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UNIFORM DOMAINS AND UNIFORM DOMAIN
DECOMPOSITION PROPERTY IN REAL

NORMED VECTOR SPACES

M. HUANG and X. WANG∗

Abstract
Let E be a real normed vector space with dim(E) ≥ 2, D a proper subdomain of E. In this paper
we characterize uniform domains in E in terms of the uniform domain decomposition property. In
addition, we discuss the relation between quasiballs and domains with the quasiball decomposition
property in Rn.

1. Introduction and Main Results

Throughout the paper, we assume that E is a real normed vector space with
dim(E) ≥ 2 and the norm of a vector z ∈ E is denoted by |z|. For any two
points z1, z2 in E, the distance between them is denoted by |z1−z2|. D is always
assumed to be a proper domain in E and B(x0, r) = {x ∈ E : |x − x0| < r},
the open ball centered at x0 of radius r > 0. Similarly, for the closed balls and
spheres, we use the notations B(x0, r) and ∂B(x0, r).

We now introduce two basic concepts: uniform domains and John domains.

Definition 1.1. A proper domain D in E is called uniform in the norm
metric provided there exists a constant c with the property that each pair of
points z1, z2 in D can be joined by a rectifiable arc γ in D satisfying (cf. [18]
and [20])

(1) minj=1,2 �(γ [zj , z]) ≤ c dD(z) for all z ∈ γ , and

(2) �(γ [z1, z2]) ≤ c|z1 − z2|.
Here �(γ ) denotes the arclength of γ , γ [zj , z] the part of γ between zj and z.
The distance from z to the boundary ∂D of D in E is denoted by dD(z).

D is said to be a John domain if it satisfies the first condition in above but
not necessarily the second one (see [16]).
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John [10], Martio and Sarvas [15] were the first who introduced John do-
mains and uniform domains in R2, respectively. Now, there are plenty of al-
ternative characterizations for uniform and John domains (see [4], [5], [6],
[8], [11], [14], [18]), and their importance along with some special domains
throughout the function theory is well documented, see [5], [11], [16], [18].
Moreover, uniform domains in E enjoy numerous geometric and function the-
oretic features in many areas of modern mathematical analysis, see [1], [2],
[3], [4], [8], [9], [18].

We refer to the books of Väisälä [17] and Vuorinen [21] for the definition of
K-quasiconformal (K-qc) homeomorphism of Rn and for basic facts regarding
quasiconformal (qc) mappings.

A Jordan curve γ in R
2 = R2 ∪ {∞} is called a K-qc circle (or simply qc

circle) if there is a K-qc mapping f of R
2

onto itself such that γ = f (∂B2), and
f (B2) is called a K-quasidisk (or simply quasidisk), where B2 denotes the unit
disk in R2. We say that a domain D ⊂ R

n
is a K-quasiball (or simply quasiball)

if there exists a K-qc mapping f of R
n

onto itself such that D = f (Bn), where
Bn denotes the unit ball in Rn.

As a characterization of qc circles, Martio and Sarvas [15] proved that a
Jordan domain in R2 is uniform if and only if its boundary is a qc circle.
After that, Gehring and Hag [7, Theorems 3.10 and 4.1] proved that a finitely
connected domain D in R2 is uniform if and only if there is a constant K such
that each component of ∂D is either a point or a K-qc circle. As a further
generalization, Gehring and Osgood proved

Theorem A ([8, Theorem 5]). A domain D in R2 is a uniform domain if
and only if it is quasiconformally decomposable.

Here a domain D in R2 is said to be quasiconformally decomposable if there
exists a constant K with the following property: For each pair z1, z2 in D, there
exists a subdomain D0 of D such that z1, z2 are contained in D0 and ∂D0 is a
K-qc circle. Obviously, D0 is a K-quasidisk.

We refer to [8] for some applications of Theorem A including a new proof
of the injectivity properties of uniform domains in R

2
. The situation is very

different in Rn. The 3-dimensional analog of Theorem A fails to hold even
for simply connected domains, see [13, Example 3.8]. In order to consider
the generalization of Theorem A in Rn or real normed vector spaces E, we
introduce the following concepts.

Definition 1.2. A domain D in E is said to have the uniform domain
decomposition property if there exists a positive constant c with the following
property: For each pair of points z1, z2 in D, there exists a subdomain D0 of
D such that z1, z2 ∈ D0 and D0 is a simply connected c-uniform domain.
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A domain D in Rn is said to have the quasiball decomposition property if
there exists a positive constant K with the following property: For each pair
of points z1, z2 in D, there exists a subdomain D0 of D such that z1, z2 ∈ D0

and D0 is a K-quasiball.

