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ORIENTATIONS ON 2-VECTOR BUNDLES AND
DETERMINANT GERBES

THOMAS KRAGH∗

Abstract
In a paper from 2009, a half magnetic monopole was discovered by Ausoni, Dundas, and Rognes.
This describes an obstruction to the existence of a continuous map K(ku) → B(ku∗) with
determinant like properties. This magnetic monopole is in fact an obstruction to the existence of
a map from K(ku) to K(Z, 3), which is a retract of the natural map K(Z, 3)→ K(ku); and any
sensible definition of determinant like should produce such a retract. In this paper we describe
this obstruction precisely using monoidal categories. By a result from 2011 by Baas, Dundas,
Richter and Rognes K(ku) classifies 2-vector bundles. We thus define the notion of oriented 2-
vector bundles, which removes the obstruction by the magnetic monopole. We use this to define
an oriented K-theory of 2-vector bundles with a lift of the natural map from K(Z, 3). It is then
possible to define a retraction of this map and since K(Z, 3) classifies complex gerbes we call this
a determinant gerbe map.

1. Introduction

Let V be the category with objects Cn for n ≥ 0 and morphisms the complex
linear isomorphisms. This is a symmetric bimonoidal (in fact bipermutative)
category with respect to ⊕ and ⊗. So, as in [5] one can form the category
Mn(V ) with objects being n by n matrices of objects in V and morphisms the
entry-wise isomorphisms. The category Mn(V ) has a monoidal product given
by the usual matrix product with addition and multiplication replaced by ⊕
and ⊗ respectively. By taking dimension entry-wise we get a map from the
objects of Mn(V ) to Mn(N0) ⊂ Mn(Z) (Standard matrices with [non-negative]
integer entries). We define the weakly invertible matrices Gln(V ) as the full
sub-category of those objects which map to invertible matrices in Mn(Z). In
[5] the authors defined charted 2-vector bundles of rank n. They proved that
|BGln(V )| defines a classifying space for equivalence classes of charted 2-
vector bundles of rank n. Here B is a categorical bar construction and | · |
denotes taking nerve and geometric realization.

The disjoint union
∐

n≥0 |BGln(V )| of these classifying spaces is a mon-
oid under block sum operation. In [5] the authors conjectured that the group

∗The author was funded by the Topology in Norway Project, and would like to thank John
Rognes and Bjørn Jahren for many conversations on the subject.

Received 15 July 2011, in final form 4 October 2012.



64 thomas kragh

completion

K(V ) = �B
(∐

n≥0

|BGln(V )|
)
� Z× |BGl∞(V )|+

is equivalent as an infinite loop space to K(ku). This conjecture was proven by
the authors in [4]. Here ku = Z×BU represents connective complex K-theory.
The K-theory K(ku) may be defined as the algebraic K-theory of ku using the
work of Elmendorf and Mandell in [7].

A complex gerbe (defined in [6]) is equivalent to a charted 2-vector bundle of
rank 1. These are classified by the Eilenberg-Maclane space K(Z, 3). Indeed,
|BGl1(V )| � K(Z, 3). So, the inclusion Gl1(V )→ Gln(V ) (using block sum
with the n− 1 by n− 1 unit) defines a canonical map

(1) K(Z, 3) � |BGl1(V )| → |BGln(V )|.
In [1], the authors proved that if n is large enough then the image of the
canonical generator of π3(K(Z, 3)) under the above map is divisible by two
(modulo torsion). As noted in [1] this means that no retraction back to K(Z, 3)

of the map in Equation (1) exists. This provides and obstruction to defining a
determinant-like map

|BGln(V )| → |BGl1(V )|.
Indeed, any sensible definition here of determinant-like would yield a retrac-
tion.

In light of the result that K(V ) � K(ku), and since a determinant really
should be a signed sum of products of the entries, a more natural recipient
of a determinant map would be |BGl1(V )|. Here V is the ring completion
constructed in [2], which adds inverse objects with respect to ⊕ (up to an
equivalence that we will ignore) while retaining the symmetric bimonoidal
structure. By Theorem 1.3 in [2] we have |V | � Z × BU = ku, and so
|Gl1(V )| � {±1} × BU = ku∗, implying that

|BGl1(V )| � B⊗(ku∗).

