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EXTENSION OF POSITIVE CURRENTS
WITH SPECIAL PROPERTIES OF
MONGE-AMPÈRE OPERATORS

AHMAD K. AL ABDULAALI

Abstract
In this paper we study the extension of currents across small obstacles. Our main results are: 1) Let
A be a closed complete pluripolar subset of an open subset � of Cn and T be a negative current of
bidimension (p, p) on � \ A such that ddcT ≥ −S on � \ A for some positive plurisubharmonic
current S on �. Assume that the Hausdorff measure H2p(A ∩ Supp T ) = 0. Then T̃ exists.
Furthermore, the current R = d̃dcT − ddcT̃ is negative supported in A. 2) Let u be a positive
strictly k-convex function on an open subset � of Cn and set A = {z ∈ � : u(z) = 0}. Let T be a
negative current of bidimension (p, p) on �\A such that ddcT ≥ −S on �\A for some positive
plurisubharmonic (or ddc-negative) current S on �. If p ≥ k + 1, then T̃ exists. If p ≥ k + 2,
ddcS ≤ 0 and u of class C 2, then d̃dcT exists and d̃dcT = ddcT̃ .

1. Introduction

In this paper we continue the work in [2]. So throughout this paper, we suppose
that A is a closed subset of an open subset � of Cn and T is a positive (resp.
negative) current of bidimension (p, p) of � \ A such that ddcT ≤ S (resp.
ddcT ≥ −S) on � \ A for some current S on �. Our main issue is about
finding the sufficient conditions on S and A that guarantee the existence of
T̃ and d̃dcT , and afterword studying the features of these extensions and the
relations between it. In the literature, this kind of problems have been studied
before. For instance, the studies in [5], [6], [11], [13], [15], [17], [19], [20] and
[21], were basically based on the case when T is a closed positive current. The
case when S = 0 considered by Dabbek, Elkhadhra and El Mir [10]. In 2009,
Dabbek and Noureddine [9] discussed the case when S is closed and positive.
As you see the closedness takes its place in this kind of study, so it is natural
to ask about the sharpness of the closedness of S specially in [9]. Now, you
can feel the theme in this paper which is about generalizing the work in [9] by
replacing the closedness of S by further conditions.

The paper is divided into three sections. In the first section we give defini-
tions, basic properties and some facts about currents.
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In the second one, we consider the case when A is a closed complete pluri-
polar set and prove our first main result.

1st Main Theorem 3.3. Let A be a closed complete pluripolar subset of an
open subset � of Cn and T be a negative current of bidimension (p, p) on �\A

such that ddcT ≥ −S on � \ A for some positive plurisubharmonic current
S on �. Assume that H2p(A ∩ Supp T ) = 0. Then T̃ exists. Furthermore, the
current R = d̃dcT − ddcT̃ is negative supported in A. If ddcS ≤ 0, then T̃

has the same properties of T .

Using the above result, we obtained a version of Chern-Levine-Nirenberg
inequality.

Theorem 3.5. Let A be a closed complete pluripolar subset of an open set
� of Cn and T be a positive current of bidimension (p, p) on � \ A such that
ddcT ≤ S on � \ A for some positive plurisubharmonic (resp. ddc-negative)
current S on �. Let K and L compact sets in � with L ⊂ K◦. Assume that
H2p(A ∩ Supp T ) = 0, then there exists a constant CK,L > 0 such that for all
u plurisubharmonic function on � of class C 2 we have the following estimate∫

L\A
T ∧ ddcu ∧ βp−1 ≤ CK,L‖u‖L ∞(K)(‖T̃ ‖K + ‖d̃dcT ‖K).

In the third section, we start with the case where A is a zero set of strictly
k-convex function and include our second main result.

2nd Main Theorem 4.7. Let � be an open subset of Cn and u be a positive
strictly k-convex function on �. Set A = {z ∈ � : u(z) = 0} and let T be a
positive current of bidimension (p, p) on � \ A such that ddcT ≤ S on � \ A

for some positive and plurisubharmonic (or ddc-negative) current S on �. If
p ≥ k + 1, then T̃ exists. If p ≥ k + 2, ddcS ≤ 0 and u is of class C 2, then
d̃dcT exists and d̃dcT = ddcT̃ .

We end this paper by assuming that A is a closed set and proving the
following theorem.

Theorem 4.10. Let A be a closed subset of an open subset � of Cn and T be
a negative current of bidimension (p, p)on�\A such that ddcT ≥ −S on�\A
for some positive current S on �. Assume that H2p−2(Supp T ∩ A) is locally
finite. Then T̃ exists. If ddcS ≤ 0, then d̃dcT exists and R = d̃dcT − ddcT̃ is
negative a current supported in A.

In 1972, Harvey [17] proved the previous result for the closed positive
current T when H2p−1(A) = 0. The case where S = 0 was considered in [10].
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In the inspiring article of this work [9], the authors proved the case when S is
a closed positive current.

2. Preliminaries and notations

Let � be an open subset of Cn. Let Dp,q(�, k) be the space C k compactly
supported differential forms of bidegree (p, q) on �. A form ϕ ∈ Dp,p(�, k)

is said to be strongly positive form if ϕ can be written as

ϕ(z) =
N∑

j=1

γj (z)iα1,j ∧ α1,j ∧ · · · ∧ iαp,j ∧ αp,j ,

where γj ≥ 0 and αs,j ∈ D0,1(�, k). Then Dp,p(�, k) admits a basis con-
sisting of strongly positive forms. The dual space D ′

p,q(�, k) is the space of
currents of bidimension (p, q) or bidegree (n − p, n − q) and of order k.
A current T ∈ D ′

p,p(�, k) is said to be positive if 〈T , ϕ〉 ≥ 0 for all forms
ϕ ∈ Dp,p(�, k) that are strongly positive. If T ∈ D ′

p,p(�, k) then it can be
written as

T = i(n−p)2
∑

|I |=|J |=n−p

TI,J dzI ∧ dzJ ,

where TI,J are distributions on �. For the positive current T ∈ D ′
p,p(�, k)

the mass of T is denoted by ‖T ‖ and defined by
∑ |TI,J | where |TI,J | are the

total variations of the measures TI,J . Let β = ddc|z|2 be the Kähler form on
Cn (where d = ∂ + ∂ and dc = i(−∂ + ∂), thus ddc = 2i∂∂), then for each
open subset �1 ⊂ � there exists a constant C > 0 depends only on n and p

such that

T ∧ βp

2pp!
(�1) ≤ ‖T ‖�1 ≤ C T ∧ βp(�1).