By proving the Lipschitz continuous first differentiability of quasihyper-
bolic geodesics in Rn, Martin obtained

Theorem B ([13, Theorem 5.1]). Let D be a uniform domain in Rn. Then
there is a constant L, depending only on the constant of uniformity for D, such
that for each pair of points x1, x2 in D there is an L-bi-Lipschitz embedding
f : B

n
(0, |x1 − x2|) → D with {x1, x2} ⊂ f (B

n
(0, |x1 − x2|)).

Obviously, Theorem B shows that

Corollary 1.3. A domain in Rn is uniform if and only if it has the uniform
domain decomposition property.

It easily follows from [8, Corollary 3] that

Proposition 1.4. Let D be a domain in Rn. If D has the quasiball decom-
position property, then it has the uniform domain decomposition property.

For a simply connected domain D in R2, D is uniform if and only if it is a
quasidisk [9, Lemma 6.4] if and only if it is a quasiball. In view of Theorem A,
it is easy to formulate the following proposition which characterizes uniform
domains.

Proposition 1.5. For any domain D in R2, the following are equivalent.
(1) D is uniform;
(2) D is quasiconformally decomposable;
(3) D has the uniform domain decomposition property;
(4) D has the quasiball decomposition property.

By [13, Example 3.8], it is natural to consider a suitable generalization of
Proposition 1.5 which works for E or Rn. To achieve this goal, in this paper,
we mainly consider the following two questions.

Question 1.6. Is it true that a domain D in E is uniform if and only if it
has the uniform domain decomposition property?

Question 1.7. Is it true that a domain D in Rn is a quasiball if and only if
it has the quasiball decomposition property?

In the proof of Theorem A, the authors [8] have utilized the Riemann map-
ping theorem. In the absence of the Riemann mapping theorem in E when
dim(E) ≥ 3, it is natural that the methods used in the proof of Theorem A are
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no more useful in E when dim(E) ≥ 3. It is known that a quasihyperbolic
geodesic between any two points in E exists if the dimension of E is finite, see
[8, Lemma 1]. But this is not true in arbitrary spaces. A counterexample (due
to Alestalo) has been given in [18, Section 3], see also [19, Section 2]. Hence
the method of proof used in Theorem B is invalid either. By using a different
method of proof, we obtain the following theorems and delay their proofs until
a few necessary preliminaries have been developed. Moreover, our method of
proof works also for the case E = R2.

Theorem 1.8. Let E be a real normed vector space with dim(E) ≥ 2.
Then a domain D in E is uniform if and only if it has the uniform domain
decomposition property.

Theorem 1.9. Every quasiball in Rn has the quasiball decomposition prop-
erty.

We see from the following example that the converse of Theorem 1.9 is not
necessarily true.

Example 1.10. Let e1 = (1, 0, 0) denote the unit vector in the direction
of x1-axis and D = B3 \ L in R3, where L = {

te1: 1
2 ≤ t < 1

}
. Then D has

the quasiball decomposition property, but D is not a quasiball.

2. Proof of Theorem 1.8

We start with some preliminary results. The proof of Theorem 1.8 is given in
Subsection 2.24.

Lemma 2.1. For any x1, x2 ∈ G ⊂ E, if B(x1, r1) ∩ B(x2, r2) �= ∅,
1
4dG(x1) ≤ r1 ≤ 8

9dG(x1) and 1
4dG(x2) ≤ r2 ≤ 8

9dG(x2), then

1

17
dG(x2) ≤ dG(x1) ≤ 17dG(x2) and

1

68
r1 ≤ r2 ≤ 68r1.

Proof. For any y ∈ ∂B(x1, r1) ∩ B(x2, r2), since

dG(y) ≥ dG(x2) − r2, dG(x1) ≥ dG(y) − r1

and
dG(y) ≥ dG(x1) − r1, dG(x2) ≥ dG(y) − r2,

we see that the lemma holds.

For any z1, z2 ∈ D, we assume that α ⊂ D is a rectifiable arc joining them
with
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(1) �(α[z1, z2]) ≤ c |z1 − z2|, and

(2) minj=1,2 �(α[zj , z]) ≤ c dD(z) for all z ∈ α.

Let z0 be a point in α which bisects α. Denote α[z1, z0] and α[z2, z0] by γ

and β, respectively. And assume M = [216c], where [·] denotes the greatest
integer part.

We prove Theorem 1.8 by constructing a simply connected domain D1 ⊂ D

containing z1 and z2. This construction is included in Lemma 2.14. At first,
we prepare two elementary results.