However, since B⊗ku∗ has K(Z, 3) � B⊗BU(1) as a retract (see Corollary 6.2)
the magnetic monopole is also an obstruction for the existence of this more
natural notion of determinant. Indeed, such a determinant composed with the
retraction to K(Z, 3) would yield a retraction of Equation (1).

The reader might wonder at this point why the existence of the ring com-
pleted symmetric bimonoidal category V does not immediately give a determ-
inant map by making a choice of the orderings of the terms in the usual de-
terminant formula for commutative rings. The reason for this is a little subttle.
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Indeed, By making a choice of inverse for C1 with respect to ⊕ in V and
tensoring with this as a choice of negative for all other objects A one may,
indeed, define a functor

Gln(V )→ Gl1(V ).

However, when trying to prove the product formula one needs to “coherently
cancel terms”, which in this case is not possible (proved by the obstruction).
Indeed, one gets into trouble when making choices to pair up terms and can-
celing. This cannot be done in a way that allows for the definition of the natural
transformation which are supposed to intertwine the functor with the associ-
ators and the products. So, it is not possible to construct this as a monoidal
functor, and subsequently the functor does not deloop.

In this paper, we describe the obstruction given by the half magnetic mono-
poles in the framework of monoidal categories. Using this, we define a natural
notion of an orientation on a 2-vector bundle. Furthermore, we define a mon-
oidal category O(V n) such that |BO(V n)| classifies oriented 2-vector bundles.
There is a natural, forgetful, and strict monoidal functor from O(V n) to Gln(V )

inducing a map of classifying spaces

(2) |BO(V n)| → |BGln(V )|.
We then describe the precise obstruction to lifting a map f : X→ |BGln(V )|
to the oriented “cover”. This is given by a characteristic class in H 3(X, Z/2Z).
We then describe a canonical lift of the inclusion of gerbes in Equation (1).
We finally construct a determinant gerbe functor from O(V n) back to Gl1(V ).
The two maps are easily seen to define an inclusion with a retraction

(3) K(Z, 3)→ |BO(V n)| → K(Z, 3).

The notion of orientations then makes it possible to define an oriented version
of K-theory of V as

(4) Kor(V ) = �B
(∐

n∈N

|BO(V n)|
)
� Z× |BO(V ∞)|+.

This comes with a canonical map to K(V ) � K(ku).
In Section 2, we properly define the bipermutative category V . We also

define a related bipermutative category L . Indeed, in light of Lemma 2.6, one
may heuristically think of L as a categorical model for the second Postnikov
section of V group-completed with respect to ⊕ (i.e. a categorical model for
the second Postnikov section of |V |).
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In Section 3, we describe the category of matrices Mn(C ) in a bipermutat-
ive category C . We the define the weakly invertible sub-category Gln(V ) of
Mn(V ). We also construct determinant-like functors to L . These turn out not
to be monoidal even though they preserve the product.

In Section 4, we define O(V n), which is an oriented version of Gln(V ). The
structure in O(V n) is inspired by the determinant-like functors from Section 3.
We are then able to define determinant-like monoidal functors from O(V n) to
Gl1(V ).

In Section 5, we recall the definition of charted 2-vector bundles and define
oriented charted 2-vector bundles. We then describe the obstruction for a 2-
vector bundle to be oriented as a characteristic class in the third cohomology
class of the base.

In Section 6, we define (charted) gerbes. Then, we lift the inclusion of gerbes
to oriented 2-vector bundles. Using the monoidal functor from Section 4 we
now obtain a splitting back to gerbes as in Equation (3).

In Section 7, we generalize the block sum construction to the oriented
categories. This makes it possible to define Kor(V ) as in Equation (4).

An earlier version on arXiv.org includes a section on connective structures.
This has been removed due to an error.

2. The Bipermutative Categories V and L

A bipermutative category (C ,⊕,⊗, 0, 1) is a symmetric bimonoidal category
in which the following operations are strict;

• the unit 0 for ⊕,

• the unit 1 for ⊗,

• associativity for both ⊕ and ⊗, and

• the right distributive law (A⊕ B)⊗ C = (A⊗ C)⊕ (B ⊗ C).

