UNIFORM DOMAINS AND UNIFORM DOMAIN DECOMPOSITION PROPERTY IN REAL NORMED VECTOR SPACES

M. HUANG and X. WANG*

Abstract

Let E be a real normed vector space with $\operatorname{dim}(E) \geq 2, D$ a proper subdomain of E. In this paper we characterize uniform domains in E in terms of the uniform domain decomposition property. In addition, we discuss the relation between quasiballs and domains with the quasiball decomposition property in R^{n}.

1. Introduction and Main Results

Throughout the paper, we assume that E is a real normed vector space with $\operatorname{dim}(E) \geq 2$ and the norm of a vector $z \in E$ is denoted by $|z|$. For any two points z_{1}, z_{2} in E, the distance between them is denoted by $\left|z_{1}-z_{2}\right| . D$ is always assumed to be a proper domain in E and $\mathrm{B}\left(x_{0}, r\right)=\left\{x \in E:\left|x-x_{0}\right|<r\right\}$, the open ball centered at x_{0} of radius $r>0$. Similarly, for the closed balls and spheres, we use the notations $\overline{\mathrm{B}}\left(x_{0}, r\right)$ and $\partial \mathrm{B}\left(x_{0}, r\right)$.

We now introduce two basic concepts: uniform domains and John domains.
Definition 1.1. A proper domain D in E is called uniform in the norm metric provided there exists a constant c with the property that each pair of points z_{1}, z_{2} in D can be joined by a rectifiable arc γ in D satisfying (cf. [18] and [20])
(1) $\min _{j=1,2} \ell\left(\gamma\left[z_{j}, z\right]\right) \leq c d_{D}(z)$ for all $z \in \gamma$, and
(2) $\ell\left(\gamma\left[z_{1}, z_{2}\right]\right) \leq c\left|z_{1}-z_{2}\right|$.

Here $\ell(\gamma)$ denotes the arclength of $\gamma, \gamma\left[z_{j}, z\right]$ the part of γ between z_{j} and z. The distance from z to the boundary ∂D of D in E is denoted by $d_{D}(z)$.
D is said to be a John domain if it satisfies the first condition in above but not necessarily the second one (see [16]).

[^0]John [10], Martio and Sarvas [15] were the first who introduced John domains and uniform domains in R^{2}, respectively. Now, there are plenty of alternative characterizations for uniform and John domains (see [4], [5], [6], [8], [11], [14], [18]), and their importance along with some special domains throughout the function theory is well documented, see [5], [11], [16], [18]. Moreover, uniform domains in E enjoy numerous geometric and function theoretic features in many areas of modern mathematical analysis, see [1], [2], [3], [4], [8], [9], [18].

We refer to the books of Väisälä [17] and Vuorinen [21] for the definition of K-quasiconformal (K-qc) homeomorphism of R^{n} and for basic facts regarding quasiconformal (qc) mappings.

A Jordan curve γ in $\overline{\mathrm{R}}^{2}=\mathrm{R}^{2} \cup\{\infty\}$ is called a K-qc circle (or simply $q c$ circle) if there is a K-qc mapping f of $\overline{\mathrm{R}}^{2}$ onto itself such that $\gamma=f\left(\partial \mathrm{~B}^{2}\right)$, and $f\left(\mathrm{~B}^{2}\right)$ is called a K-quasidisk (or simply quasidisk), where B^{2} denotes the unit disk in R^{2}. We say that a domain $D \subset \overline{\mathrm{R}}^{n}$ is a K-quasiball (or simply quasiball) if there exists a K-qc mapping f of $\overline{\mathrm{R}}^{n}$ onto itself such that $D=f\left(\mathrm{~B}^{n}\right)$, where B^{n} denotes the unit ball in R^{n}.

As a characterization of qc circles, Martio and Sarvas [15] proved that a Jordan domain in R^{2} is uniform if and only if its boundary is a qc circle. After that, Gehring and Hag [7, Theorems 3.10 and 4.1] proved that a finitely connected domain D in R^{2} is uniform if and only if there is a constant K such that each component of ∂D is either a point or a K-qc circle. As a further generalization, Gehring and Osgood proved

Theorem A ([8, Theorem 5]). A domain D in R^{2} is a uniform domain if and only if it is quasiconformally decomposable.

Here a domain D in R^{2} is said to be quasiconformally decomposable if there exists a constant K with the following property: For each pair z_{1}, z_{2} in D, there exists a subdomain D_{0} of D such that z_{1}, z_{2} are contained in \bar{D}_{0} and ∂D_{0} is a K-qc circle. Obviously, D_{0} is a K-quasidisk.

We refer to [8] for some applications of Theorem A including a new proof of the injectivity properties of uniform domains in \bar{R}^{2}. The situation is very different in R^{n}. The 3-dimensional analog of Theorem A fails to hold even for simply connected domains, see [13, Example 3.8]. In order to consider the generalization of Theorem A in R^{n} or real normed vector spaces E, we introduce the following concepts.

Definition 1.2. A domain D in E is said to have the uniform domain decomposition property if there exists a positive constant c with the following property: For each pair of points z_{1}, z_{2} in D, there exists a subdomain D_{0} of D such that $z_{1}, z_{2} \in D_{0}$ and D_{0} is a simply connected c-uniform domain.

A domain D in R^{n} is said to have the quasiball decomposition property if there exists a positive constant K with the following property: For each pair of points z_{1}, z_{2} in D, there exists a subdomain D_{0} of D such that $z_{1}, z_{2} \in D_{0}$ and D_{0} is a K-quasiball.

By proving the Lipschitz continuous first differentiability of quasihyperbolic geodesics in R^{n}, Martin obtained

Theorem B ([13, Theorem 5.1]). Let D be a uniform domain in R^{n}. Then there is a constant L, depending only on the constant of uniformity for D, such that for each pair of points x_{1}, x_{2} in D there is an L-bi-Lipschitz embedding $f: \overline{\mathrm{B}}^{n}\left(0,\left|x_{1}-x_{2}\right|\right) \rightarrow D$ with $\left\{x_{1}, x_{2}\right\} \subset f\left(\overline{\mathrm{~B}}^{n}\left(0,\left|x_{1}-x_{2}\right|\right)\right)$.

Obviously, Theorem B shows that
Corollary 1.3. A domain in R^{n} is uniform if and only if it has the uniform domain decomposition property.

It easily follows from [8, Corollary 3] that
Proposition 1.4. Let D be a domain in R^{n}. If D has the quasiball decomposition property, then it has the uniform domain decomposition property.

For a simply connected domain D in R^{2}, D is uniform if and only if it is a quasidisk [9, Lemma 6.4] if and only if it is a quasiball. In view of Theorem A, it is easy to formulate the following proposition which characterizes uniform domains.

Proposition 1.5. For any domain D in R^{2}, the following are equivalent.
(1) D is uniform;
(2) D is quasiconformally decomposable;
(3) D has the uniform domain decomposition property;
(4) D has the quasiball decomposition property.

By [13, Example 3.8], it is natural to consider a suitable generalization of Proposition 1.5 which works for E or R^{n}. To achieve this goal, in this paper, we mainly consider the following two questions.

Question 1.6. Is it true that a domain D in E is uniform if and only if it has the uniform domain decomposition property?

Question 1.7. Is it true that a domain D in R^{n} is a quasiball if and only if it has the quasiball decomposition property?