Along the way a current T is said to be closed if dT = 0. A current T is
said to be plurisubharmonic if ddcT is a positive current. Let (χn) be a smooth
bounded sequence which vanishes on a neighborhood of closed subset A ⊂ �

and χn converges to �\A the characteristic function of � \ A, and T be a
current defined on � \ A. If χnT has a limit which does not depend on (χn),
this limit is the trivial extension of T by zero across A noted by T̃ . Thus, T̃

exists if and only if ‖T ‖ is locally finite across A.
A current T is said to be C-normal if T and ddcT are of locally finite mass.

We recall that T is a C-flat current if T = F + ∂H + ∂S + ∂∂R, where F ,
H , S and R are currents with locally integrable coefficients. On this class of
currents, the support theorem says that for C-flat current T of bidimension
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(p, p) if H2p(Supp T ) = 0, then T = 0 (see [4], Theorem 1.13). Let k ≤ p

and T ∈ D ′
p,p(�) with locally integrable coefficients. Set π : Cn → Ck ,

π(z′, z′′) = z′ and iz′ : Cn−k → Cn, iz′(z′′) = (z′, z′′). Then the slice 〈T , π, z′〉,
which is defined by

〈T , π, z′〉(ϕ) =
∫

z′′∈π−1(z′)
i∗z′T (z′′) ∧ i∗z′ϕ(z′′), ∀ϕ ∈ Dp−k,p−k(�),

is well defined (p − k, p − k)-current for a.e z′, and supported in π−1(z′).
Notice that, by the pull back assumptions we obtain

ddc〈T , π, z′〉 = 〈ddcT , π, z′〉,
dc〈T , π, z′〉 = 〈dcT , π, z′〉,

and d〈T , π, z′〉 = 〈dT , π, z′〉.
So, we deduce that for every C-flat current T , the slice 〈T , π, z′〉 is well defined
for a.e z′. Moreover, we have the slicing formula∫

�

T ∧ ϕ ∧ π∗β ′k =
∫

z′∈π(�)

〈T , π, z′〉(ϕ)β ′k,

where β ′ = ddc|z′|2. this formula is helpful in many cases. actually, by this
formula we can prove the properties of T by testing it for its slice.1

We end this section by giving the following two theorems. The first one is
called Chern-Levine-Nirenberg inequality and the second is a modification for
that inequality proved by Al Ameer [3].

Theorem 2.1. Let � be an open subset of Cn and T be a closed positive
current of bidimension (p, p). Let u1, . . . , uq are locally bounded plurisubhar-
monic functions on �. For all compact subsets K, L of � with L ⊂ K◦, there
exists a constant CK,L ≥ 0 such that

‖T ∧ ddcu1 ∧ · · · ∧ ddcuq‖L ≤ CK,L‖T ‖K‖u1‖L ∞(K) . . . ‖uq‖L ∞(K).

Theorem 2.2. Let � be an open subset of Cn. Let K and L compact sets
in � with L ⊂ K◦. Assume that T ∈ D ′

p,p(�) is positive and ddcT is of order
zero, then there exists a constant CK,L > 0 such that for all plurisubharmonic
function u on � of class C 2 we have the following estimate

(2.1) ‖T ∧ ddcu‖L ≤ CK,L‖u‖L ∞(K)(‖T ‖K + ‖ddcT ‖K).

1 More about positive currents and slice formula can be found in [11] and [16].
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For convenience, we include Al Ameer’s proof in our setting

Proof. With out loss of generality we may assume that 0 ∈ K and B(0, r) �
K . Let

max
ε

(x1, x2) = max(x1, x2) ∗ αε,

where αε is a regularization kernel on R2 depending only on ‖(x1, x2)‖. Fix ε0

small enough and set

φε0 = max
ε0

(
g, H

(
|z|2 − r2

3

))
, where H = 48

r2
‖g‖L ∞(K).

Hence, on B
(
0, r

2

)
we have φε0 = g and φε0 = H

(|z|2 − r2

3

)
on B(0, r) \

B
(
0, 3r

4

)
. This implies that

(2.2)

∫
B(0, r

2 )

T ∧ ddcg ∧ βp−1 ≤
∫

B(0,r)

T ∧ ddcφε0 ∧ βp−1.

Now, choose 0 < δ < r
4 and take a smooth function ϕ such that 0 ≤ ϕ ≤ 1

compactly supported in {z ∈ � : r − δ < |z| < r + δ} and ϕ = 1 on a
neighborhood of ∂B(0, r). Let Tε be a smoothing of T which is convergent
weakly∗ to T , hence using Stokes’ formula we find∫

B(0,r)

Tε ∧ ddcφε0 ∧ βp−1 =
∫

B(0,r)

Tε ∧ ddc(ϕφε0 + (1 − ϕ)φε0) ∧ βp−1

=
∫

B(0,r)

Tε ∧ ddc(ϕφε0) ∧ βp−1

+
∫

B(0,r)

(1 − ϕ)φε0 ddcTε ∧ βp−1.