Here the equality means that the two functors representing the operations are
equal. All the coherency isomorphisms in a bipermutative category are gener-
ated by the two twists c⊕ and c⊗. Indeed, coherencies for the left distributive
law are given by

C(A⊕ B)
c⊗C,A⊕B−−−−→ (A⊕ B)C = AC ⊕ BC

c⊗A,C⊕c⊗B,C−−−−−−→ CA⊕ CB.

Here we have omitted the ⊗’s for brevity. For a complete list of the diagrams
involving c⊗ and c⊕ that need to commute in a bipermutative category we refer
to [7].
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Definition 2.1. Let � be the category with

• objects the sets n = {1, . . . , n} for n ∈ N0 and

• morphisms the permutations σn ∈ �n of n.

Note that N0 = {0, 1, . . .} and 0 = ∅.
The sum functor,

⊕: � ×�→ �,

is defined by concatenation. Indeed, on objects it is given by addition in N0.
For morphisms σn ∈ Aut(n) and σm ∈ Aut(m) the automorphism σn ⊕ σm

of n+m is defined by applying σn to the first n elements and σm to the last m

elements.
The product functor,

⊗: � ×�→ �,

is defined by products of sets. Indeed, on objects it is given by multiplication
in N0. We identify n×m with nm using lexicographical ordering. This means,
the first m elements in nm are identified with {1} × m, the next m elements
with {2} × m, etc. On morphisms, ⊗ is defined by the product permutation
using this identification.

These operations are strictly associative and have strict units. They are also
strictly symmetric (commutative) on the level of objects, but not on the induced
morphisms. However; choosing the obvious permutations

c⊕n,m: n+m→ m+n and c⊗n,m: nm→ mn

as coherency isomorphisms, it is well-known that we get the structure of a
bipermutative category (see e.g. [9]).

The category � is an initial object in the category of bipermutative categor-
ies.

Definition 2.2. Let V be the topological category with

• one object Cn for each n ∈ N0, and

• morphisms the linear automorphisms of Cn with the usual topology.

The direct sum functor,⊕, is defined by identifying Cn⊕ Cm with Cn+m in the
standard way. The tensor product functor,⊗ is defined by identifying Cn⊗Cm

with Cnm by using the lexicographical ordering. That is, we identify

e1 ⊗ e′1, . . . , e1 ⊗ e′m, e2 ⊗ e′1, . . . , en ⊗ e′m

with the standard basis in Cnm, where e1, . . . , en and e′1, . . . , e′m are the standard
bases for Cn and Cm respectively. Both operations are strictly associative with
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units. The choices involved in identifying the bases are the same as the choices
made for the elements in �. So, using the coherency isomorphisms from �

on the basis elements induces linear coherency isomorphisms for V , making
it bipermutative.

The category V is equivalent as a symmetric bimonoidal category to the
category of finite dimensional complex vector spaces and isomorphisms. By
construction we have a canonical bipermutative functor

iV : �→ V .

Definition 2.3. Let L be the topological category with
• one object Cn = C for each n ∈ Z, and
• morphisms the linear automorphisms C∗n = C∗ with the usual topology.

We identify the total set of morphisms with Z × C∗ in the obvious way. Then
the direct sum functor is defined by

(n, a)⊕ (m, b) = (n+m, ab).

The tensor functor is defined by

(n, a)⊗ (m, b) = (nm, ambn).

For the sum we define the coherency twist

(5) c⊕n,m = (n+m, (−1)nm): Cn ⊕ Cm→ Cm ⊕ Cn.

For the product we define the coherency twist

(6) c⊗n,m =
(
nm, (−1)

n(n−1)m(m−1)

4
)
: Cn ⊗ Cm→ Cm ⊗ Cn.

As the following lemma shows this makes L a bipermutative category.

Both products in L are strictly associative and symmetric (commutative).
So, the coherency isomorphisms could have been chosen to be identities. How-
ever, that is not the structure we will need. In light of this it is convenient to
introduce the following terminology. Let T : C × C → C × C be the usual
twist functor.

Definition 2.4. A monoidal category (C , •) is called weakly strict sym-
metric if the functors •: C × C → C and • ◦ T : C × C → C are equal.

The term strict is, as usual, reserved for the case where the coherency
isomorphism is the identity. Tautologically strict implies weakly strict. The
category L is a weakly strict symmetric monoidal category.
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It was noted by John Rognes that there are only two possible E∞-ring
structures on the topological space Z×BU(1) � Z×K(Z, 2). The non-trivial
of these arise as the geometric realization of L with the structure we defined
above, and had we defined the coherency isomorphisms in L to be identities
we would get the trivial E∞-ring structure.

