.1.1. Cu(A) satisfies the axioms O1–O6. If A is separable
then Cu(A) contains a countable dense subset.

Proof. [3, Theorem 1] states that Cu(A) is an ordered semigroup satisfying
axioms O1–O4 (i.e., is an object in the category Cu).

Rørdam and Winter show in [13, Lemma 7.2] that Cu(A) satisfies O5 (i.e.,
has almost agebraic order).

Let us show that Cu(A) satisfies O6. Suppose that [a] � [b] + [c], with
a, b, c ∈ (A ⊗ K )+. Without loss of generality, let us assume that bc = 0.
We must show that for every s � [a] there exist [b′] and [c′] such that s �
[b′] + [c′], and [b′] � [a], [b], [c′] � [a], [c]. It suffices to show this for
s = [(a − ε)+] for some ε > 0. In this case, by [12, Proposition 4.3] there
exist x ∈ A ⊗ K and δ > 0 such that (a − ε)+ = x∗x and xx∗ belongs
to the hereditary subalgebra generated by (b + c − δ)+. Let gδ ∈ C0(R) be
non-negative and equal to 1 on the set (δ, ‖a‖]. Then gδ(b + c)(xx∗) = xx∗.
So,

[(a − ε)+] = [xx∗] = [gδ(b + c)xx∗gδ(b + c)]

= [gδ(b)xx∗gδ(b) + gδ(c)xx∗gδ(c)]

� [gδ(b)xx∗gδ(b)] + [gδ(c)xx∗gδ(c)].

Notice that [gδ(b)xx∗gδ(b)] � [(a − ε)+], [b] and [gδ(c)xx∗gδ(c)] � [(a −
ε)+], [c]. Thus, setting gδ(b)xx∗gδ(b) = b′ and gδ(c)xx∗gδ(c) = c′, the
desired result follows.

Finally, if A is separable then the elements [(a − 1
n
)], with n ∈ N and a

ranging through a countable dense subset of (A ⊗ K )+, form a dense subset
of Cu(A).

Next we will show that Cu(A⊗R) ∼= Cu(A)R, where R denotes the stably
projectionless C*-algebra studied in [8] (therein denoted by W ) and in [10].
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Notice that since R is nuclear, the tensor product A ⊗ R is unambiguously
defined.

We will need the following properties of R (see [8] and [10]):

(i) K0(R) = K1(R) = 0.

(ii) R ⊗ Q ∼= R where Q denotes the UHF algebra with K0(Q) ∼= Q.

(iii) There is an embedding R ↪→ Q such that, at the level of Cu, the class
of a strictly positive element [e] ∈ Cu(R) is mapped to the element
[e] ∈ Cu(Q) such that [e] < [1] and [̂e] = [̂1].

(iv) R ⊗ R ∼= R.

(v) The automorphism R ⊗ R → R ⊗ R such that a ⊗ b �→ b ⊗ a is
approximately inner.

Let us recall the definition of a purely non-compact element of Cu(A). The
element [a] ∈ Cu(A) is purely non-compact if its image on every quotient
Cu(A/I) is either non-compact or strongly infinite (i.e., 2[πI (a)] = [πI (a)],
with πI : A → A/I the quotient map). Let us denote the set of these ele-
ments by Cu(A)pnc. By [6, Proposition 6.4 (i)], Cu(A)pnc is a subsemigroup
of Cu(A) closed under sequential suprema. By [6, Theorem 6.6], if A absorbs
the Jiang-Su algebra Z then [a] �→ [̂a] is an isomorphism from Cupnc(A) to
L(F(Cu(A))), which we have shown in Theorem 3.2.1 coincides with Cu(A)R.

Theorem 5.1.2. Let A be a C*-algebra. Then Cu(A ⊗ R) is isomorphic to
Cu(A)R.

The proof is divided in a number lemmas.

Lemma 5.1.3. If A ⊗ R ∼= A then the map [a] �→ [̂a] is an isomorphism
from Cu(A) to Cu(A)R.

Proof. Since R ⊗ Z ∼= R, the algebra A absorbs Z . Thus, by [6, The-
orem 6.6], it suffices to show that every element of Cu(A) is purely non-
compact. Since every quotient of A ⊗ R (∼= A) has the form (A/I) ⊗ R,
it suffices to show that every projection p of an R-absorbing C*-algebra is
properly infinite. Let p be such a projection. Then pAp is unital and absorbs
Z (since Z -stability passes to hereditary subalgebras). Since K0(pAp) =
K0(Ideal(p)) = K0(Ideal(p) ⊗ R) = {0}, we have m[p] = n[p] for some
m < n. But Cu(pAp) is almost unperforated. So 2[p] = p, i.e., p is properly
infinite.

Lemma 5.1.4. The homomorphism A → A⊗Q given by a �→ a⊗1 induces
an isomorphism from Cu(A)R to Cu(A ⊗ Q)R.

Proof. The homomorphisms a �→ a ⊗ 1n, from A to A ⊗ Mn induce
isomorphisms at the level of F(·) for all n. Passing to the limit with respect to
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n, and using that F(·) is sequentially continuous (see [6, Theorem 4.8]), we get
that the map F(A ⊗ Q) → F(A) induced by a �→ a ⊗ 1 is an isomorphism.
The result now follows from Theorem 3.2.1. (We can alternatively use the
continuity of the functor Cu(·)R with respect to sequential inductive limits.)

The following lemma is of independent interest (and in particular, does not
immediately follow from Theorem 5.1.2).

Lemma 5.1.5. If A⊗Q ∼= A then every element in A⊗R is Cuntz equivalent
to an element of the form a ⊗ e, with e ∈ R+ strictly positive.