But on Supp ϕ ∩ B(0, r) we have ϕφε0 = ϕH
(|z|2 − r2

3

)
, thus

(2.3)

∫
B(0,r)

Tε ∧ddcφε0 ∧βp−1 ≤ H

∣∣∣∣
∫

B(0,r)

Tε ∧ddc

(
ϕ

(
|z|2 − r2

3

))
∧βp−1

∣∣∣∣
+

∣∣∣∣
∫

B(0,r)

(1 − ϕ)φε0 ddcTε ∧ βp−1

∣∣∣∣
using the fact that T is a positive current and ddcT is of order zero in the (2.3),
we can find C ′

K,L > 0 such that

(2.4)

∫
B(0,r)

Tε ∧ ddcφε0 ∧ βp−1 ≤ C ′
K,L‖g‖L ∞(K)(‖Tε‖K + ‖ddcTε‖K)
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and (2.1) follows from (2.2) and (2.4), after choosing an appropriate cover for
the compact set L.

3. The case when A is closed pluripolar set

In this section we show our first main result. For a closed current T the result
was done by El Mir and Feki [15]. The case when S = 0 was proved in [10]
by Dabbek, Elkhadhra and El Mir. Recently, Dabbek and Noureddine [9] have
shown the result when S is a positive closed current. The proof of our main
result will pass through several steps. So let us first give an inequality which
is very useful in our study.

Lemma 3.1. Let � be an open subset of Cn. Let K and L compact sets
in � with L ⊂ K◦. Assume that T is a positive and plurisubharmonic (resp.
ddc-negative) current of bidimension (p, p) on �, then there exists a constant
CK,L > 0 such that for all plurisubharmonic functions u1, . . . , uq , 1 ≤ q ≤ p

of class C 2 we have

‖T ∧ ddcu1 ∧ · · · ∧ ddcuq‖L ≤ CK,L

q∏
j=1

‖uj‖L ∞(K)(‖T ‖K + ‖ddcT ‖K).

Proof. By induction, the case when q = 1 follows from Theorem 2.2. To
show the case q = 2, let us take L1 compact subset such that L◦

1 contains
L and L◦

1 ⊂ K . Since T ∧ ddcu1 is positive and plurisubharmonic (resp.
ddc-negative), then we get

‖T ∧ ddcu1 ∧ ddcu2‖L

≤ C
(1)
K,L‖u2‖L ∞(K)(‖T ∧ ddcu1‖L1 + ‖ddcT ∧ ddcu1‖L1).

But ddcT ∧ ddcu1 closed and positive (resp. negative) so by the first step
and Chern-Levine-Nirenberg inequality we have

‖T ∧ ddcu1 ∧ ddcu2‖L

≤ C
(1)
K,L‖u2‖L ∞(K)

[
C

(2)
K,L‖u1‖L ∞(K)(‖T ‖K + 2‖ddcT ‖K)

]
≤ CK,L‖u1‖L ∞(K)‖u2‖L ∞(K)(‖T ‖K + 2‖ddcT ‖K).

Assume that the inequality holds for q−1. We want to show the inequality for q.
Since T ∧∧q

j=1 ddcuj is a positive and plurisubharmonic (resp. ddc-negative)
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current, then similarly as we have done above we deduce

‖T ∧ ddcu1 ∧ · · · ∧ ddcuq‖L

≤ C
(1)
K,L‖uq‖L ∞(K)

(∥∥∥∥T ∧
q−1∧
j=1

ddcuj

∥∥∥∥
L1

+
∥∥∥∥ddcT ∧

q−1∧
j=1

ddcuj

∥∥∥∥
L1

)

≤ C
(2)
K,L

q∏
j=1

‖uj‖L ∞(K)(‖T ‖K + (q − 1)‖ddcT ‖K)

+ C
(3)
K,L

q∏
j=1

‖uj‖L ∞(K)‖ddcT ‖K

≤ CK,L

q∏
j=1

‖uj‖L ∞(K)(‖T ‖K + q‖ddcT ‖K).

Proving our lemma.

Proposition 3.2. Let A be a closed complete pluripolar subset of an open
subset � ⊂ Cn and T be a positive current of bidimension (p, p) on � \ A

such that ddcT ≤ S on � \ A for some positive and plurisubharmonic (resp.
ddc-negative) current S on �. Let v be a plurisubharmonic function of class
C 2, v ≥ −1 on � such that

�′ = {z ∈ � : v(z) < 0}
is relatively compact in �. Let K ⊂ �′ be a compact subset and let us set

cK = − sup
z∈K

v(z).

Then there exists a constant η ≥ 0 such that for all integer 1 ≤ s ≤ p

and for every plurisubharmonic function u on �′ of class C 2 satisfying that
−1 ≤ u < 0 we have,∫

K\A
T ∧(ddcu)p ≤ c−s

K

∫
�′\A

T ∧(ddcv)s∧(ddcu)p−s+η(‖S‖�′+‖ddcS‖�′).

This proposition generalizes a result in [10] where the authors considered
the case of positive and ddc-negative currents. The case when S is a closed
positive done in [9].

Proof. We follow the same techniques as in [10]. By ([13], Proposition II.2)
there exists a negative plurisubharmonic function f on �′ which is smooth on
�′ \ A such that

A ∩ �′ = {z ∈ �′ : f (z) = −∞}.
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We choose λ, μ such that 0 < μ < λ < cK . For m ∈ N and ε small enough
we set

(3.1) ϕm(z) = μu(z)+ f (z) + m

m + 1
and ϕm,ε(z) = max

ε
(v(z)+1, ϕm(z)),

where maxε is the convolution of the function (x1, x2) �→ max(x1, x2) by a
positive regularization kernel on R2 depending only on ‖(x1, x2)‖. Thus we
have ϕm,ε(z) ∈ Psh(�′) ∩ C∞(�′). Furthermore, ϕm,ε(z) = v(z) + 1 in a
neighborhood of ∂�′ ∪ (�′ ∩ {f ≤ −m}). Consider the open subset

�′
m = �′ ∩ {f > −m}.