Lemma 2.5. The category L is bipermutative.

Proof. Since C∗ is Abelian, f ⊕ g = g ⊕ f , and f ⊗ g = g ⊗ f the
diagrams

Cn ⊕ Cm
f⊕g−−−−−→ Cn ⊕ Cm

c⊕n,m c⊕n,m

Cm ⊕ Cn
g⊕f−−−−−→ Cm ⊕ Cn

Cn ⊗ Cm
f⊗g−−−−−→ Cn ⊗ Cm

c⊗n,m c⊗n,m

Cm ⊗ Cn
g⊗f−−−−−→ Cm ⊗ Cn

commute. So, we need to check that the diagrams spelled out in [7] involving
c⊕n,m and c⊗n,m commute (we will not need the diagrams explicitly).

Let L+ be the full sub-category of L defined by the non-negatively indexed
objects. Define the functor

iL+ : �→ L+

by the obvious bijection on objects and by taking the sign of the permutation on
morphisms. This preserves sums, tensor products, and coherency isomorph-
isms. Notice in particular the importance of the signs in Equation (5) and
Equation (6). In � the diagrams in question commutes (� is bipermutative).
So, because iL+ is a bijection on objects we see that L+ is bipermutative.

The coherency signs in L for any coherency isomorphism only depend on
the objects indices modulo 4. So, the extension of the coherency isomorphisms
in L+ to negatively indexed objects in L (using the same formulas) will still
be bipermutative.

Define the functor

(7) �: V → L

by Cn �→ Cn on objects and by taking determinants of morphisms. This pre-
serves both sum and product because the determinant satisfies

det(f ⊕ g) = det(f ) det(g)

and
det(f ⊗ g) = det(f )dim(g) det(g)dim(f ).
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Here dim(f ) is the dimension of the underlying vector space. The latter can be
proved using (f ⊗g) = (f ⊗Id)◦(Id⊗g). This explains our definition of sum
and product in L . This is a bipermutative functor because it takes coherency
isomorphisms to coherency isomorphisms. Indeed, the sign of a permutation
is the determinant of the associated permutation matrix, which explains why
we chose the non-trivial coherency isomorphisms in L .

We will not use the following in our construciton, but it is very helpful to
keep in mind. Indeed, it tells us that L may be thought of as a categorical
model for the second Postnikov section of the group completion of V with
respect to ⊕. Note that it is very difficult to group-complete a general biper-
mutative category, with respect to the sum, while simultaneously retaining
both products. However, this is precisely what is carried out in [2] and what
we denoted by V in the introduction, but we will not use this here.

Lemma 2.6. The induced map on group-completed classifying spaces

�B|�|: ku→ �B|L | � |L | � Z×K(Z, 2),

is the projection to the second Postnikov section in the category of ∞-loop
spaces.

Sketch of proof. The geometric realizations has infinite loop space struc-
tures induced by the symmetric monoidal structure⊕ and since � is symmetric
monoidal with respect to⊕ it cannonically has the structure of an infinite loop
map. So all we need to check is that it is a πk-equivalence for k ≤ 2.

The functor � sends objects N0 to Z by the standard inclusion. So, we need
only check that the connectivity of the map is at least three on the components
corresponding to n ∈ N0, for large enough n. This corresponds to being at
least 2-connected on the space of automorphisms for large n. The determinant

Gln(C)→ C∗

satisfies this for all n ≥ 1.

3. Matrices and Determinants of Bipermutative Categories

In this section, we define the monoidal category Mn(C ) of matrices in a biper-
mutative category C . In the case of C = L we define the sub-monoidal
category Gln(L ) of invertible objects. We then use this and the functor �

from Equation (7) to define the sub-monoidal category Gln(V ) of weakly in-
vertible objects in Mn(V ). Furthermore, we construct a product preserving
determinant-like functor from Gln(V ) to L , which we will see is actually not
monoidal.
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Definition 3.1. For any bipermutative category C define Mn(C ) as the
category with
• objects n by n matrices E = (Eij )

n
i,j=1 of objects Eij in C and

• morphisms n by n matrices φ = (φij )
n
i,j=1 of morphisms φij in C (with

the obvious source and target maps).