Lemma 2.2. There exists a simply connected domainD1,0 = ⋃k1
i=1 B1,i ⊂ D

such that

(1) z1, z0 ∈ D1,0;

(2) For each i ∈ {1, . . . , k1}, 1
3 dD(x1,i ) ≤ r1,i ≤ 7

8 dD(x1,i );

(3) If k1 ≥ 3, then for any i, j ∈ {1, . . . , k1} with |i − j | ≥ 2, we have
dist(B1,i , B1,j ) ≥ 1

32M2 max{r1,i , r1,j };
(4) If k1 ≥ 2, then r1,i + r1,i+1 − |x1,i − x1,i+1| ≥ 1

32M2 max{r1,i , r1,i+1} for
each i ∈ {1, . . . , k1 − 1},

where B1,i = B(x1,i , r1,i ), x1,i ∈ γ , x1,i �∈ B1,i−1 and dist(B1,i , B1,j ) denotes
the distance from B1,i to B1,j .

Proof. Let x1,1 = z1. Set A1,1 = B(x1,1, r1,1) with r1,1 = 1
2 dD(x1,1).

If z0 ∈ A1,1, then we let B1,1 = A1,1, and the domain D1,0 = B1,1 is the
desired.

If z0 /∈ A1,1, then we let x1,2 be the last intersection point of γ from z1 to
z0 with ∂A1,1. Set A1,2 = B(x1,2, r1,2) with r1,2 = 1

2 dD(x1,2).
If z0 ∈ A1,2 and A1,1 is contained in A1,2, then we let B1,1 = A1,2, and the

domain D1,0 = B1,1 is the needed. If z0 ∈ A1,2 and A1,1 is not contained in
A1,2, then we let B1,1 = A1,1, B1,2 = A1,2, and the domain D1,0 = B1,1 ∪B1,2

is the desired.
If z0 /∈ A1,2, then we let x1,3 be the last intersection point of γ from z1 to

z0 with ∂A1,2. Set A1,3 = B(x1,3, r1,3) with r1,3 = 1
2 dD(x1,3).

We continue this procedure until there is some i ∈ {1, . . . , s − 2} such that
dist(B1,i , B1,s) < 1

32M2 max{r1,i , r1,s}. Obviously, s ≥ 3.

Let A1,t be the first ball from A1,1 to A1,s−1 such that A1,i ∩ A1,s �= ∅. For
the case t = 1 and z0 ∈ A1,s , if A1,1 is contained in B

(
x1,s ,

3
4 dD(x1,s)

)
, we

take D1,0 = B1,1 = B
(
x1,s ,

3
4 dD(x1,s)

)
. Otherwise, the similar reasoning as in

Lemma 2.1 shows that we can let D1,0 = B1,1 ∪ B1,2, where B1,1 = A1,1 and
B1,2 = B

(
x1,s ,

3
4 dD(x1,s)

)
. When t = 1 and z0 /∈ A1,s or t �= 1, we have the

following claim.
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Claim 2.3. There are q balls C1,1 = B(y1,1, p1,1), . . . , C1,q = B(y1,q , p1,q)

(possibly, q = 1) in D such that

(a) {y1,1, . . . , y1,q} ⊂ {x1,1, . . . , x1,s};
(b) the conditions (2), (3) and (4) in the lemma are satisfied by the balls

C1,1, . . . , C1,q .

The proof for the case t = 1 is obvious: If A1,1 is contained in B
(
x1,s ,

3
4 dD(x1,s)

)
, then we let C1,1 = B

(
x1,s ,

3
4 dD(x1,s)

)
and so q = 1. Otherwise,

we let C1,1 = A1,1, C1,2 = B
(
x1,s ,

3
4 dD(x1,s)

)
. The similar reasoning as in

Lemma 2.1 implies that C1,1 and C1,2 satisfy Conditions (2) and (4) in the
lemma, and hence q = 2. For the remaining case t > 1, we divide the proof
into two cases.

Case 2.4. r1,t + r1,s − |x1,t − x1,s | ≥ 1
8M

r1,s .

We let C1,i = A1,i for each i ∈ {1, . . . , t} and C1,t+1 = B
(
x1,s ,

(
1 −

1
16M

)
r1,s

)
. Since for each i ∈ {1, . . . , t}, r1,s = 1

2dD(x1,s) ≥ 1
2c

�(α[z1, x1,s]) ≥
1
2c

r1,i , we see that the balls C1,1, C1,2, . . . , C1,t , C1,t+1 satisfy the conditions
(2) ∼ (4) in the lemma. Hence q = t + 1.

Case 2.5. r1,t + r1,s − |x1,t − x1,s | < 1
8M

r1,s .