Then by Stokes’ formula we have∫
�′

m

T ∧ (ddcu)p−s ∧ (ddcϕm,ε)
s−1 ∧ ddc(ϕm,ε − v − 1)

≤
∫

�′
m

(ϕm,ε − v − 1)S ∧ (ddcu)p−s ∧ (ddcϕm,ε)
s−1.

Hence

(3.2)

∫
�′

m

T ∧ (ddcu)p−s ∧ (ddcϕm,ε)
s

≤
∫

�′
m

(ϕm,ε − v − 1)S ∧ (ddcu)p−s ∧ (ddcϕm,ε)
s−1

+
∫

�′
m

T ∧ (ddcu)p−s ∧ (ddcϕm,ε)
s−1 ∧ ddcv.

Let us set

Sk,ε :=
∫

�′
m

(ϕm,ε − v − 1)S ∧ (ddcu)p−s ∧ (ddcϕm,ε)
s−1−k ∧ (ddcv)k.

By iterating the operation in (3.2), we deduce that

∫
�′

m

T ∧ (ddcu)p−s ∧ (ddcϕm,ε)
s ≤

∫
�′

m

T ∧ (ddcu)p−s ∧ (ddcv)s +
s−1∑
k=0

Sk,ε.

Let R > 0 and KR = {z ∈ K : f (z) ≥ −R}. For m sufficiently large,
KR ⊂ �′

m and for any z ∈ KR ,

ϕm(z) ≥ −μ + m − R

m + 1
> 1 − λ.
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Moreover, v ≤ −cK on KR so we get

v + 1 ≤ 1 − cK ≤ 1 − λ

then ϕm,ε = ϕm in a neighborhood of KR . Therefore, by the above inequality
we obtain∫

KR

T ∧ (ddcu)p−s ∧ (ddcϕm)s ≤
∫

�′
m

T ∧ (ddcu)p−s ∧ (ddcv)s +
s−1∑
k=0

Sk,ε.

It is very remarkable that (ddcϕm)s ≥ μs(ddcu)s since ddcf ≥ 0. So

(3.3) μs

∫
KR

T ∧ (ddcu)p ≤
∫

�
′
m

T ∧ (ddcu)p−s ∧ (ddcv)s +
s−1∑
k=0

Sk,ε.

Notice that each Sk,ε is bounded independently of ε. Indeed, since S is a positive
plurisubharmonic current and ϕm,ε − v − 1 = 0 on ∂�′

m, then by the previous
lemma there exists ηk ≥ 0 such that

(3.4) Sk,ε ≤ ηk‖u‖p−s

L ∞(�′)‖ϕm,ε‖s−k−1
L ∞(�′)‖v‖k

L ∞(�′)(‖S‖�′ + ‖ddcS‖�′).

Therefore there exists η ≥ 0 making (3.3) as follows

μs

∫
KR

T ∧ (ddcu)p ≤
∫

�
′
m

T ∧ (ddcu)p−s ∧ (ddcv)s

+ η(‖S‖�′ + (p − 1)‖ddcS‖�′).

We finish the proof by letting first m → ∞ and secondly R → ∞.

Now we will prove our first main theorem using the same technique as in
[10], and Proposition 3.2.

Theorem 3.3. Let A be a closed complete pluripolar subset of an open
subset � of Cn and T be a negative current of bidimension (p, p) on � \ A

such that ddcT ≥ −S on � \ A for some positive plurisubharmonic current
S on �. Assume that H2p(A ∩ Supp T ) = 0. Then T̃ exists. Furthermore the
current R = d̃dcT − ddcT̃ is negative supported in A. If ddcS ≤ 0, then T̃

has the same properties as T .

Proof. Let us first assume that T̃ exists. Then by ([12], Theorem 1.3), the
extension d̃dcT exists and R is a negative current. If S is a ddc-negative current
then by ([10], Proposition 2) the current −̃S is negative plurisubharmonic. So
T̃ is negative and ddcT̃ ≥ d̃dcT ≥ −̃S. In other words, T̃ and T are of the
same class.
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In order to show the existence of T̃ we will proceed as in [10]. Since the
problem is local, we will show that T is of locally finite mass near every
point z0 in A. Without loss of generality, one can assume that z0 is the ori-
gin. Since H2p(A ∩ Supp T ) = 0, then by [19] there exist a system of co-
ordinates (z′, z′′) of Cp × Cn−p and a polydisk �p × �n−p ⊂ Cp × Cn−p

such that (A ∩ Supp T ) ∩ (�p × ∂�n−p) = ∅. Moreover, the projection map
π : (A ∩ Supp T ) ∩ (�p × �n−p) → �p is proper, and as π(A ∩ Supp T )

is closed with a zero Lebesgue measure in �p, one can find an open subset
O ⊂ �p \ π(A ∩ Supp T ). Therefore the current has locally finite mass on
O × �n−p. Let 0 < δ < 1 such that (A ∩ Supp T ) ∩ (�p × {z′′, δ < |z′′| <

1}) = ∅, and fix a and t two real numbers such that δ < a < t < 1. Set

(3.5) ρε = max
ε

(
π∗ρ,

1

t2 − a2
(|z′′|2 − t2)

)
,

where ρ is a smooth plurisubharmonic function on �p such that (ddcρ)p

supported in O. We have −1 ≤ ρε < 0 in t�n and ρε = π∗ρ on |z′′| ≤ a, and
we obtain∫

(t�n)\A
T ∧ (ddcρε)

p =
∫

(t�p)×{|z′′|<a}\A
T ∧ (ddc(π∗ρ))p

+
∫

(t�p)×{a≤|z′′|<t}
T ∧ (ddcρε)

p,

since (ddcπ∗ρ)p supported in O × �n−p then both integrals of the right hand
side are finite. By applying Proposition 3.2 on −T , we deduce that T̃ exists.