We define a monoidal product

·: Mn(C )×Mn(C )→ Mn(C )

by basically copying the standard matrix multiplication formula:

(8) (E · F)ik =
n⊕

j=1

(Eij ⊗ Fjk).

We need not specify parentheses because ⊕ is strictly associative. There are
obvious associativity coherency isomorphisms (from now on called associat-
ors) α = αA,B,C induced from the coherency isomorphisms in C . These make
Mn(C ) a monoidal category – with a strict unit (c.f. [5]).

Notice that this category has a natural topology induced from any topology
on C .

Remark 3.2. We could similarly define the sum of matrices and get a
bimonoidal category, but this is not used in the following.

Let

(9) �∗: Mn(V )→ Mn(L )

denote the functor induced by �. This is a strict monoidal functor because �

is a bipermutative functor.
Let

detL : Mn(L )→ L

be given on the total morphisms space of Mn(L ) by taking the determinant
using ⊕ and ⊗ with coefficients in L . This is well-defined because the total
morphism space of L with⊕ and⊗ can be identified with a commutative ring
structure on Z × C∗ (Definition 2.3). The following lemma tells us that detL

defines a functor. However, Lemma 3.7 tells us that it is not monoidal. This
may be slightly surprising since by construction it preserves products.

Lemma 3.3. The map

detL : Mn(L )→ L

defines a functor.
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Proof. To see that it is a functor we calculate directly. Let D = (Dij )
n
i,j=1

be any matrix in Mn(Z). Let (φij ) be an automorphism in Mn(L ) of the cor-
responding matrix object (CDij

). Then we calculate

(10) detL ((Cdij
, φij )) =

(
Cdet(dij ),

n∏
i,j=1

φ
Cij

ij

)
,

where C is the matrix of cofactors of D. Recall that we can only compose
morphisms in Mn(L ) when the object matrices agree. So, all the cofactors are
the same for such. The lemma now follows because composition in L is given
by product on the second factor and composition in Mn(L ) is also given by
product on the second factor in each entry.

Define
detV = detL ◦�∗: Mn(V )→ L .

This functor preserves products because both detL and �∗ do so. However,
again Lemma 3.7 will tell us that it is not monoidal.

Definition 3.4. Define L ∗ to be the full subcategory of L with objects
C−1 and C1.

Using the identification in Definition 2.3 we see

Mor(L ∗) = {±1} × C∗.

This is obviously a permutative category with respect to ⊗. Since the twist
for ⊗ on the object pair (C−1, C1) is not the identity we still retain part of the
non-trivial coherency structure from L in L ∗.

Definition 3.5. Define L ∗+ to be the full sub-category of L with the single
object C1.

Definition 3.6. Let Gln(V ) be the full sub-category of Mn(V ) defined by
the pre-image of L ∗ using the the functor detV . Similarly, we define Gln(L )

to be the pre-image of L ∗ using the functor detL .

One may similarly define Sln(V ) and Sln(L ) as the pre-images of L ∗+. The
definitions imply that �∗ maps Gln(V ) to Gln(L ), and similarly for Sln(V )

and Sln(L ).
Objects in Gln(V ) are called weakly invertible matrices. The objects in

Gln(L ) are invertible. The definition of Gln(V ) is equivalent to the definition
in [5]. Indeed, the image object in L of detV is by Equation (10) the determin-
ant of the dimension matrix. So, we conclude that landing in L ∗ coresponds to
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having determinant of the dimension matrix equal to ±1, which is equivalent
to having an invertible dimension matrix.

Note that the categories Gl1(V ) and L ∗+ are isomorphic. Indeed, the functor
detV is an isomorphism of symmetric monoidal categories.

Lemma 3.7. For n > 1 the functors detV and detL are not monoidal (even
when restricted to the weakly invertible matrices).

Remark 3.8. The conclusion of Lemma 3.7 is very important and, as we
will see in Section 5, it is what turns into the need for orientations on 2-vector
bundles. It seems highly related to the Grassmann invariant (see [8]).