In the proof of Theorem A, the authors [8] have utilized the Riemann mapping theorem. In the absence of the Riemann mapping theorem in E when $\operatorname{dim}(E) \geq 3$, it is natural that the methods used in the proof of Theorem A are
no more useful in E when $\operatorname{dim}(E) \geq 3$. It is known that a quasihyperbolic geodesic between any two points in E exists if the dimension of E is finite, see [8, Lemma 1]. But this is not true in arbitrary spaces. A counterexample (due to Alestalo) has been given in [18, Section 3], see also [19, Section 2]. Hence the method of proof used in Theorem B is invalid either. By using a different method of proof, we obtain the following theorems and delay their proofs until a few necessary preliminaries have been developed. Moreover, our method of proof works also for the case $E=\mathrm{R}^{2}$.

Theorem 1.8. Let E be a real normed vector space with $\operatorname{dim}(E) \geq 2$. Then a domain D in E is uniform if and only if it has the uniform domain decomposition property.

Theorem 1.9. Every quasiball in R^{n} has the quasiball decomposition property.

We see from the following example that the converse of Theorem 1.9 is not necessarily true.

Example 1.10. Let $e_{1}=(1,0,0)$ denote the unit vector in the direction of x_{1}-axis and $D=\mathrm{B}^{3} \backslash L$ in R^{3}, where $L=\left\{t e_{1}: \frac{1}{2} \leq t<1\right\}$. Then D has the quasiball decomposition property, but D is not a quasiball.

2. Proof of Theorem 1.8

We start with some preliminary results. The proof of Theorem 1.8 is given in Subsection 2.24.

Lemma 2.1. For any $x_{1}, x_{2} \in G \subset E$, if $\overline{\mathrm{B}}\left(x_{1}, r_{1}\right) \cap \overline{\mathrm{B}}\left(x_{2}, r_{2}\right) \neq \emptyset$, $\frac{1}{4} d_{G}\left(x_{1}\right) \leq r_{1} \leq \frac{8}{9} d_{G}\left(x_{1}\right)$ and $\frac{1}{4} d_{G}\left(x_{2}\right) \leq r_{2} \leq \frac{8}{9} d_{G}\left(x_{2}\right)$, then

$$
\frac{1}{17} d_{G}\left(x_{2}\right) \leq d_{G}\left(x_{1}\right) \leq 17 d_{G}\left(x_{2}\right) \quad \text { and } \quad \frac{1}{68} r_{1} \leq r_{2} \leq 68 r_{1}
$$

Proof. For any $y \in \partial \mathrm{~B}\left(x_{1}, r_{1}\right) \cap \overline{\mathrm{B}}\left(x_{2}, r_{2}\right)$, since

$$
d_{G}(y) \geq d_{G}\left(x_{2}\right)-r_{2}, \quad d_{G}\left(x_{1}\right) \geq d_{G}(y)-r_{1}
$$

and

$$
d_{G}(y) \geq d_{G}\left(x_{1}\right)-r_{1}, \quad d_{G}\left(x_{2}\right) \geq d_{G}(y)-r_{2}
$$

we see that the lemma holds.
For any $z_{1}, z_{2} \in D$, we assume that $\alpha \subset D$ is a rectifiable arc joining them with
(1) $\ell\left(\alpha\left[z_{1}, z_{2}\right]\right) \leq c\left|z_{1}-z_{2}\right|$, and
(2) $\min _{j=1,2} \ell\left(\alpha\left[z_{j}, z\right]\right) \leq c d_{D}(z)$ for all $z \in \alpha$.

Let z_{0} be a point in α which bisects α. Denote $\alpha\left[z_{1}, z_{0}\right]$ and $\alpha\left[z_{2}, z_{0}\right]$ by γ and β, respectively. And assume $M=\left[2^{16 c}\right]$, where $[\cdot]$ denotes the greatest integer part.

We prove Theorem 1.8 by constructing a simply connected domain $D_{1} \subset D$ containing z_{1} and z_{2}. This construction is included in Lemma 2.14. At first, we prepare two elementary results.

Lemma 2.2. There exists a simply connected domain $D_{1,0}=\bigcup_{i=1}^{k_{1}} B_{1, i} \subset D$ such that
(1) $z_{1}, z_{0} \in D_{1,0}$;
(2) For each $i \in\left\{1, \ldots, k_{1}\right\}, \frac{1}{3} d_{D}\left(x_{1, i}\right) \leq r_{1, i} \leq \frac{7}{8} d_{D}\left(x_{1, i}\right)$;
(3) If $k_{1} \geq 3$, then for any $i, j \in\left\{1, \ldots, k_{1}\right\}$ with $|i-j| \geq 2$, we have $\operatorname{dist}\left(B_{1, i}, B_{1, j}\right) \geq \frac{1}{32 M^{2}} \max \left\{r_{1, i}, r_{1, j}\right\}$;
(4) If $k_{1} \geq 2$, then $r_{1, i}+r_{1, i+1}-\left|x_{1, i}-x_{1, i+1}\right| \geq \frac{1}{32 M^{2}} \max \left\{r_{1, i}, r_{1, i+1}\right\}$ for each $i \in\left\{1, \ldots, k_{1}-1\right\}$,
where $B_{1, i}=\mathrm{B}\left(x_{1, i}, r_{1, i}\right), x_{1, i} \in \gamma, x_{1, i} \notin B_{1, i-1}$ and $\operatorname{dist}\left(B_{1, i}, B_{1, j}\right)$ denotes the distance from $B_{1, i}$ to $B_{1, j}$.

Proof. Let $x_{1,1}=z_{1}$. Set $A_{1,1}=\mathrm{B}\left(x_{1,1}, r_{1,1}\right)$ with $r_{1,1}=\frac{1}{2} d_{D}\left(x_{1,1}\right)$.
If $z_{0} \in A_{1,1}$, then we let $B_{1,1}=A_{1,1}$, and the domain $D_{1,0}=B_{1,1}$ is the desired.

If $z_{0} \notin A_{1,1}$, then we let $x_{1,2}$ be the last intersection point of γ from z_{1} to z_{0} with $\partial A_{1,1}$. Set $A_{1,2}=\mathrm{B}\left(x_{1,2}, r_{1,2}\right)$ with $r_{1,2}=\frac{1}{2} d_{D}\left(x_{1,2}\right)$.

If $z_{0} \in A_{1,2}$ and $A_{1,1}$ is contained in $A_{1,2}$, then we let $B_{1,1}=A_{1,2}$, and the domain $D_{1,0}=B_{1,1}$ is the needed. If $z_{0} \in A_{1,2}$ and $A_{1,1}$ is not contained in $A_{1,2}$, then we let $B_{1,1}=A_{1,1}, B_{1,2}=A_{1,2}$, and the domain $D_{1,0}=B_{1,1} \cup B_{1,2}$ is the desired.

If $z_{0} \notin A_{1,2}$, then we let $x_{1,3}$ be the last intersection point of γ from z_{1} to z_{0} with $\partial A_{1,2}$. Set $A_{1,3}=\mathrm{B}\left(x_{1,3}, r_{1,3}\right)$ with $r_{1,3}=\frac{1}{2} d_{D}\left(x_{1,3}\right)$.

We continue this procedure until there is some $i \in\{1, \ldots, s-2\}$ such that $\operatorname{dist}\left(B_{1, i}, B_{1, s}\right)<\frac{1}{32 M^{2}} \max \left\{r_{1, i}, r_{1, s}\right\}$. Obviously, $s \geq 3$.