Of course the condition on the Hausdorff dimension in Theorem 3.3 is
sharp (see [10], Example 3). In the case when T and ddcT have the same sign,
the hypotheses in Theorem 3.3 can’t insure the existence of T̃ . The function
u(z) = 1

|z|2 on C∗ = C \ {0} illustrates this. In fact, ddcu(z) = 1
|z|4 idz ∧ dz.

Therefore, u and ddcu are both positive on C∗, and although that H1{0} = 0, the
function u is non extendable on the whole of the complex plane. The following
corollary gives the sufficient conditions to get the extension in this case.

Corollary 3.4. Let A be a closed complete pluripolar subset of an open
subset � of Cn and T a positive current of bidimension (p, p) on �\A such that
ddcT ≥ −S on � \ A for some positive ddc-negative current S on �. Assume
that H2p−2(A) = 0. Then T̃ exists. Furthermore the current d̃dcT = ddcT̃ .

This result has been studied before in many different cases. Actually, the
authors in [10] considered the case when S = 0. The case when d̃dcT exists
and H2p(A ∩ Supp T ) = 0 done by Dabbek in [7]. Dabbek proved that in this
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case the residual current is positive and closed by using the same technique in
[10] with the local potential of a positive closed current given in [5]. In [2],
the result was proved for the positive closed current S.

Proof. Applying ([10], Theorem 1) for the current ddcT +S, the extension
d̃dcT exists. Now, the result follows from Theorem 5 in [10].

We end this section by the following theorem which is a version of Chern-
Levine-Nirenberg inequality.

Theorem 3.5. Let A be a closed complete pluripolar subset of an open set
� of Cn and T be a positive current of bidimension (p, p) on � \ A such that
ddcT ≤ S on � \ A for some positive plurisubharmonic (resp. ddc-negative)
current S on �. Let K and L compact set in � with L ⊂ K◦. Assume that
H2p(A ∩ Supp T ) = 0, then there exists a constant CK,L > 0 such that for all
u plurisubharmonic function on � of class C 2 we have the following estimate∫

L\A
T ∧ ddcu ∧ βp−1 ≤ CK,L‖u‖L ∞(K)(‖T̃ ‖K + ‖d̃dcT ‖K).

Proof. From Theorem 3.3, the extensions T̃ and d̃dcT exist. Moreover, T̃ is
positive and d̃dcT is of order zero. Hence the result follows from Theorem 2.2.

Application of Theorem 3.3. Let A be a closed complete pluripolar
subset of an open subset � of Cn and T be a closed positive current of bidi-
mension (p, p) on � \ A. Assume that H2p−2(A) = 0. Now, suppose that g

is plurisubharmonic function on � which is smooth on � \ A. In this case by
using ([10], Theorem 1), we can find the extension g̃T . But we can’t use the
same result to find g̃2T , since we don’t know whether g2 is plurisubharmonic
or not. Despite this, we can extend g2T over A. In fact, the current g2T is
positive. We may assume that locally g ≤ 0, so simple computation shows
that

ddc(g2T ) = 2dg ∧ dcg ∧ T + 2gddcg ∧ T ≤ 2dg ∧ dcg ∧ T

Now, set S = 2dg ∧ dcg ∧ T , then S is a positive ddc-negative current on
� \ A. Applying [10], the current S̃ exists and is positive ddc-negative on �.
Hence by Theorem 3.3, g̃2T exists.

4. The case when A is a zero set of a strictly k-convex function

In this section we include our second main result. The result was considered
before in several cases. In 1984, El Mir [13] studied the case when T is a posit-
ive closed current and A is a zero set of an exhaustion strictly plurisubharmonic
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function. For the positive ddc-negative current T the result was proved in [10].
In [9] the authors obtained the result when S is a closed positive current. The
case when S is positive and A is a zero set of positive exhaustion strictly
0-convex function was done in [2].

Let us start this section with the definition of k-convex functions followed
by a lemma which is given in [14].

Definition 4.1. Let u be a continuous real function defined on an open
subset � of Cn. we say that u is strictly k-convex if there exists a continuous
(1, 1)-form γ defined on � which admits (n − k)-positive eigenvalues at each
point, and such that the current ddcu − γ is positive on �.

Lemma 4.2. Let u be a strictly k-convex function on an open subset � of
Cn and let γ ≥ 0 be a continuous (1, 1)-form on �. Then for all z ∈ �, there
exist a neighborhood Vz of z and a smooth strictly plurisubharmonic function
f on Vz such that

ddcu ∧ (ddcf )k − γ k+1 is positive on Vz.

Proposition 4.3. Let � be an open subset of Cn and u be a strictly k-convex
function on �. For c ∈ R, we set �c = {z ∈ � : u(z) ≤ c}. Let T be a positive
current of bidimension (p, p) on � \ �c such that ddcT ≤ S on � \ �c for
some positive and plurisubharmonic (resp. ddc-negative) current S on �. If
p ≥ k + 1, then T is of finite mass near �c.