We consider the ball A′
1,s = B

(
x1,s ,

7
4 r1,s

)
. Let A1,s1 be the first ball from

A1,1 to A1,t , whose closure A1,s1 has nonempty intersection with A
′
1,s . Denote

di = dist(A1,i , A1,s) (s1 ≤ i ≤ t). Clearly, dt = 0. We divide the rest argument
into two parts.

Subcase 2.6. ds1 ≤ 5
16 r1,s .

In this case, we take C1,i = A1,i (1 ≤ i ≤ s1) and C1,s1+1 = B
(
x1,s ,

23
16 r1,s

)
.

Then the balls C1,1, C1,2, . . . , C1,s1 , C1,s1+1 satisfy the conditions (2) ∼ (4) in
our lemma. This shows q = s1 + 1.

Subcase 2.7. ds1 > 5
16 r1,s .

Let δ1 = ds1 and δ2 be the first di from ds1 to dt satisfying di < δ1. Clearly,
δ1 > δ2. By repeating the procedure, we get δ1, . . . , δm ∈ {ds1 , . . . , dt } such
that

δ1 > δ2 > · · · > δm = 0.

Observe that δ1 > 5
16 r1,s and hence m ≥ 2. For each h ∈ {1, . . . , m − 1}, we

denote A1,ih = B(x1,ih , r1,ih ) the first ball from A1,1 to A1,t with dih = δh and
define εh = δh − δh+1.

Subclaim 2.8. There must exist some j ∈ {1, . . . , m − 1} such that εj >
1

8M
r1,s .
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If m ≤ M , then the existence of j ∈ {1, . . . , m − 1} with εj > 1
8M

r1,s is
obvious because otherwise,

5

16
r1,s < δ1 − δm ≤ (m − 1)

1

8M
r1,s <

1

8
r1,s ,

which is a contradiction.
We assume that m > M . To prove the existence of j , we suppose on the

contrary that εh ≤ 1
8M

r1,s for all h ∈ {1, . . . , m − 1}. Note that

δm−M − δm = εm−M + · · · + εm−1 ≤ 1

8
r1,s .

Then for any h ∈ {m − M, . . . , m − 1}, we have

(2.9) δh ≤ 1

8
r1,s .

If there exists some h ∈ {m−M, . . . , m−1} such that A1,ih = B(x1,ih , r1,ih ) �⊂
(A′

1,s \ A1,s) then (A′
1,s \ A1,s) ∩ A1,ih contains a ball, denoted by A0,ih , with

radius r0,ih = 3
4 r1,s−δh

2 ≥ 5
16 r1,s . Hence r1,ih ≥ 5

16 r1,s .
On the other hand, if A1,ih = B(x1,ih , r1,ih ) ⊂ (A′

1,s \ A1,s) for some h ∈
{m − M, . . . , m − 1} then we see that r1,ih > 1

8 r1,s . Otherwise,

1

8
r1,s ≥ r1,ih ≥ 1

3
dD(x1,ih ) ≥ 1

3

(
3

4
r1,s − δh − r1,ih

)
≥ 1

6
r1,s ,

which obviously is a contradiction. Thus we have proved that for each h ∈
{m − M, . . . , m − 1},

(2.10) r1,ih >
1

8
r1,s .

It follows that

3cr1,s ≥ c dD(x1,s)(2.11)

≥ �(γ [z1, x1,s])

≥ M − 1

8
r1,s ,

which is the desired contradiction since M = [216c]. The proof of Subclaim 2.8
is complete.
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We come back to the proof of Claim 2.3. Let j be the least number in
{1, . . . , m − 1} satisfying Subclaim 2.8 and let A′′

1,s = B(x1,s , r
′′
1,s), where

r ′′
1,s = r1,s + δj+1 + 1

16M
r1,s .

Then for all i < ij+1, A′′
1,s ∩ A1,i = ∅. We take C1,i = A1,i for each i ∈

{1, . . . , ij+1} and C1,ij+1+1 = A′′
1,s . It follows from r ′′

1,s ≤ 7
4 r1,s that the balls

C1,1, . . . , C1,ij+1 , C1,ij+1+1 satisfy the conditions (2), (3) and (4). Thus q =
ij+1 + 1 in the case. The proof of Claim 2.3 is finished.

We continue the proof of our lemma.

If z0 ∈ C1,q , then by letting B1,i = C1,i for each i ∈ {1, . . . , q}, we see that
the domain D1,0 = ⋃q

i=1 B1,i is the desired.
If z0 /∈ C1,q , then we let x1,q+1 be the last intersection point of γ from z1

to z0 with ∂C1,q . Set C1,q+1 = B(x1,q+1, r1,q+1) with r1,q+1 = 1
2 dD(x1,q+1).