Let $A_{1, t}$ be the first ball from $A_{1,1}$ to $A_{1, s-1}$ such that $\bar{A}_{1, i} \cap \bar{A}_{1, s} \neq \emptyset$. For the case $t=1$ and $z_{0} \in A_{1, s}$, if $A_{1,1}$ is contained in $\mathrm{B}\left(x_{1, s}, \frac{3}{4} d_{D}\left(x_{1, s}\right)\right)$, we take $D_{1,0}=B_{1,1}=\mathrm{B}\left(x_{1, s}, \frac{3}{4} d_{D}\left(x_{1, s}\right)\right)$. Otherwise, the similar reasoning as in Lemma 2.1 shows that we can let $D_{1,0}=B_{1,1} \cup B_{1,2}$, where $B_{1,1}=A_{1,1}$ and $B_{1,2}=\mathrm{B}\left(x_{1, s}, \frac{3}{4} d_{D}\left(x_{1, s}\right)\right)$. When $t=1$ and $z_{0} \notin A_{1, s}$ or $t \neq 1$, we have the following claim.

Claim 2.3. There are q balls $C_{1,1}=\mathrm{B}\left(y_{1,1}, p_{1,1}\right), \ldots, C_{1, q}=\mathrm{B}\left(y_{1, q}, p_{1, q}\right)$ (possibly, $q=1$) in D such that
(a) $\left\{y_{1,1}, \ldots, y_{1, q}\right\} \subset\left\{x_{1,1}, \ldots, x_{1, s}\right\}$;
(b) the conditions (2), (3) and (4) in the lemma are satisfied by the balls $C_{1,1}, \ldots, C_{1, q}$.
The proof for the case $t=1$ is obvious: If $A_{1,1}$ is contained in $\mathrm{B}\left(x_{1, s}\right.$, $\left.\frac{3}{4} d_{D}\left(x_{1, s}\right)\right)$, then we let $C_{1,1}=\mathrm{B}\left(x_{1, s}, \frac{3}{4} d_{D}\left(x_{1, s}\right)\right)$ and so $q=1$. Otherwise, we let $C_{1,1}=A_{1,1}, C_{1,2}=\mathrm{B}\left(x_{1, s}, \frac{3}{4} d_{D}\left(x_{1, s}\right)\right)$. The similar reasoning as in Lemma 2.1 implies that $C_{1,1}$ and $C_{1,2}$ satisfy Conditions (2) and (4) in the lemma, and hence $q=2$. For the remaining case $t>1$, we divide the proof into two cases.

CASE 2.4. $r_{1, t}+r_{1, s}-\left|x_{1, t}-x_{1, s}\right| \geq \frac{1}{8 M} r_{1, s}$.
We let $C_{1, i}=A_{1, i}$ for each $i \in\{1, \ldots, t\}$ and $C_{1, t+1}=\mathrm{B}\left(x_{1, s},(1-\right.$ $\left.\left.\frac{1}{16 M}\right) r_{1, s}\right)$. Since for each $i \in\{1, \ldots, t\}, r_{1, s}=\frac{1}{2} d_{D}\left(x_{1, s}\right) \geq \frac{1}{2 c} \ell\left(\alpha\left[z_{1}, x_{1, s}\right]\right) \geq$ $\frac{1}{2 c} r_{1, i}$, we see that the balls $C_{1,1}, C_{1,2}, \ldots, C_{1, t}, C_{1, t+1}$ satisfy the conditions (2) \sim (4) in the lemma. Hence $q=t+1$.

Case 2.5. $r_{1, t}+r_{1, s}-\left|x_{1, t}-x_{1, s}\right|<\frac{1}{8 M} r_{1, s}$.
We consider the ball $A_{1, s}^{\prime}=\mathrm{B}\left(x_{1, s}, \frac{7}{4} r_{1, s}\right)$. Let $A_{1, s_{1}}$ be the first ball from $A_{1,1}$ to $A_{1, t}$, whose closure $\bar{A}_{1, s_{1}}$ has nonempty intersection with $\bar{A}_{1, s}^{\prime}$. Denote $d_{i}=\operatorname{dist}\left(A_{1, i}, A_{1, s}\right)\left(s_{1} \leq i \leq t\right)$. Clearly, $d_{t}=0$. We divide the rest argument into two parts.

SUbCASE 2.6. $d_{s_{1}} \leq \frac{5}{16} r_{1, s}$.
In this case, we take $C_{1, i}=A_{1, i}\left(1 \leq i \leq s_{1}\right)$ and $C_{1, s_{1}+1}=\mathrm{B}\left(x_{1, s}, \frac{23}{16} r_{1, s}\right)$. Then the balls $C_{1,1}, C_{1,2}, \ldots, C_{1, s_{1}}, C_{1, s_{1}+1}$ satisfy the conditions (2) $\sim(4)$ in our lemma. This shows $q=s_{1}+1$.

Subcase 2.7. $d_{s_{1}}>\frac{5}{16} r_{1, s}$.
Let $\delta_{1}=d_{s_{1}}$ and δ_{2} be the first d_{i} from $d_{s_{1}}$ to d_{t} satisfying $d_{i}<\delta_{1}$. Clearly, $\delta_{1}>\delta_{2}$. By repeating the procedure, we get $\delta_{1}, \ldots, \delta_{m} \in\left\{d_{s_{1}}, \ldots, d_{t}\right\}$ such that

$$
\delta_{1}>\delta_{2}>\cdots>\delta_{m}=0
$$

Observe that $\delta_{1}>\frac{5}{16} r_{1, s}$ and hence $m \geq 2$. For each $h \in\{1, \ldots, m-1\}$, we denote $A_{1, i_{h}}=\mathrm{B}\left(x_{1, i_{h}}, r_{1, i_{h}}\right)$ the first ball from $A_{1,1}$ to $A_{1, t}$ with $d_{i_{h}}=\delta_{h}$ and define $\varepsilon_{h}=\delta_{h}-\delta_{h+1}$.

Subclaim 2.8. There must exist some $j \in\{1, \ldots, m-1\}$ such that $\varepsilon_{j}>$ $\frac{1}{8 M} r_{1, s}$.

If $m \leq M$, then the existence of $j \in\{1, \ldots, m-1\}$ with $\varepsilon_{j}>\frac{1}{8 M} r_{1, s}$ is obvious because otherwise,

$$
\frac{5}{16} r_{1, s}<\delta_{1}-\delta_{m} \leq(m-1) \frac{1}{8 M} r_{1, s}<\frac{1}{8} r_{1, s}
$$

which is a contradiction.
We assume that $m>M$. To prove the existence of j, we suppose on the contrary that $\varepsilon_{h} \leq \frac{1}{8 M} r_{1, s}$ for all $h \in\{1, \ldots, m-1\}$. Note that

$$
\delta_{m-M}-\delta_{m}=\varepsilon_{m-M}+\cdots+\varepsilon_{m-1} \leq \frac{1}{8} r_{1, s}
$$

Then for any $h \in\{m-M, \ldots, m-1\}$, we have

$$
\begin{equation*}
\delta_{h} \leq \frac{1}{8} r_{1, s} \tag{2.9}
\end{equation*}
$$

If there exists some $h \in\{m-M, \ldots, m-1\}$ such that $A_{1, i_{h}}=\mathrm{B}\left(x_{1, i_{h}}, r_{1, i_{h}}\right) \not \subset$ $\left(A_{1, s}^{\prime} \backslash A_{1, s}\right)$ then $\left(A_{1, s}^{\prime} \backslash A_{1, s}\right) \cap A_{1, i_{h}}$ contains a ball, denoted by $A_{0, i_{h}}$, with radius $r_{0, i_{h}}=\frac{\frac{3}{4} r_{1, s}-\delta_{h}}{2} \geq \frac{5}{16} r_{1, s}$. Hence $r_{1, i_{h}} \geq \frac{5}{16} r_{1, s}$.