Proof. As in [10], one can assume that u ∈ C ∞(�\A). Since the problem
is local, all what we need is to show that for every z0 ∈ u−1{c}, there exists
ω � � contains z0 such that∫

ω\�
c+ 2

m

T ∧ βp < ∞

independently of m. Since u is strictly k-convex function then there exist a
system of coordinates on Cn and an open neighborhood V of z0 and λ > 0
such that

ddcu + λ

2
β ′ − 2β ′′

is a positive current on V , where β ′ = ddc|z′|2, z′ ∈ Ck and β ′′ = ddc|z′′|2,
z′′ ∈ Cn−k . Let r > 0 such that B(z0, r) ⊂ V , and χ be a smooth function
satisfying χ = 0 on B

(
z0,

r
2

)
and χ = −1 on �\B

(
z0,

2
3 r

)
. For a sufficiently

small δ > 0, we set v = u+ δχ and denote by ϕε a regularization kernel on Cn

depending only on |z|. Choose εm small enough so that vm = v ∗ ϕεm
satisfies

0 < v − vm < 1
m

and
ddcvm + λβ ′ − β ′′
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is a positive form for all m. By Lemma 4.2, if α = ddcf and m ∈ N, then we
find that T ∧βp ≤ T ∧ddcvm ∧αp−1 on V \�c. Now let (hm)m be a sequence
of increasing convex positive functions such that

0 ≤ sup(t − c, 0) − hm(t) ≤ 1

m
, ∀m ∈ N, ∀t ∈ R

and
h′

m(t) = 1 for t ≥ c + 1

m
.

If we set um = hm ◦ vm, then clearly

ddcum ∧ αp−1 = (h′
m ◦ vm)ddcvm ∧ αp−1 + (h′′

m ◦ vm)i∂vm ∧ ∂vm ∧ αp−1

From the above equality and the hypotheses of (hm)m, it follows that ddcum ∧
αp−1 ≥ βp onB

(
z0,

r
2

)\�c+ 2
m

. Indeed, χ = 0 onB
(
z0,

r
2

)
. So whenu > c+ 2

m

we have
vm ≥ v − 1

m
= u − 1

m
> c + 1

m

Therefore h′
m ◦ vm = 1 and h′′

m ◦ vm = 0. Hence ddcum ∧ αp−1 = ddcvm ∧
αp−1 on B

(
z0,

r
2

) \ �c+ 2
m

. Moreover, (um) vanishes in a neighborhood of �c,
depending on m. Let g be a smooth function with compact support belonging
to � \ �c, g = 1 in a neighborhood of ∂B(z0, r), 0 ≤ g ≤ 1 and vanishes on
a neighborhood of (� \ �c) ∩ B

(
z0,

2
3 r

)
. Let Tεk

= T ∗ ϕεk
be a smoothing

of T which is of course convergent weakly to T . Let us set Br = B(z0, r) and
ω = B r

2
, hence

(4.1)

∫
ω\�

c+ 2
m

T ∧ βp ≤ lim
εk→0

∫
Br

Tεk
∧ ddcum ∧ αp−1

On the other hand,

(4.2)

∫
Br

Tεk
∧ ddcum ∧ αp−1 =

∫
Br

Tεk
∧ ddc(gum + (1 − g)um) ∧ αp−1

=
∫

Br

Tεk
∧ ddc(gum) ∧ αp−1

+
∫

Br

um(1 − g)ddcTεk
∧ αp−1

≤
∫

Br

Tεk
∧ ddc(gum) ∧ αp−1

+
∫

Br

um(1 − g)Sεk
∧ αp−1.
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The nice choice of g makes the sequence (gum) converges uniformly to
(v − c)g. Moreover, on Supp g ∩ Supp um the positive current T has locally
finite mass. So by Lemma 3.1, we obtain that the last right hand side integrals
in (4.2) are bounded independently of εk and m. In virtue of (4.1) we deduce
that T is of finite mass on ω \ �c.

Remark 4.4. In the case of strictly 0-convex functions, the condition
ddcS ≥ 0 (or ddcS ≤ 0) can be omitted. Indeed, in this case we can re-
place α by β in the proof of latter proposition. As S is positive, there exists
C > 0 so that∫

Br

Tεk
∧ ddcum ∧ βp−1

≤
∫

Br

Tεk
∧ ddc(gum) ∧ βp−1 +

∫
Br

um(1 − g)Sεk
∧ βp−1

≤
∫

Br

Tεk
∧ ddc(gum) ∧ βp−1 + C‖Sεk

‖Br

Corollary 4.5. Let � be an open subset of Cn and let u be a positive
plurisubharmonic function of class C 2 and 0 ≤ s < r such that Br{z ∈
�, u(z) < r} � �. Let T be a positive current of bidimension (p, p) on
� \Bs such that ddcT ≤ S on � \Bs for some positive and plurisubharmonic
(or ddc-negative) current S on �. Choose δ ∈ R such that 0 < δ < r − s and
Br+δ � �. Then there exist C1 > 0 and C2 > 0 such that∫

Br\Bs

T ∧ (ddcu)p ≤ C1

∫
C(r−δ,r+δ)

T ∧ (ddcu)p

+ C2‖u‖p−1
L ∞(L)

(‖S‖L + (p − 1)‖ddcS‖L)

where C(r − δ, r + δ) = {z ∈ �, r − δ < u(z) < r + δ} and L = Br+δ

Proof. We set ϕm = max
(
u − 1

m
− s, 0

) ∗ αεm
. For εm small enough have

ddcϕm ≥ 1
2 ddcu on

{
u > 2

m
+ s

}
, then

(4.3)
1

2

∫
C( 2

m
+s,r)

T ∧ (ddcu)p ≤ lim
εk→0

∫
Br

Tεk
∧ ddcϕm ∧ (ddcu)p−1

Let g be a smooth function with support in C(r −δ, r +δ) such that 0 ≤ g ≤ 1
and g = 1 on a neighborhood of ∂Br . The sequence gϕm converges toward
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g(u − s) in C 2. Then by similar argument as in Proposition 4.3, we have∫
Br