By repeating the procedure as above, we will get a set of points {x1,i}k1
i=1

on γ and a set of balls {C1,i = B(x1,i , r1,i )}k1
i=1 in D such that Conditions (2),

(3) and (4) are satisfied and z0 is contained in C1,k1 . By letting B1,i = C1,i for
each i ∈ {1, . . . , k1}, we know that D1,0 = ⋃k1

i=1 B1,i is the needed domain.
Hence we see that Lemma 2.2 holds.

By a similar argument as in the proof of Lemma 2.2, we get

Corollary 2.12. There exists a simply connected domain D2,0 =
k2⋃

u=1
B2,u ⊂

D such that

(1) z2, z0 ∈ D2,0;

(2) For each u ∈ {1, . . . , k2}, 1
3dD(x2,u) ≤ r2,u ≤ 7

8dD(x2,u);

(3) If k2 ≥ 3, then for any u, v ∈ {1, . . . , k2} with |u − v| ≥ 2, we have
dist(B2,u, B2,v) ≥ 1

32M2 max{r2,u, r2,v};
(4) If k2 ≥ 2, then r2,u + r2,u+1 − |x2,u − x2,u+1| ≥ 1

32M2 max{r2,u, r2,u+1}
for each u ∈ {1, . . . , k2 − 1},

where B2,u = B(x2,u, r2,u), x2,u ∈ β and x2,u �∈ B2,u−1.

Lemma 2.13. dD(x2,k2) ≥ 1
2c

�(β).

Proof. If |z0 − x2,k2 | ≤ 1
2dD(z0), then dD(x2,k2) ≥ dD(z0)− |z0 − x2,k2 | ≥

1
2dD(z0). If |z0 − x2,k2 | > 1

2dD(z0), then dD(x2,k2) ≥ r2,k2 ≥ 1
2dD(z0). From

the inequality �(β) ≤ c dD(z0), our lemma follows.
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Lemma 2.14. There exists a simply connected domain D1 = ⋃k
i=1 Bi ⊂ D

such that

(1) z1, z2 ∈ D1;

(2) For each i ∈ {1, . . . , k}, 1
12 dD(xi) ≤ ri ≤ dD(xi);

(3) If k ≥ 3, then for any i, j ∈ {1, . . . , k} with |i − j | ≥ 2, we have
dist(Bi, Bj ) ≥ 1

64M8 max{ri, rj };
(4) If k ≥ 2, then ri + ri+1 − |xi − xi+1| ≥ 1

64M8 max{ri, ri+1} for each
i ∈ {1, . . . , k − 1},

where Bi = B(xi, ri), xi ∈ α and xi �∈ Bi−1.

Proof. We divide the proof into two cases.

Case 2.15. For any i ∈ {1, . . . , k1} and u ∈ {1, . . . , k2 − 1}, we have
r1,i + r2,u − |x1,i − x2,u| ≤ 1

64M7 max{r1,i , r2,u}.
For each i ∈ {1, . . . , k1 − 1}, we let A1,i = B(x1,i , R1,i ) with R1,i =(

1 − 1
64M3

)
r1,i and for each u ∈ {1, . . . , k2 − 1}, let A2,u = B(x2,u, R2,u)

with R2,u = (
1 − 1

64M3

)
r2,u. Let A1,k1 = B(x1,k1 , r1,k1). By Lemma 2.2 and

Corollary 2.12, we have

Claim 2.16.
(1) For any i ∈ {1, . . . , k1}, we have 1

4 dD(x1,i ) ≤ R1,i ≤ 7
8dD(x1,i ), and

for each u ∈ {1, . . . , k2 − 1}, we have 1
4 dD(x2,u) ≤ R2,u ≤ 7

8dD(x2,u);

(2) If k1 ≥ 3, then for any i, j ∈ {1, . . . , k1} with |i − j | ≥ 2, we have
dist(A1,i , A1,j ) ≥ 1

32M2 max{r1,i , r1,j };
(3) If k2 ≥ 3, then for any u, v ∈ {1, . . . , k2} with |u − v| ≥ 2, we have

dist(A2,u, A2,v) ≥ 1
32M2 max{r2,u, r2,v};

(4) For any i ∈ {1, . . . , k1} and u ∈ {1, . . . , k2−1}, we have dist(A1,i , A2,u)

≥ 1
32M4 max{r1,i , r2,u}.