On the other hand, if $A_{1, i_{h}}=B\left(x_{1, i_{h}}, r_{1, i_{h}}\right) \subset\left(A_{1, s}^{\prime} \backslash A_{1, s}\right)$ for some $h \in$ $\{m-M, \ldots, m-1\}$ then we see that $r_{1, i_{h}}>\frac{1}{8} r_{1, s}$. Otherwise,

$$
\frac{1}{8} r_{1, s} \geq r_{1, i_{h}} \geq \frac{1}{3} d_{D}\left(x_{1, i_{h}}\right) \geq \frac{1}{3}\left(\frac{3}{4} r_{1, s}-\delta_{h}-r_{1, i_{h}}\right) \geq \frac{1}{6} r_{1, s}
$$

which obviously is a contradiction. Thus we have proved that for each $h \in$ $\{m-M, \ldots, m-1\}$,

$$
\begin{equation*}
r_{1, i_{h}}>\frac{1}{8} r_{1, s} \tag{2.10}
\end{equation*}
$$

It follows that

$$
\begin{align*}
3 c r_{1, s} & \geq c d_{D}\left(x_{1, s}\right) \tag{2.11}\\
& \geq \ell\left(\gamma\left[z_{1}, x_{1, s}\right]\right) \\
& \geq \frac{M-1}{8} r_{1, s},
\end{align*}
$$

which is the desired contradiction since $M=\left[2^{16 c}\right]$. The proof of Subclaim 2.8 is complete.

We come back to the proof of Claim 2.3. Let j be the least number in $\{1, \ldots, m-1\}$ satisfying Subclaim 2.8 and let $A_{1, s}^{\prime \prime}=\mathrm{B}\left(x_{1, s}, r_{1, s}^{\prime \prime}\right)$, where

$$
r_{1, s}^{\prime \prime}=r_{1, s}+\delta_{j+1}+\frac{1}{16 M} r_{1, s}
$$

Then for all $i<i_{j+1}, A_{1, s}^{\prime \prime} \cap A_{1, i}=\emptyset$. We take $C_{1, i}=A_{1, i}$ for each $i \in$ $\left\{1, \ldots, i_{j+1}\right\}$ and $C_{1, i_{j+1}+1}=A_{1, s}^{\prime \prime}$. It follows from $r_{1, s}^{\prime \prime} \leq \frac{7}{4} r_{1, s}$ that the balls $C_{1,1}, \ldots, C_{1, i_{j+1}}, C_{1, i_{j+1}+1}$ satisfy the conditions (2), (3) and (4). Thus $q=$ $i_{j+1}+1$ in the case. The proof of Claim 2.3 is finished.

We continue the proof of our lemma.
If $z_{0} \in C_{1, q}$, then by letting $B_{1, i}=C_{1, i}$ for each $i \in\{1, \ldots, q\}$, we see that the domain $D_{1,0}=\bigcup_{i=1}^{q} B_{1, i}$ is the desired.

If $z_{0} \notin C_{1, q}$, then we let $x_{1, q+1}$ be the last intersection point of γ from z_{1} to z_{0} with $\partial C_{1, q}$. Set $C_{1, q+1}=\mathrm{B}\left(x_{1, q+1}, r_{1, q+1}\right)$ with $r_{1, q+1}=\frac{1}{2} d_{D}\left(x_{1, q+1}\right)$.

By repeating the procedure as above, we will get a set of points $\left\{x_{1, i}\right\}_{i=1}^{k_{1}}$ on γ and a set of balls $\left\{C_{1, i}=\mathrm{B}\left(x_{1, i}, r_{1, i}\right)\right\}_{i=1}^{k_{1}}$ in D such that Conditions (2), (3) and (4) are satisfied and z_{0} is contained in $C_{1, k_{1}}$. By letting $B_{1, i}=C_{1, i}$ for each $i \in\left\{1, \ldots, k_{1}\right\}$, we know that $D_{1,0}=\bigcup_{i=1}^{k_{1}} B_{1, i}$ is the needed domain. Hence we see that Lemma 2.2 holds.

By a similar argument as in the proof of Lemma 2.2, we get
COROLLARY 2.12. There exists a simply connected domain $D_{2,0}=\bigcup_{u=1}^{k_{2}} B_{2, u} \subset$ D such that
(1) $z_{2}, z_{0} \in D_{2,0}$;
(2) For each $u \in\left\{1, \ldots, k_{2}\right\}, \frac{1}{3} d_{D}\left(x_{2, u}\right) \leq r_{2, u} \leq \frac{7}{8} d_{D}\left(x_{2, u}\right)$;
(3) If $k_{2} \geq 3$, then for any $u, v \in\left\{1, \ldots, k_{2}\right\}$ with $|u-v| \geq 2$, we have $\operatorname{dist}\left(B_{2, u}, B_{2, v}\right) \geq \frac{1}{32 M^{2}} \max \left\{r_{2, u}, r_{2, v}\right\}$;
(4) If $k_{2} \geq 2$, then $r_{2, u}+r_{2, u+1}-\left|x_{2, u}-x_{2, u+1}\right| \geq \frac{1}{32 M^{2}} \max \left\{r_{2, u}, r_{2, u+1}\right\}$ for each $u \in\left\{1, \ldots, k_{2}-1\right\}$,
where $B_{2, u}=\mathrm{B}\left(x_{2, u}, r_{2, u}\right), x_{2, u} \in \beta$ and $x_{2, u} \notin B_{2, u-1}$.
Lemma 2.13. $d_{D}\left(x_{2, k_{2}}\right) \geq \frac{1}{2 c} \ell(\beta)$.
Proof. If $\left|z_{0}-x_{2, k_{2}}\right| \leq \frac{1}{2} d_{D}\left(z_{0}\right)$, then $d_{D}\left(x_{2, k_{2}}\right) \geq d_{D}\left(z_{0}\right)-\left|z_{0}-x_{2, k_{2}}\right| \geq$ $\frac{1}{2} d_{D}\left(z_{0}\right)$. If $\left|z_{0}-x_{2, k_{2}}\right|>\frac{1}{2} d_{D}\left(z_{0}\right)$, then $d_{D}\left(x_{2, k_{2}}\right) \geq r_{2, k_{2}} \geq \frac{1}{2} d_{D}\left(z_{0}\right)$. From the inequality $\ell(\beta) \leq c d_{D}\left(z_{0}\right)$, our lemma follows.

Lemma 2.14. There exists a simply connected domain $D_{1}=\bigcup_{i=1}^{k} B_{i} \subset D$ such that
(1) $z_{1}, z_{2} \in D_{1}$;
(2) For each $i \in\{1, \ldots, k\}, \frac{1}{12} d_{D}\left(x_{i}\right) \leq r_{i} \leq d_{D}\left(x_{i}\right)$;
(3) If $k \geq 3$, then for any $i, j \in\{1, \ldots, k\}$ with $|i-j| \geq 2$, we have $\operatorname{dist}\left(B_{i}, B_{j}\right) \geq \frac{1}{64 M^{8}} \max \left\{r_{i}, r_{j}\right\} ;$
(4) If $k \geq 2$, then $r_{i}+r_{i+1}-\left|x_{i}-x_{i+1}\right| \geq \frac{1}{64 M^{8}} \max \left\{r_{i}, r_{i+1}\right\}$ for each $i \in\{1, \ldots, k-1\}$,
where $B_{i}=\mathrm{B}\left(x_{i}, r_{i}\right), x_{i} \in \alpha$ and $x_{i} \notin B_{i-1}$.
Proof. We divide the proof into two cases.
Case 2.15. For any $i \in\left\{1, \ldots, k_{1}\right\}$ and $u \in\left\{1, \ldots, k_{2}-1\right\}$, we have $r_{1, i}+r_{2, u}-\left|x_{1, i}-x_{2, u}\right| \leq \frac{1}{64 M^{7}} \max \left\{r_{1, i}, r_{2, u}\right\}$.