Tεk
∧ ddcϕm ∧ (ddcu)p−1 =

∫
Br

Tεk
∧ ddc(gϕm + (1 − g)ϕm) ∧ (ddcu)p−1

=
∫

Br

Tεk
∧ ddc(gϕm) ∧ (ddcu)p−1

+
∫

Br

ϕm(1 − g)ddcTεk
∧ (ddcu)p−1

≤
∫

Br

Tεk
∧ ddc(gϕm) ∧ (ddcu)p−1

+
∫

Br

ϕm(1 − g)Sεk
∧ (ddcu)p−1

and by Lemma 3.1, there exist C1 > 0 and C2 > 0 independent of m and εk

such that

lim
εk→0

∫
Br

Tεk
∧ ddcϕm ∧ (ddcu)p−1

≤ C1

∫
Supp g

T ∧ (ddcu)p + C2‖u‖p−1
L ∞(L)

(‖S‖L + (p − 1)‖ddcS‖L)

The conclusion follows by letting m tends to ∞ in (4.3).

Remark 4.6. If u(z) = |z|2, then we don’t need the plurisubharmonicity
of S in Corollary 4.5.

Theorem 4.7. Let � be an open subset of Cn and u be a positive strictly
k-convex function on �. Set A = {z ∈ � : u(z) = 0} and T be a positive
current of bidimension (p, p) on �\A such that ddcT ≤ S on �\A for some
positive and plurisubharmonic (or ddc-negative) current S on �. If p ≥ k+1,
then T̃ exists. If p ≥ k + 2, ddcS ≤ 0 and u is of class C 2, then d̃dcT exists
and d̃dcT = ddcT̃ .

Notice that, for strictly 0-convex functions we only need the positivity of S

to find T̃ , thanks to Remark 4.4.
Proof. If p ≥ k + 1, then by the previous proposition T̃ exists. To show

the second part we first note that S − ddcT is positive ddc-negative current of
bidimension (p−1, p−1) on �\A. So if p−1 ≥ k+1, then ˜S − ddcT exists.
This implies that d̃dcT exists, and by ([10], Theorem 4) the result follows.

Corollary 4.8. Let � be an open subset of Cn and A be a Cauchy-Riemann
variety of class C 1 in � with dimension k. Let T be a positive current of
bidimension (p, p) on � \ A such that ddcT ≤ S on � \ A for some for some
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positive ddc-negative current S on �. If p ≥ k+1, then T̃ exists. If p ≥ k+2,
then d̃dcT exists and ddcT̃ = d̃dcT .

Proof. By Theorem III.6 and Theorem III.7 in [13], locally there exists a
positive strictly k-convex function u of class C 2 such that A = u−1({0}). Then
the result follows from Theorem 4.7.

As we saw in the case of pluripolar sets A, the condition on the Hausdorff
dimension of A is sharp. But using Proposition 4.3, we can obtain the extension
in the case of compact pluripolar sets, regardless the greatness of its Hausdorff
dimension.

Theorem 4.9. Let A be a compact complete pluripolar subset of an open
subset � of Cn and T be a positive (p, p) current on �\A such that ddcT ≤ S

on � \ A for some positive current S on �. If p ≥ 1, then T̃ exists and
R = d̃dcT − ddcT̃ is a positive current supported in A.

Proof. By Proposition II.2. in [13], there exists a strictly pseudoconvex
open set �′ such that A ⊂ �′ � �, and a negative plurisubharmonic function u

on �′ satisfying that A = {z ∈ �′, u(z) = −∞} and such that eu is continuous.
Let ϕ be an exhaustion continuous strictly plurisubharmonic function on �′
and set c = sup{ϕ(z), z ∈ A}. Now consider the following sequence

um = sup

(
ϕ − c − 1

m
, e( 1

m
)u+|z|2 − 1

m
, 0

)

Since ϕ is exhaustion, then there exists �′′ � �′ and contains A such that
um = ϕ − c − 1

m
on �′ \ �′′ for all m. Now consider Am = {z ∈ �′, um = 0}

and g ∈ C ∞
0 (� \ �′′), 0 ≤ g ≤ 1 and g = 1 in a neighborhood of ∂�′. By

similar argument as in Proposition 4.3, one can show that∫
�′\Am

T ∧ βp < ∞

independently of m. Hence T̃ exists, and by [12], the current R is positive and
supported in A.

If T is a positive closed current, Theorem 4.9 is due to El Mir [13]. The case
where T is a positive ddc-negative current is considered in [10], they proved
that ddcT̃ = d̃dcT , if p ≥ 2. Recently, Dabbek and Noureddine [9] studied
the case when T is a quasi-plurisuperharmonic current.

In what remains in this paper we suppose that A is a closed obstacle.

Theorem 4.10. LetAbe a closed subset of an open subset�of Cn andT be a
negative current of bidimension (p, p) on �\A such that ddcT ≥ −S on �\A
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for some positive current S on �. Assume that H2p−2(Supp T ∩ A) is locally
finite. Then T̃ exists. If ddcS ≤ 0, then d̃dcT exists and R = d̃dcT − ddcT̃ is
a negative current supported in A.

The same result obtained by Harvey [17] when T is a closed positive current
and H2p−1(Supp T ∩A) = 0. The case when S = 0 due to Dabbek, Elkhadhra
and El Mir [10]. In [9], Dabbek and Noureddine studied the case when T is a
quasi-plurisuperharmonic current.