Proof. Let b ∈ Q ⊗A⊗R be a positive element, where A is a C*-algebra
that absorbs Q. Since A⊗R absorbs Q, b is approximately unitarily equivalent
to an element of the form 1 ⊗ a1, with a1 ∈ A ⊗ R. Let us identify R with
a subalgebra of Q in such a way that [e] ∈ Cu(Q) is the unique element
such that [e] < [1] and [̂e] = [̂1]. Then ̂[1 ⊗ a1] = ̂[e ⊗ a1] (more generally,
̂[b1 ⊗ c] = ̂[b2 ⊗ c] whenever [̂b1] = [̂b2]). So, [1 ⊗ a1] = [e ⊗ a1] by

Lemma 5.1.3. Notice that e ⊗ a1 ∈ R ⊗ A ⊗ R. Since the automorphism of
R ⊗ A ⊗ R that maps x ⊗ y ⊗ z to z ⊗ y ⊗ x is approximately inner, the
element e ⊗ a1 is approximately unitarily equivalent to an element of the form
a ⊗ e, with a ∈ Q ⊗ A. This completes the proof.

Proof of Theorem 5.1.2. By Lemma 5.1.4 we may assume that A ⊗
Q ∼= A. Consider the map from A ⊗ R to A ⊗ Q induced by the inclusion
R ↪→ Q. Since every element of Cu(A ⊗ R) is purely non-compact, and
such elements are preserved by morphisms in the category Cu, Cu(A ⊗ R)

is mapped into Cupnc(A ⊗ Q). Let us show that it is an isomorphism into this
set. Let s1, s2 ∈ Cu(A ⊗ R). Assume that si = [ai ⊗ e], with i = 1, 2, by
Lemma 5.1.5. If [a1 ⊗ e] = [a2 ⊗ e] in Cu(A ⊗ Q), then

̂[a1 ⊗ 1] = ̂[a1 ⊗ e] = ̂[a2 ⊗ e] = ̂[a2 ⊗ 1].

By Lemma 5.1.4, we get that [̂a1] = [̂a2], and so ̂[a1 ⊗ e] = ̂[a1 ⊗ e] as
elements of Cu(A ⊗ R)R. Thus, by Lemma 5.1.3, [a1 ⊗ e] = [a2 ⊗ e] in
Cu(A ⊗ R). This proves injectivity.

Let us prove surjectivity. Let s ∈ Cupnc(A ⊗ Q). We may assume that

s = [a ⊗ 1] for some a ∈ A. We have ̂[a ⊗ 1] = ̂[a ⊗ e]. But s is purely
non-compact. So, s = [a ⊗ 1] = [a ⊗ e]. This proves surjectivity.

5.2. Glimm’s halving property

Let us show that the axioms O1–O6 suffice to recover Glimm’s halving property
in the context of simple ordered semigroups.
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Proposition 5.2.1. Let S be an ordered semigroup satisfying axioms O1–
O6. Suppose that S is simple (in the sense that every non-zero element is full,
i.e., ∞ · s = ∞ for s �= 0) and that S �= {0, 1, . . . ,∞}. Then for every
non-zero x ∈ S there exists z �= 0 such that 2z � x.

Proof. Let x ∈ S and suppose that x1 +x2 � x for non-zero x1 and x2. Let
us prove the existence of z such that 2z � x. Let x ′

1 and x ′′
1 be non-zero elements

and such that x ′′
1 � x ′

1 � x1. Then there is a finite n such that x ′
1 � nx2. By

O6, we have x ′′
1 � x

(1)
2 + x

(2)
2 + · · · + x

(n)
2 , where x

(i)
2 � x2, x1. At least one

of the x
(i)
2 s must be non-zero. Assume it is x

(1)
2 . Then 2x

(1)
2 � x1 + x2 � x.

Suppose that there exists an element e ∈ S such that x1 + x2 � e implies
x1 = 0 or x2 = 0. Let us prove that in this case S ∼= {0, 1, . . . ,∞}. First
observe that e is minimal among the non-zero elements. For if e′ < e, with
e′ �= 0, then choosing e′′ � e′ non-zero we get by axiom O5 that there exists c

such that e′′ + c � e � e′ + c. The element c must be non-zero (since e′ �= e).
This contradicts the property of e. Since e is a minimal non-zero element, we
must have e � e. Let f ∈ S. Then there exists n such that e � nf . By O6 we
have e � f1 +f2 +· · ·+fn, where fi � e, f . At least one the fis is non-zero.
For this element we must have e = fi , since e is minimal. We conclude that
e � f , i.e. e is the minimum non-zero element. Let f ∈ S be non-zero. Then
e � e � f and so e+f1 = f for some f1 (by O5). If f1 is non-zero then e � f1

and so e + f2 = f1 for some f2. Continuing this process we get that either
f = ne for some n or f = ∞. Thus, S = {0, e, 2e, . . . ,∞} ∼= {0, 1, . . . ,∞}.

An analogue of the previous proposition for ordered groups with Riesz
interpolation is obtained in [7, Lemma 14.5].

Note. Martin Engbers has let me know that the statement of Proposi-
tion 5.2.1 must be amended as follows: Instead of assuming that S �= {0, 1, . . . ,

∞} we must require that there is no e ∈ S such that S �= {0, e, 2e, . . . ,∞}
(i.e., S is not “singly generated”). Indeed, this is the assumption made tacitly
in the proof. Observe that this new formulation also excludes the semigroups
{0, 1, . . . , n,∞} for all n ∈ N (with the obvious order and addition).
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