If B
(
x2,k2 ,

(
1 + 1

64M2

)
r2,k2

) ∩ ⋃k1−1
i=1 A1,i = ∅, then we let A2,k2 = B

(
x2,k2 ,(

1+ 1
128M2

)
r2,k2

)
. It follows from Corollary 2.12 and Lemma 2.13 that the balls

A1,1, . . . , A1,k1−1, A1,k1 and A2,1, . . . , A2,k2 satisfy the conditions (1) ∼ (4)

in the lemma, where k = k1 + k2.
In the following, we assume that B

(
x2,k2 ,

(
1+ 1

64M2

)
r2,k2

)∩⋃k1−1
i=1 A1,i �= ∅.

We let A1,q be the first ball from A1,1 to A1,k1−1 such that the closure A1,q has
nonempty intersection with B

(
x2,k2 ,

(
1 + 1

64M2

)
r2,k2

)
.

Let R′
2,k2

= (
1 + 1

64M2

)
r2,k2 . We choose Bi = A1,i (1 ≤ i ≤ q), Bq+1 =

B
(
x2,k2 ,

(
1 + 7

512M2

)
r2,k2

)
, Bq+2 = A2,k2−1, . . . , Bk = A2,1 whenever

R′
2,k2

+ R1,q − |x2,k2 − x1,q | ≥ 1

256M2
R′

2,k2
.
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Then Corollary 2.12 and Lemma 2.13 show that the balls B1, B2, . . . , Bk satisfy
the conditions (1) ∼ (4) in our lemma, where k = q + k2.

On the other hand, in the case of

R′
2,k2

+ R1,q − |x2,k2 − x1,q | <
1

256M2
R′

2,k2
,

we consider the ball B ′′
2,k2

= B(x2,k2 , R
′′
2,k2

) with R′′
2,k2

= (
1 + 1

128M2

)
r2,k2 .

Obviously, A1,k1 ∩B ′′
2,k2

�= ∅. Let A1,q1 be the first ball from A1,q to A1,k1 such
that the closure A1,q1 has nonempty intersection with B

(
x2,k2 ,

(
1+ 1

128M2

)
r2,k2

)
.

For each i ∈ {q, . . . , q1}, we denote dist(A1,i , B
′′
2,k2

) by di . Clearly, dq1 = 0
and dq > 1

512M2 r2,k2 .

Let η1 = dq and η2 be the first di from dq to dq1 satisfying di < η1. Clearly,
η1 > η2. By repeating the procedure, we get η1, . . . , ηm1 ∈ {dq, . . . , dq1} such
that

η1 > η2 > · · · > ηm1 = 0.

Observe that η1 > 1
512M2 r2,k2 and m1 ≥ 2. For each h ∈ {1, . . . , m1 − 1}, we

denote the first ball from A1,q to A1,q1 with dih = ηh by A1,ih , i.e. B(x1,ih , R1,ih ),
and define εh = ηh − ηh+1 .

Replacing 5
16 r1,s by 1

512M2 r2,k2 and M by M4, the similar reasoning as in
the proof of Subclaim 2.8 shows

Claim 2.17. There must exist some j ∈ {1, . . . , m1 − 1} such that εj >
1

256M7 r2,k2 .

We now consider the ball C ′′
2,k2

= B(x2,k2 , r
′′
2,k2

), where

r ′′
2,k2

= R′′
2,k2

+ ηj+1 + 1

512M7
r2,k2 .

By Claim 2.17, we see that C ′′
2,k2

∩A1,i = ∅ for all i < ij+1. We take Bi = A1,i

for each i ∈ {1, . . . , ij+1}, Bij+1+1 = C ′′
2,k2

, Bij+1+2 = A2,k2−1, . . . , Bk = A1,1.
Then Lemma 2.13 yields that the balls B1, . . . , Bij+1 , Bij+1+1, . . . , Bk satisfy
the conditions (1) ∼ (4) in the lemma, where k = ij+1 + k2.

Case 2.18. There exist i ∈ {1, . . . , k1} and u ∈ {1, . . . , k2 − 1} such that
r1,i + r2,u − |x1,i − x2,u| > 1

64M7 max{r1,i , r2,u}.
Let B2,s be the first ball from B2,1 to B2,k2−1 such that there exists some

i ∈ {1, . . . , k1} satisfying r1,i + r2,s − |x1,i − x2,s | > 1
64M7 max{r1,i , r2,s}.