Proof. Our problem is local. So we may assume that 0 ∈ Supp T ∩ A

and our aim now is studying the mass of T in a neighborhood of 0. Since
H2p−1(Supp T ∩A) = 0, there exist a system of coordinates (z′, z′′) of Cp−1 ×
Cn−p+1 and plydisk �p−1×�n−p+1 ⊂ Cp−1×Cn−p+1 such that (A∩Supp T )∩
(�p−1×∂�n−p+1) = ∅. Moreover, for any projection πI : Cn → Cp−1 and any
strictly multi-index I = (i1, . . . , ip−1), one has πI {0} ∩ (Supp T ∩ A) = {0}
(see [19], Corollary 4 (i)). Let 0 < t < 1 such that �p−1 × {z′′, t < |z′′| <

1} ∩ (Supp T ∩ A) = ∅. For each z′ ∈ �p−1, we set Az′ = (Supp T ∩ A) ∩
({z′} × �n−p+1). Since H2p−2(Supp T ∩ A) is locally finite, then again by
([19], Corollary 4 (ii)) we have that H0(Az′) is finite, and we find that Az′ is a
discrete subset for a.e z′. Without lose of generality, we may assume that Az′ is
reduced to a single point (z′, 0). On the other hand, T is a C-normal current on
�\A, so it is C-flat on �\A (see [4], pp. 573–574). The slice 〈T , πI , z

′〉 exists
for a.e z′, and is a negative current of bidimension (1, 1) on � \Az′ , supported
in {z′} × �n−p+1 such that ddc〈T , πI , z

′〉 ≥ 〈−S, πI , z
′〉 on � \ Az′ . Let K be

a compact subset of �p−1 ×�n−p+1. Since T is negative, it is enough to show
that ∫

K\A
−T ∧ π∗

I β ′p−1 ∧ β < ∞

where β ′ = ddc|z′|2. Applying Remark 4.6 on the current −T , we obtain∫
�n−p+1((z′,0),1)\Az′

〈−T , πI , z
′〉 ∧ β

≤ C1

∫
{z′′∈�n−p+1,|z′′|>t}

〈−T , πI , z
′〉 ∧ β + C2‖〈S, πI , z

′〉‖L

where L = (1 + ε)�n−p+1, for small ε > 0. Now, by slice formula we get∫
K\A

−T ∧ π∗
I β ′p−1 ∧ β(4.4)

≤ C

∫
z′

(∫
�n−p+1((z′,0),1)\Az′

〈−T , πI , z
′〉 ∧ β

)
β ′p−1
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≤ C ′
1

∫
z′

(∫
{z′′∈�n−p+1,|z′′|>t}

〈−T , πI , z
′〉 ∧ β

)
β ′p−1

+ C ′
2

∫
z′

(∫
L

〈S, πI , z
′〉
)

β ′p−1

≤ D1

∫
�p−1×{z′′,t<|z′′|<1}

−T ∧ π∗
I β ′p−1 ∧ β

+ D2

∫
�p−1×L

S ∧ π∗
I β ′p−1

As −T is of locally finite mass outside A and S is positive, the last right
hand side integrals in (4.4) are bounded. Hence, T̃ exists. Now, assume that
ddcS ≤ 0. We want to show the existence of d̃dcT . As we saw above, for almost
every z′, the current 〈T , πI , z

′〉 is negative and ddc〈T , πI , z
′〉 ≥ 〈−S, πI , z

′〉
apart of Az′ , which is complete pluripolar. So by Theorem 3.3, ˜〈T , πI , z′〉
exists and 〈R, πI , z

′〉 = 〈d̃dcT , πI , z
′〉 − 〈ddcT̃ , πI , z

′〉 is negative for a.e z′.
By similar argument as above we find that d̃dcT exists. Indeed, for K compact
subset of �p−1 × �n−p+1 we have∫

K\A
(ddcT + S) ∧ π∗

I β ′p−1

≤ B

∫
z′

(∫
�n−p+1((z′,0),1)\Az′

〈(ddcT + S), πI , z
′〉
)

β ′p−1.

As 〈d̃dcT , πI , z
′〉 exists, the right hand side integral in the previous inequality

is bounded. So, ˜ddcT + S exists, implies that d̃dcT exists. Remains to show
that R is negative, so take a positive function ϕ ∈ D(�). By slice formula, we
have

(4.5)

∫
R ∧ π∗

I β ′p−1 ∧ ϕ =
∫

z′
〈R, πI , z

′〉(ϕ)β ′p−1 ≤ 0

Hence, R ∧ π∗
I β ′p−1 ≤ 0. Since (4.5) true for almost all choice of unitary

coordinates (z′, z′′), the current R is negative and supported in A.

Remark 4.11. In the previous theorem, the currents T and ddcT are C-
normal on � \A, so the extensions T̃ and d̃dcT are C-flat (see [4]). Therefore,
by the support theorem ddcT̃ = d̃dcT as soon as H2p−2(Supp T ∩ A) = 0.
Moreover, if H2p−4(Supp T ∩ A) is locally finite, then by [10], the extension
−̃S is positive and plurisubharmonic. Therefore the current T̃ has the same
properties of T .

As usual the case when T and ddcT coincide in the sign is not the op-
timal case. We see in ([10], Corollary 6), to find the extension of the positive
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plurisubharmonic current T apart of the closed set A, the Hausdorff dimen-
sion of A need to be reduced. Actually, we guarantee the existence of T̃ if
H2p−3(A) = 0. In our setting we have the following version.

Corollary 4.12. Let A be a closed subset of an open subset � of Cn and
T be a positive current of bidimension (p, p) on � \ A such that ddcT ≥ −S

on � \ A for some positive and ddc-negative current S on �. Assume that
H2p−4(A) is locally finite. Then T̃ exists. Moreover, d̃dcT = ddcT̃ .

Proof. As ddcT + S is a positive and ddc-negative current of bidimension
(p − 1, p − 1), the extension ˜ddcT + S exists by the previous theorem. Thus
d̃dcT exists, and the results follows thanks to Theorem 5 in [10].
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