For each $i \in\left\{1, \ldots, k_{1}-1\right\}$, we let $A_{1, i}=\mathrm{B}\left(x_{1, i}, R_{1, i}\right)$ with $R_{1, i}=$ $\left(1-\frac{1}{64 M^{3}}\right) r_{1, i}$ and for each $u \in\left\{1, \ldots, k_{2}-1\right\}$, let $A_{2, u}=\mathrm{B}\left(x_{2, u}, R_{2, u}\right)$ with $R_{2, u}=\left(1-\frac{1}{64 M^{3}}\right) r_{2, u}$. Let $A_{1, k_{1}}=\mathrm{B}\left(x_{1, k_{1}}, r_{1, k_{1}}\right)$. By Lemma 2.2 and Corollary 2.12, we have

Claim 2.16.
(1) For any $i \in\left\{1, \ldots, k_{1}\right\}$, we have $\frac{1}{4} d_{D}\left(x_{1, i}\right) \leq R_{1, i} \leq \frac{7}{8} d_{D}\left(x_{1, i}\right)$, and for each $u \in\left\{1, \ldots, k_{2}-1\right\}$, we have $\frac{1}{4} d_{D}\left(x_{2, u}\right) \leq R_{2, u} \leq \frac{7}{8} d_{D}\left(x_{2, u}\right)$;
(2) If $k_{1} \geq 3$, then for any $i, j \in\left\{1, \ldots, k_{1}\right\}$ with $|i-j| \geq 2$, we have $\operatorname{dist}\left(A_{1, i}, A_{1, j}\right) \geq \frac{1}{32 M^{2}} \max \left\{r_{1, i}, r_{1, j}\right\}$;
(3) If $k_{2} \geq 3$, then for any $u, v \in\left\{1, \ldots, k_{2}\right\}$ with $|u-v| \geq 2$, we have $\operatorname{dist}\left(A_{2, u}, A_{2, v}\right) \geq \frac{1}{32 M^{2}} \max \left\{r_{2, u}, r_{2, v}\right\} ;$
(4) For any $i \in\left\{1, \ldots, k_{1}\right\}$ and $u \in\left\{1, \ldots, k_{2}-1\right\}$, we have $\operatorname{dist}\left(A_{1, i}, A_{2, u}\right)$ $\geq \frac{1}{32 M^{4}} \max \left\{r_{1, i}, r_{2, u}\right\}$.
If $\overline{\mathrm{B}}\left(x_{2, k_{2}},\left(1+\frac{1}{64 M^{2}}\right) r_{2, k_{2}}\right) \cap \bigcup_{i=1}^{k_{1}-1} \bar{A}_{1, i}=\emptyset$, then we let $A_{2, k_{2}}=\mathrm{B}\left(x_{2, k_{2}}\right.$, $\left.\left(1+\frac{1}{128 M^{2}}\right) r_{2, k_{2}}\right)$. It follows from Corollary 2.12 and Lemma 2.13 that the balls $A_{1,1}, \ldots, A_{1, k_{1}-1}, A_{1, k_{1}}$ and $A_{2,1}, \ldots, A_{2, k_{2}}$ satisfy the conditions (1) $\sim(4)$ in the lemma, where $k=k_{1}+k_{2}$.

In the following, we assume that $\overline{\mathrm{B}}\left(x_{2, k_{2}},\left(1+\frac{1}{64 M^{2}}\right) r_{2, k_{2}}\right) \cap \bigcup_{i=1}^{k_{1}-1} \bar{A}_{1, i} \neq \emptyset$. We let $A_{1, q}$ be the first ball from $A_{1,1}$ to $A_{1, k_{1}-1}$ such that the closure $\bar{A}_{1, q}$ has nonempty intersection with $\overline{\mathrm{B}}\left(x_{2, k_{2}},\left(1+\frac{1}{64 M^{2}}\right) r_{2, k_{2}}\right)$.

Let $R_{2, k_{2}}^{\prime}=\left(1+\frac{1}{64 M^{2}}\right) r_{2, k_{2}}$. We choose $B_{i}=A_{1, i}(1 \leq i \leq q), B_{q+1}=$ $\mathrm{B}\left(x_{2, k_{2}},\left(1+\frac{7}{512 M^{2}}\right) r_{2, k_{2}}\right), B_{q+2}=A_{2, k_{2}-1}, \ldots, B_{k}=A_{2,1}$ whenever

$$
R_{2, k_{2}}^{\prime}+R_{1, q}-\left|x_{2, k_{2}}-x_{1, q}\right| \geq \frac{1}{256 M^{2}} R_{2, k_{2}}^{\prime}
$$

Then Corollary 2.12 and Lemma 2.13 show that the balls $B_{1}, B_{2}, \ldots, B_{k}$ satisfy the conditions $(1) \sim(4)$ in our lemma, where $k=q+k_{2}$.

On the other hand, in the case of

$$
R_{2, k_{2}}^{\prime}+R_{1, q}-\left|x_{2, k_{2}}-x_{1, q}\right|<\frac{1}{256 M^{2}} R_{2, k_{2}}^{\prime},
$$

we consider the ball $B_{2, k_{2}}^{\prime \prime}=\mathrm{B}\left(x_{2, k_{2}}, R_{2, k_{2}}^{\prime \prime}\right)$ with $R_{2, k_{2}}^{\prime \prime}=\left(1+\frac{1}{128 M^{2}}\right) r_{2, k_{2}}$. Obviously, $A_{1, k_{1}} \cap B_{2, k_{2}}^{\prime \prime} \neq \emptyset$. Let $A_{1, q_{1}}$ be the first ball from $A_{1, q}$ to $A_{1, k_{1}}$ such that the closure $\bar{A}_{1, q_{1}}$ has nonempty intersection with $\overline{\mathrm{B}}\left(x_{2, k_{2}},\left(1+\frac{1}{128 M^{2}}\right) r_{2, k_{2}}\right)$. For each $i \in\left\{q, \ldots, q_{1}\right\}$, we denote $\operatorname{dist}\left(A_{1, i}, B_{2, k_{2}}^{\prime \prime}\right)$ by d_{i}. Clearly, $d_{q_{1}}=0$ and $d_{q}>\frac{1}{512 M^{2}} r_{2, k_{2}}$.

Let $\eta_{1}=d_{q}$ and η_{2} be the first d_{i} from d_{q} to $d_{q_{1}}$ satisfying $d_{i}<\eta_{1}$. Clearly, $\eta_{1}>\eta_{2}$. By repeating the procedure, we get $\eta_{1}, \ldots, \eta_{m_{1}} \in\left\{d_{q}, \ldots, d_{q_{1}}\right\}$ such that

$$
\eta_{1}>\eta_{2}>\cdots>\eta_{m_{1}}=0
$$

Observe that $\eta_{1}>\frac{1}{512 M^{2}} r_{2, k_{2}}$ and $m_{1} \geq 2$. For each $h \in\left\{1, \ldots, m_{1}-1\right\}$, we denote the first ball from $A_{1, q}$ to $A_{1, q_{1}}$ with $d_{i_{h}}=\eta_{h}$ by $A_{1, i_{h}}$, i.e. $\mathrm{B}\left(x_{1, i_{h}}, R_{1, i_{h}}\right)$, and define $\varepsilon_{h}=\eta_{h}-\eta_{h+1}$.