Let B1,t be the first ball from B1,1 to B1,k1 satisfying r1,t +r2,s−|x1,t −x2,s | >
1

64M7 max{r1,t , r2,s}.
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For any i ∈ {1, . . . , t − 1}, we let C1,i = B
(
x1,i ,

(
1 − 1

64M3

)
r1,i

)
and C1,t =

B
(
x1,t ,

(
1 − 1

M8

)
r1,t

)
, and for any u ∈ {1, . . . , s − 1}, let C2,u = B

(
x2,u,

(
1 −

1
64M3

)
r2,u

)
and C2,s = B

(
x2,s ,

(
1− 1

M8

)
r2,s

)
. By letting B1 = C1,1, . . . , Bt−1 =

C1,t−1, Bt = C1,t , Bt+1 = C2,s , Bt+2 = C2,s−1, . . . and Bk = C2,1, we con-
clude from Lemma 2.1 that the balls B1, . . . , Bt , Bt+1, . . . , Bk satisfy the con-
ditions (1) ∼ (4) in the lemma, where k = t + s.

The following two lemmas are also needed in the proof of Theorem 1.8.

Lemma 2.19. For any i, j ∈ {1, . . . , k} with j ≥ i+2, we have �(α[xi, xj ])
≤ 36c2|xi − xj |.

Proof. If {xi, xj } ⊂ γ (resp. β), by the assumption j ≥ i + 2 and
Lemma 2.14, we get

(2.20) �(α[xi, xj ]) ≤ cdD(xj ) ≤ 12crj ≤ 12c|xi − xj |.
For the rest case, without loss of generality, we may assume that xi ∈ γ

and xj ∈ β.
If max{|z1 − xi |, |z2 − xj |} ≤ 1

3 |z1 − z2|, then

|xi − xj | ≥ |z1 − z2| − |z1 − xi | − |z2 − xj | ≥ 1

3
|z1 − z2|.

Hence

(2.21) �(α[xi, xj ]) ≤ �(α) ≤ c|z1 − z2| ≤ 3c|xi − xj |.
If max{|z1 − xi |, |z2 − xj |} > 1

3 |z1 − z2|, we may assume that max{|z1 −
xi |, |z2 − xj |} = |z1 − xi |. Then by the assumption j ≥ i + 2 and Lemma 2.14
we get

(2.22) �(α[xi, xj ]) ≤ �(α) ≤ c|z1 − z2|
≤ 3c|z1 − xi | ≤ 36c2ri ≤ 36c2|xi − xj |.

We conclude from (2.20) ∼ (2.22) that Lemma 2.19 holds.

Lemma 2.23. For any w1 �= w2 ∈ D and r1 ≥ r2 > 0, we let w1 ∈
D \ B(w2, r2),

r1 + r2 − |w1 − w2| ≥ 1

64M8
r2

and Q = B(w1, r1) ∪ B(w2, r2). Then Q is 211M8-uniform.

Before the proof of Lemma 2.23, we introduce the following lemma.
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Lemma C ([12, Theorem 1.2]). Suppose that D1 and D2 are convex domains
in E, where D1 is bounded and D2 is c-uniform for some c > 1, and that there
exist z0 ∈ D1 ∩ D2 and r > 0 such that B(z0, r) ⊂ D1 ∩ D2. If there exist
constants R1 > 0 and c0 > 1 such that R1 ≤ c0r and D1 ⊂ B(z0, R1), then
D1 ∪ D2 is a c′-uniform domain with c′ = (c + 1)(2c0 + 1) + c.

Proof of Lemma 2.23. Obviously, there exists z0 ∈ B(w2, r2)∩B(w1, r1)

such that the ball B(z0, r) is contained in the intersection B(w2, r2)∩B(w1, r1),
where r = 1

128M8 r2. Hence B(w2, r2) ⊂ B(z0, 256M8r). It follows from [20]
that each ball in E is 2-uniform. Then Lemma C implies that Q is 211M8-
uniform.

2.24 Proof of Theorem 1.8. It suffices to prove the necessity since the
sufficiency is obvious.

Assume that D is a c-uniform domain. Then for every pair of points z1,
z2 ∈ D, there is a rectifiable arc α ⊂ D joining them with

�(α[z1, z2]) ≤ c |z1 − z2| and min
j=1,2

�(α[zj , z]) ≤ c dD(z)

for all z ∈ α.
It follows from Lemma 2.14 that there exists a domain D1 which is simply

connected satisfying Items (1) ∼ (4) in Lemma 2.14. Let c1 = 1
64M8 . We come

to prove that D1 is a c2-uniform domain, where c2 = 72c2( 2
c1

+ 1).
For any y1, y2 ∈ D1, there must exist i, j ∈ {1, . . . , k} such that y1 ∈

B(xi, ri) and y2 ∈ B(xj , rj ).
If |j − i| ≤ 1, then it follows from Lemma 2.23 and the fact ri +ri+1 −|xi −

xi+1| ≥ c1 max{ri, ri+1} (see Lemma 2.14 (4)) that there exists a rectifiable
curve α1 joining y1 and y2 in B(xi, ri) ∪ B(xi+1, ri+1) such that