Proof. A monoidal functor has to preserve the associators. The category
L is strictly monoidal so the associators are all identities. We will describe
an associator in Gln(L ), which is sent to −1 ∈ Aut(C−1) by detL . This will
satisfy that the entries are objects Cn for n ≥ 0. So, it will also prove the lemma
for detV because �∗ sends some associator in Gln(V ) to this associator.

An example of this producing a minus sign for n = 2 is

α:

([
1 1
0 1

]
·
[

0 1
1 1

])
·
[

1 0
1 1

]
→

[
1 1
0 1

]
·
([

0 1
1 1

]
·
[

1 0
1 1

])
,

where k = Ck in L . This is an automorphism of the object

(11)

[
3 2
2 1

]
.

To see which one, we decorate the entries, and calculate:([
11 12

0 13

]
·
[

0 1a

1b 1c

])
·
[

1α 0
1β 1γ

]

=
[

12bα ⊕ 11aβ ⊕ 12cβ 11aγ ⊕ 12cγ

13bα ⊕ 13cβ 13cγ

]
,

[
11 12

0 13

]
·
([

0 1a

1b 1c

]
·
[

1α 0
1β 1γ

])

=
[

11aβ ⊕ 12bα ⊕ 12cβ 11aγ ⊕ 12cγ

13bα ⊕ 13cβ 13cγ

]
.

Here 12bα = 12⊗ 1b ⊗ 1α and similarly for the other terms. We used here that
the product of 0 with anything is strictly 0, and that 0 is a strict unit for ⊕.
We also used that 1 is a strict unit for ⊗, which implies that when either the
left or right distributive law is used in the calculation it is strict. We now see
that the associator is a twist isomorphism for ⊕ in the first two factors of the
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(1, 1) entry. This twist isomorphism is −1 ∈ Aut(C2). So, the total morphism
in entry (1, 1) is (−1) ∈ Aut(C3). The associator is the identity in all other
entries and so

detL (α) =
(

1 · 3− 2 · 2,
13(−1)1

1212

)
= (−1,−1) ∈ Z× C∗ = Mor(L ).

This example also works for larger n by doing block sum with identity
matrices. The block sum functor is described in more detail in Section 6.

For n = 4 one may take block sum with the identity on two of the three
matrices above and block sum with[

0 1
1 0

]

on the last. This produces an example in which the associator α is sent to an
automorphism of C1 and not of C−1. This shows that even restricting to Sln(V )

does not make detV monoidal for n ≥ 4.

4. Orientations on the Category Level

In this Section, we “enlarge” the categories Gln(V ) and Gln(L ) to oriented
versions O(V n) and O(L n). On these it is possible to define monoidal determi-
nant-like maps to the monoidal category (L ∗,⊗). We then construct a mono-
idal functor

G : O(V n)→ L ∗+ ∼= Gl1(V ),

which we use in Section 6 to (re-)construct gerbes from oriented 2-vector
bundles.

As a category we define O(V n) by

O(V n) = Gln(V )× BZ∗.

Here BZ∗ is the category with one object and automorphisms Z∗ = {±1}.
The category BZ∗ is strictly monoidal by defining the product to be equal to
the composition. The monoidal product on O(V n) (disregarding the associat-
ors) is defined coordinate-wise. However, we will “lift” the associators in the
following non-trivial way.

Let ϕ be any morphism in Gln(V ) such that detV (ϕ) = (±1,±1) (using
the identification of Mor(L ) = Z × C∗). Define sgn(ϕ) to be the sign in the
last factor (i.e. the morphism part of detV (ϕ)). The sign satisfies

• sgn(ϕ1 ◦ ϕ2) = sgn(ϕ1) sgn(ϕ2),
• sgn(ϕ1 · ϕ2) = sgn(ϕ1) sgn(ϕ2), and
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• sgn(IdA) = 1 for all objects A in Gln(V ).

The first and the last follow from Lemma 3.3. The second because detV pre-
serves products and

detV (ϕ1 · ϕ2) = detV (ϕ1)⊗ detV (ϕ2)

= (±1, sgn(ϕ1)
±1 sgn(ϕ2)

±1)

= (±1, sgn(ϕ1) sgn(ϕ2)).

Here we critically used that sgn(ϕi) = ±1.
For any associator α in Gln(V ) the sign sgn(α) is defined. Indeed, all

coherency isomorphisms in V have determinant ±1, and all sums, products
and compositions of such in L yield a sign. Using sgn we thus define the
associators α′ of O(V n) by

α′A,B,C = (αA,B,C, sgn(αA,B,C)).