Replacing $\frac{5}{16} r_{1, s}$ by $\frac{1}{512 M^{2}} r_{2, k_{2}}$ and M by M^{4}, the similar reasoning as in the proof of Subclaim 2.8 shows

Claim 2.17. There must exist some $j \in\left\{1, \ldots, m_{1}-1\right\}$ such that $\varepsilon_{j}>$ $\frac{1}{256 M^{7}} r_{2, k_{2}}$.

We now consider the ball $C_{2, k_{2}}^{\prime \prime}=\mathrm{B}\left(x_{2, k_{2}}, r_{2, k_{2}}^{\prime \prime}\right)$, where

$$
r_{2, k_{2}}^{\prime \prime}=R_{2, k_{2}}^{\prime \prime}+\eta_{j+1}+\frac{1}{512 M^{7}} r_{2, k_{2}}
$$

By Claim 2.17, we see that $C_{2, k_{2}}^{\prime \prime} \cap A_{1, i}=\emptyset$ for all $i<i_{j+1}$. We take $B_{i}=A_{1, i}$ for each $i \in\left\{1, \ldots, i_{j+1}\right\}, B_{i_{j+1}+1}=C_{2, k_{2}}^{\prime \prime}, B_{i_{j+1}+2}=A_{2, k_{2}-1}, \ldots, B_{k}=A_{1,1}$. Then Lemma 2.13 yields that the balls $B_{1}, \ldots, B_{i_{j+1}}, B_{i_{j+1}+1}, \ldots, B_{k}$ satisfy the conditions $(1) \sim(4)$ in the lemma, where $k=i_{j+1}+k_{2}$.

Case 2.18. There exist $i \in\left\{1, \ldots, k_{1}\right\}$ and $u \in\left\{1, \ldots, k_{2}-1\right\}$ such that $r_{1, i}+r_{2, u}-\left|x_{1, i}-x_{2, u}\right|>\frac{1}{64 M^{7}} \max \left\{r_{1, i}, r_{2, u}\right\}$.

Let $B_{2, s}$ be the first ball from $B_{2,1}$ to $B_{2, k_{2}-1}$ such that there exists some $i \in\left\{1, \ldots, k_{1}\right\}$ satisfying $r_{1, i}+r_{2, s}-\left|x_{1, i}-x_{2, s}\right|>\frac{1}{64 M^{7}} \max \left\{r_{1, i}, r_{2, s}\right\}$.

Let $B_{1, t}$ be the first ball from $B_{1,1}$ to $B_{1, k_{1}}$ satisfying $r_{1, t}+r_{2, s}-\left|x_{1, t}-x_{2, s}\right|>$ $\frac{1}{64 M^{7}} \max \left\{r_{1, t}, r_{2, s}\right\}$.

For any $i \in\{1, \ldots, t-1\}$, we let $C_{1, i}=\mathrm{B}\left(x_{1, i},\left(1-\frac{1}{64 M^{3}}\right) r_{1, i}\right)$ and $C_{1, t}=$ $\mathrm{B}\left(x_{1, t},\left(1-\frac{1}{M^{8}}\right) r_{1, t}\right)$, and for any $u \in\{1, \ldots, s-1\}$, let $C_{2, u}=\mathrm{B}\left(x_{2, u},(1-\right.$ $\left.\left.\frac{1}{64 M^{3}}\right) r_{2, u}\right)$ and $C_{2, s}=\mathrm{B}\left(x_{2, s},\left(1-\frac{1}{M^{8}}\right) r_{2, s}\right)$. By letting $B_{1}=C_{1,1}, \ldots, B_{t-1}=$ $C_{1, t-1}, B_{t}=C_{1, t}, B_{t+1}=C_{2, s}, B_{t+2}=C_{2, s-1}, \ldots$ and $B_{k}=C_{2,1}$, we conclude from Lemma 2.1 that the balls $B_{1}, \ldots, B_{t}, B_{t+1}, \ldots, B_{k}$ satisfy the conditions $(1) \sim(4)$ in the lemma, where $k=t+s$.

The following two lemmas are also needed in the proof of Theorem 1.8.
Lemma 2.19. For any $i, j \in\{1, \ldots, k\}$ with $j \geq i+2$, we have $\ell\left(\alpha\left[x_{i}, x_{j}\right]\right)$ $\leq 36 c^{2}\left|x_{i}-x_{j}\right|$.

Proof. If $\left\{x_{i}, x_{j}\right\} \subset \gamma$ (resp. β), by the assumption $j \geq i+2$ and Lemma 2.14, we get

$$
\begin{equation*}
\ell\left(\alpha\left[x_{i}, x_{j}\right]\right) \leq c d_{D}\left(x_{j}\right) \leq 12 c r_{j} \leq 12 c\left|x_{i}-x_{j}\right| \tag{2.20}
\end{equation*}
$$

For the rest case, without loss of generality, we may assume that $x_{i} \in \gamma$ and $x_{j} \in \beta$.

If $\max \left\{\left|z_{1}-x_{i}\right|,\left|z_{2}-x_{j}\right|\right\} \leq \frac{1}{3}\left|z_{1}-z_{2}\right|$, then

$$
\left|x_{i}-x_{j}\right| \geq\left|z_{1}-z_{2}\right|-\left|z_{1}-x_{i}\right|-\left|z_{2}-x_{j}\right| \geq \frac{1}{3}\left|z_{1}-z_{2}\right| .
$$

Hence

$$
\begin{equation*}
\ell\left(\alpha\left[x_{i}, x_{j}\right]\right) \leq \ell(\alpha) \leq c\left|z_{1}-z_{2}\right| \leq 3 c\left|x_{i}-x_{j}\right| \tag{2.21}
\end{equation*}
$$

If $\max \left\{\left|z_{1}-x_{i}\right|,\left|z_{2}-x_{j}\right|\right\}>\frac{1}{3}\left|z_{1}-z_{2}\right|$, we may assume that $\max \left\{\mid z_{1}-\right.$ $x_{i}\left|,\left|z_{2}-x_{j}\right|\right\}=\left|z_{1}-x_{i}\right|$. Then by the assumption $j \geq i+2$ and Lemma 2.14 we get
(2.22) $\quad \ell\left(\alpha\left[x_{i}, x_{j}\right]\right) \leq \ell(\alpha) \leq c\left|z_{1}-z_{2}\right|$

$$
\leq 3 c\left|z_{1}-x_{i}\right| \leq 36 c^{2} r_{i} \leq 36 c^{2}\left|x_{i}-x_{j}\right| .
$$

We conclude from (2.20) ~ (2.22) that Lemma 2.19 holds.
Lemma 2.23. For any $w_{1} \neq w_{2} \in D$ and $r_{1} \geq r_{2}>0$, we let $w_{1} \in$ $D \backslash \mathbf{B}\left(w_{2}, r_{2}\right)$,

$$
r_{1}+r_{2}-\left|w_{1}-w_{2}\right| \geq \frac{1}{64 M^{8}} r_{2}
$$

and $Q=\mathrm{B}\left(w_{1}, r_{1}\right) \cup \mathrm{B}\left(w_{2}, r_{2}\right)$. Then Q is $2^{11} M^{8}$-uniform.
Before the proof of Lemma 2.23, we introduce the following lemma.