(2.25) �(α1) ≤ 211M8 |y1 − y2|
and

(2.26) min
s=1,2

�(α1[ys, y]) ≤ 211M8 dD1(y)

for all y ∈ α1.
The remaining case we need to consider is: There are i, j ∈ {1, . . . , k} such

that j − i ≥ 2, y1 ∈ Bi , y2 ∈ Bj and {y1, y2} is not contained in Bt ∪ Bt+1

for any t ∈ {i, . . . , j − 1}. It suffices to prove the case: y1 /∈ [xi, xi+1] and
y2 /∈ [xj−1, xj ] since the discussions for other cases are similar. Set

α2 = [y1, xi] ∪ [xi, xi+1] ∪ . . . ∪ [xj−1, xj ] ∪ [xj , y2].
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By Items (2) and (3) in Lemma 2.14 and Lemma 2.19, we have

�(α2) ≤ |y1 − xi | + |xj − y2| + �(α[xi, xj ])(2.27)

≤ 2 �(α[xi, xj ])

≤ 72c2 |xj − xi |
= 72c2(ri + rj + dist(Bi, Bj ))

≤ 72c2

(
2

c1
+ 1

)
|y1 − y2|,

since |y1 − y2| ≥ dist(Bi, Bj ).
For any y ∈ α2, if y ∈ [y1, xi] or [xj , y2], then we easily have that

(2.28) min
j=1,2

�(α2[yj , y]) ≤ dD1(y).

For the case y ∈ [xi, xi+1] ∪ . . . ∪ [xj−1, xj ], obviously, there exists some
m ∈ {i, . . . , j − 1} such that y ∈ [xm, xm+1]. Without loss of generality, we
may assume that min{�(α[z1, xm]), �(α[xm, z2])} = �(α[z1, xm]). The proof
for the case min{�(α[z1, xm]), �(α[xm, z2])} = �(α[z2, xm]) follows from the
similar reasoning.

It follows from Lemma 2.14 (2) that

�(α[z1, xm]) ≤ 12c dD1(xm),

which in turn yields that

�(α2[y1, xm]) ≤ |y1 − xi | + �(α[xi, xm])(2.29)

≤ 24c dD1(xm).

If min{�(α[z1, xm+1]), �(α[xm+1, z2])} = �(α[z1, xm+1]), then (2.29) yields
that

min
s=1,2

�(α2[ys, y]) ≤ �(α2[y1, y])(2.30)

≤ 24c dD1(xm) + |y − xm|
≤ (24c + 1) dD1(xm) + dD1(y)

≤ 2

c1

(
24c + c1

2
+ 1

)
dD1(y).

Now we assume that min{�(α[z1, xm+1]), �(α[xm+1, z2])} = �(α[z2, xm+1]).
Then Lemma 2.14 (2) implies that �(α[z2, xm+1]) ≤ 12c dD1(xm+1). Hence

(2.31) �(α2[y2, xm+1]) ≤ 24c dD1(xm+1).
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We infer from (2.31) that

min
s=1,2

�(α2[ys, y]) ≤ �(α2[y2, y])(2.32)

≤ 24c dD1(xm+1) + |y − xm+1|
≤ (24c + 1) dD1(xm+1) + dD1(y)

≤ 2

c1

(
24c + c1

2
+ 1

)
dD1(y).

Thus the inequalities (2.25) ∼ (2.28), (2.30) and (2.32) show that D1 is a
c2-uniform domain. The proof of Theorem 1.8 is complete.

3. Proofs of Theorem 1.9 and Example 1.10

3.1 Proof of Theorem 1.9. Let f : D → Bn be a quasiconformal map
of R

n
. For any z1, z2 ∈ D, there exists a closed ball B

n

1 ⊂ Bn such that
f (z1), f (z2) ∈ B

n

1. Then f −1(Bn
1 ) is a quasiball. This shows that D has the

quasiball decomposition property.

3.2 Proof of Example 1.10. A result of Väisälä [17, Theorem 17.22]
implies that D is not a quasiball.

For any z1, z2 ∈ D, let P be the plane determined by z1 and L. Then P

divides B3 into two parts which are denoted by B3
1 and B3

2 , respectively. We

may assume that z1, z2 ∈ B
3
1. Since B3

1 is a bounded convex domain, the result
in [22] shows that B3

1 is a quasiball. This implies that D has the quasiball
decomposition property.
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