Lemma C ([12, Theorem 1.2]). Suppose that D_{1} and D_{2} are convex domains in E, where D_{1} is bounded and D_{2} is c-uniform for some $c>1$, and that there exist $z_{0} \in D_{1} \cap D_{2}$ and $r>0$ such that $\mathrm{B}\left(z_{0}, r\right) \subset D_{1} \cap D_{2}$. If there exist constants $R_{1}>0$ and $c_{0}>1$ such that $R_{1} \leq c_{0} r$ and $D_{1} \subset \overline{\mathrm{~B}}\left(z_{0}, R_{1}\right)$, then $D_{1} \cup D_{2}$ is a c^{\prime}-uniform domain with $c^{\prime}=(c+1)\left(2 c_{0}+1\right)+c$.

Proof of Lemma 2.23. Obviously, there exists $z_{0} \in \mathrm{~B}\left(w_{2}, r_{2}\right) \cap \mathrm{B}\left(w_{1}, r_{1}\right)$ such that the ball $\mathrm{B}\left(z_{0}, r\right)$ is contained in the intersection $\mathrm{B}\left(w_{2}, r_{2}\right) \cap \mathrm{B}\left(w_{1}, r_{1}\right)$, where $r=\frac{1}{128 M^{8}} r_{2}$. Hence $\mathrm{B}\left(w_{2}, r_{2}\right) \subset \mathrm{B}\left(z_{0}, 256 M^{8} r\right)$. It follows from [20] that each ball in E is 2-uniform. Then Lemma C implies that Q is $2^{11} M^{8}$ uniform.
2.24 Proof of Theorem 1.8. It suffices to prove the necessity since the sufficiency is obvious.

Assume that D is a c-uniform domain. Then for every pair of points z_{1}, $z_{2} \in D$, there is a rectifiable arc $\alpha \subset D$ joining them with

$$
\ell\left(\alpha\left[z_{1}, z_{2}\right]\right) \leq c\left|z_{1}-z_{2}\right| \quad \text { and } \quad \min _{j=1,2} \ell\left(\alpha\left[z_{j}, z\right]\right) \leq c d_{D}(z)
$$

for all $z \in \alpha$.
It follows from Lemma 2.14 that there exists a domain D_{1} which is simply connected satisfying Items $(1) \sim(4)$ in Lemma 2.14. Let $c_{1}=\frac{1}{64 M^{8}}$. We come to prove that D_{1} is a c_{2}-uniform domain, where $c_{2}=72 c^{2}\left(\frac{2}{c_{1}}+1\right)$.

For any $y_{1}, y_{2} \in D_{1}$, there must exist $i, j \in\{1, \ldots, k\}$ such that $y_{1} \in$ $\mathrm{B}\left(x_{i}, r_{i}\right)$ and $y_{2} \in \mathrm{~B}\left(x_{j}, r_{j}\right)$.

If $|j-i| \leq 1$, then it follows from Lemma 2.23 and the fact $r_{i}+r_{i+1}-\mid x_{i}-$ $x_{i+1} \mid \geq c_{1} \max \left\{r_{i}, r_{i+1}\right\}$ (see Lemma 2.14 (4)) that there exists a rectifiable curve α_{1} joining y_{1} and y_{2} in $\mathrm{B}\left(x_{i}, r_{i}\right) \cup \mathrm{B}\left(x_{i+1}, r_{i+1}\right)$ such that

$$
\begin{equation*}
\ell\left(\alpha_{1}\right) \leq 2^{11} M^{8}\left|y_{1}-y_{2}\right| \tag{2.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\min _{s=1,2} \ell\left(\alpha_{1}\left[y_{s}, y\right]\right) \leq 2^{11} M^{8} d_{D_{1}}(y) \tag{2.26}
\end{equation*}
$$

for all $y \in \alpha_{1}$.
The remaining case we need to consider is: There are $i, j \in\{1, \ldots, k\}$ such that $j-i \geq 2, y_{1} \in B_{i}, y_{2} \in B_{j}$ and $\left\{y_{1}, y_{2}\right\}$ is not contained in $B_{t} \cup B_{t+1}$ for any $t \in\{i, \ldots, j-1\}$. It suffices to prove the case: $y_{1} \notin\left[x_{i}, x_{i+1}\right]$ and $y_{2} \notin\left[x_{j-1}, x_{j}\right]$ since the discussions for other cases are similar. Set

$$
\alpha_{2}=\left[y_{1}, x_{i}\right] \cup\left[x_{i}, x_{i+1}\right] \cup \ldots \cup\left[x_{j-1}, x_{j}\right] \cup\left[x_{j}, y_{2}\right] .
$$

By Items (2) and (3) in Lemma 2.14 and Lemma 2.19, we have

$$
\begin{align*}
\ell\left(\alpha_{2}\right) & \leq\left|y_{1}-x_{i}\right|+\left|x_{j}-y_{2}\right|+\ell\left(\alpha\left[x_{i}, x_{j}\right]\right) \tag{2.27}\\
& \leq 2 \ell\left(\alpha\left[x_{i}, x_{j}\right]\right) \\
& \leq 72 c^{2}\left|x_{j}-x_{i}\right| \\
& =72 c^{2}\left(r_{i}+r_{j}+\operatorname{dist}\left(B_{i}, B_{j}\right)\right) \\
& \leq 72 c^{2}\left(\frac{2}{c_{1}}+1\right)\left|y_{1}-y_{2}\right|
\end{align*}
$$

since $\left|y_{1}-y_{2}\right| \geq \operatorname{dist}\left(B_{i}, B_{j}\right)$.
For any $y \in \alpha_{2}$, if $y \in\left[y_{1}, x_{i}\right]$ or $\left[x_{j}, y_{2}\right]$, then we easily have that

$$
\begin{equation*}
\min _{j=1,2} \ell\left(\alpha_{2}\left[y_{j}, y\right]\right) \leq d_{D_{1}}(y) \tag{2.28}
\end{equation*}
$$

For the case $y \in\left[x_{i}, x_{i+1}\right] \cup \ldots \cup\left[x_{j-1}, x_{j}\right]$, obviously, there exists some $m \in\{i, \ldots, j-1\}$ such that $y \in\left[x_{m}, x_{m+1}\right]$. Without loss of generality, we may assume that $\min \left\{\ell\left(\alpha\left[z_{1}, x_{m}\right]\right), \ell\left(\alpha\left[x_{m}, z_{2}\right]\right)\right\}=\ell\left(\alpha\left[z_{1}, x_{m}\right]\right)$. The proof for the case $\min \left\{\ell\left(\alpha\left[z_{1}, x_{m}\right]\right), \ell\left(\alpha\left[x_{m}, z_{2}\right]\right)\right\}=\ell\left(\alpha\left[z_{2}, x_{m}\right]\right)$ follows from the similar reasoning.

It follows from Lemma 2.14 (2) that

$$
\ell\left(\alpha\left[z_{1}, x_{m}\right]\right) \leq 12 c d_{D_{1}}\left(x_{m}\right)
$$

which in turn yields that

$$
\begin{align*}
\ell\left(\alpha_{2}\left[y_{1}, x_{m}\right]\right) & \leq\left|y_{1}-x_{i}\right|+\ell\left(\alpha\left[x_{i}, x_{m}\right]\right) \tag{2.29}\\
& \leq 24 c d_{D_{1}}\left(x_{m}\right) .
\end{align*}
$$

If $\min \left\{\ell\left(\alpha\left[z_{1}, x_{m+1}\right]\right), \ell\left(\alpha\left[x_{m+1}, z_{2}\right]\right)\right\}=\ell\left(\alpha\left[z_{1}, x_{m+1}\right]\right)$, then (2.29) yields that

$$
\begin{align*}
\min _{s=1,2} \ell\left(\alpha_{2}\left[y_{s}, y\right]\right) & \leq \ell\left(\alpha_{2}\left[y_{1}, y\right]\right) \tag{2.30}\\
& \leq 24 c d_{D_{1}}\left(x_{m}\right)+\left|y-x_{m}\right| \\
& \leq(24 c+1) d_{D_{1}}\left(x_{m}\right)+d_{D_{1}}(y) \\
& \leq \frac{2}{c_{1}}\left(24 c+\frac{c_{1}}{2}+1\right) d_{D_{1}}(y) .
\end{align*}
$$

Now we assume that $\min \left\{\ell\left(\alpha\left[z_{1}, x_{m+1}\right]\right), \ell\left(\alpha\left[x_{m+1}, z_{2}\right]\right)\right\}=\ell\left(\alpha\left[z_{2}, x_{m+1}\right]\right)$. Then Lemma 2.14 (2) implies that $\ell\left(\alpha\left[z_{2}, x_{m+1}\right]\right) \leq 12 c d_{D_{1}}\left(x_{m+1}\right)$. Hence

$$
\begin{equation*}
\ell\left(\alpha_{2}\left[y_{2}, x_{m+1}\right]\right) \leq 24 c d_{D_{1}}\left(x_{m+1}\right) \tag{2.31}
\end{equation*}
$$

We infer from (2.31) that

$$
\begin{align*}
\min _{s=1,2} \ell\left(\alpha_{2}\left[y_{s}, y\right]\right) & \leq \ell\left(\alpha_{2}\left[y_{2}, y\right]\right) \tag{2.32}\\
& \leq 24 c d_{D_{1}}\left(x_{m+1}\right)+\left|y-x_{m+1}\right| \\
& \leq(24 c+1) d_{D_{1}}\left(x_{m+1}\right)+d_{D_{1}}(y) \\
& \leq \frac{2}{c_{1}}\left(24 c+\frac{c_{1}}{2}+1\right) d_{D_{1}}(y)
\end{align*}
$$

Thus the inequalities $(2.25) \sim(2.28),(2.30)$ and (2.32) show that D_{1} is a c_{2}-uniform domain. The proof of Theorem 1.8 is complete.

3. Proofs of Theorem 1.9 and Example 1.10

3.1 Proof of Theorem 1.9. Let $f: D \rightarrow \mathrm{~B}^{n}$ be a quasiconformal map of $\overline{\mathrm{R}}^{n}$. For any $z_{1}, z_{2} \in D$, there exists a closed ball $\bar{B}_{1}^{n} \subset \mathrm{~B}^{n}$ such that $f\left(z_{1}\right), f\left(z_{2}\right) \in \bar{B}_{1}^{n}$. Then $f^{-1}\left(B_{1}^{n}\right)$ is a quasiball. This shows that D has the quasiball decomposition property.
3.2 Proof of Example 1.10. A result of Väisälä [17, Theorem 17.22] implies that D is not a quasiball.

For any $z_{1}, z_{2} \in D$, let P be the plane determined by z_{1} and L. Then P divides B^{3} into two parts which are denoted by B_{1}^{3} and B_{2}^{3}, respectively. We may assume that $z_{1}, z_{2} \in \bar{B}_{1}^{3}$. Since B_{1}^{3} is a bounded convex domain, the result in [22] shows that B_{1}^{3} is a quasiball. This implies that D has the quasiball decomposition property.

Acknowledgements. The authors would like to thank the referee for the careful reading of this paper and many useful suggestions.

REFERENCES

1. Ahlfors, L. V., Quasiconformal reflections, Acta Math. 109 (1963), 291-301.
2. Anderson, G. D., Vamanamurty, M. K., and Vuorinen, M., Conformal invariants, inequalities and quasiconformal mappings, Wiley \& Sons, New York 1997.
3. Beardon, A. F., The Apollonian metric of a domain in R^{n}, pp. 91-108 in: Quasiconformal mappings and analysis, Springer, Berlin 1998.
4. Broch, O. J., Geometry of John disks, Ph.D. Thesis, NTNU 2004.
5. Gehring, F. W., Uniform domains and the ubiquitous quasidisk, Jahresber. Deutsch. Math.Verein 89 (1987), 88-103.
6. Gehring, F. W., Characterizations of quasidisks, pp. 11-41 in: Quasiconformal geometry and dynamics, Lublin 1996, Banach Center Publ. 48, Polish Acad. Sci., Warsaw 1999.
7. Gehring, F. W., and Hag, K., Remarks on uniform and quasiconformal extension domains, Complex Variables Theory Appl. 9 (1987), 175-188.
8. Gehring, F. W., and Osgood, B. G., Uniform domains and the quasi-hyperbolic metric, J. Analyse Math. 36 (1979), 50-74.
9. Hästö, P., The Apollonian metric: uniformity and quasiconvexity, Ann. Acad. Sci. Fenn. Ser. Math. 28 (2003), 385-414.
10. John, F., Rotation and strain, Comm. Pure. Appl. Math. 14 (1961), 391-413.
11. Kim, K., and Langmeyer, N., Harmonic measure and hyperbolic distance in John disks, Math. Scand. 83 (1998), 283-299.
12. Li, Y., and Wang, X., Unions of John domains and uniform domains in real Normed Vector spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 35 (2010), 627-632.
13. Martin, G. J., Quasiconformal and bi-Lipschitz homeomorphisms, uniform domains and the quasihyperbolic metric, Trans. Amer. Math. Soc. 292 (1985), 169-191.
14. Martio, O., Definitions for uniform domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), 197-205.
15. Martio, O., and Sarvas, J., Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1979), 383-401.
16. Näkki, R., and Väisälä, J., John disks, Exposition. Math. 9 (1991), 3-43.
17. Väisälä, J., Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Math. 229, Springer, Berlin 1971.
18. Väisälä, J., Uniform domains, Tohoku Math. J. 40 (1988), 101-118.
19. Väisälä, J., Relatively and inner uniform domains, Conformal Geom. Dyn. 2 (1998), 56-88.
20. Väisälä, J., The free quasiworld. Freely quasiconformal and related maps in Banach spaces, pp. 55-118 in: Quasiconformal geometry and dynamics, Lublin 1996, Banach Center Publ. 48, Polish Acad. Sci., Warsaw 1999.
21. Vuorinen, M., Conformal geometry and quasiregular mappings, Lecture Notes in Math. 1319, Springer, Berlin 1988.
22. Wang, X., Huang, M., and Chu, Y., Bounded and convex domain in $\overline{\mathrm{R}}^{n}$ (Chinese), Acta Math. Sinica 50 (2007), 481-484.
M. HUANG

DEPARTMENT OF MATHEMATICS
HUNAN NORMAL UNIVERSITY CHANGSHA, HUNAN 410081 PEOPLE'S REPUBLIC OF CHINA E-mail: mzhuang79@163slet.com
X. WANG

DEPARTMENT OF MATHEMATICS
HUNAN NORMAL UNIVERSITY
CHANGSHA, HUNAN 410081
PEOPLE'S REPUBLIC OF CHINA
E-mail: xtwang@hunnu.edu.cn

[^0]: * The research was partly supported by NSFs of China (No. 11071063, No. 11101138), the program for excellent young scholars of Department of Education in Hunan Province (No. 12B079). Received 7 April 2011, in final form 17 August 2011.