Here αA,B,C is the corresponding associator in Gln(V ). Using that the pentagon
axiom in Gln(V ) is satisfied, and using the above properties of sgn, it is easy
to see that the diagram

((AB)C)D
α′A,B,C ·IdD−−−−−−−→ (A(BC))D

α′A,BC,D−−−−−−−→ A((BC)D)

α′AB,C,D IdA ·α′B,C,D

(AB)(CD)
α′A,B,CD−−−−−−−−−−−−−−−−−−−−−−−−−→ A(B(CD)).

commutes. Thus the pentagon axiom is also satisfied in O(V n) – making it
monoidal.

We may define O(L n) completely analogously using detL . We may also
define “lifted” functors

detor
L : O(L n)→ L ∗,

detor
V : O(V n)→ L ∗, and

�or
∗ : O(V n)→ O(L n),

defined on morphisms by

detor
L (f, s) = detL (f )⊗ (1, s),

detor
V (g, s) = detV (g)⊗ (1, s), and

�or
∗ (g, s) = (�∗(g), s).



76 thomas kragh

The result of tensoring with (1, s) is multiplication with the sign s on the
morphism in L ∗. This is true only in L ∗, not in all of L . So, it is in fact
very important that we have restricted to the weakly invertible matrices. These
oriented functors preserve products since the unoriented did and ⊗ is weakly
strictly symmetric in L . The point of the construction is that detor

L and detor
V

are in fact strict monoidal. Indeed, the signs of the associators α′ were chosen
such that they cancel with the sign that made detL and detV not be monoidal.

Corollary 4.1. The functors detor
V and detor

L are strictly monoidal.

There are canonical strict monoidal functors:

(12)
PV : O(V n)→ Gln(V )

PL : O(L n)→ Gln(L ),

defined by forgetting the sign.

Remark 4.2. The composites of PL and PV with detL and detV respect-
ively are not the oriented functors. Indeed, if we forget the sign we cannot
multiply by it. However, the diagram

O(V n)
�or∗−−−−→ O(L n)

PV PL

Gln(V )
�∗−−−−→ Gln(L )

is obviously a commutative diagram of monoidal functors.

Later when we want to construct gerbes we need a determinant-like map
landing in L ∗+, and not in L . So, consider the inclusion

L ∗+ → L ∗,

which is a strict symmetric monoidal functor. We have a left inverse (or pro-
jection)

(13) p: L ∗ → L ∗+

given by p(d, a) = (1, ad). This is not symmetric monoidal because the sym-
metry on −1 is not the identity. It is, however, strict monoidal because

p((d, a)⊗ (e, b)) = p(de, aebd) = (1, adbe)

= (1, ad)⊗ (1, be)

= p((d, a))⊗ p((e, b)),
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and all associators are identities. We thus define the strict monoidal functor G

by the composition

(14) G = (p ◦ detor
V ): O(V n)→ L ∗+ ∼= Gl1(V ).

5. Orientations on 2-Vector Bundles

In this section, we recall the definition of a charted 2-vector bundle on a topo-
logical space X. We then use the construction in Section 4 to define oriented
charted 2-vector bundles. Then we describe the precise obstruction for a 2-
vector bundle to be oriented. This turns out to be a characteristic class in the
third cohomology group of X (for well-behaved X).

Some of the following definitions are taken from [5] and [3]. In the following
X is a topological space.

Definition 5.1. An ordered open cover (U, J ) of X is a collection U =
{Uα | α ∈ J } of non-empty open sets Uα ⊂ X, indexed by a partially ordered
set J , such that

• the Uα cover X, and

• the partial ordering on J restricts to a total ordering on each finite subset
{α0, . . . , αp} of J for which the intersection Uα0...αp

= Uα0 ∩ · · · ∩Uαp

is nonempty.

As noted before there are induced topologies on the category Mn(V ), the
category Mn(L ), the category Gln(V ), the category Gln(L ), the category
O(V n), and the category O(L n). The objects in each of these form a discrete
space. Furthermore, all structures and functors constructed are easily seen to
be continuous. Let (C , ·) be a topological monoidal category with discrete
objects.

Definition 5.2. A principal C -bundle E on X is

1) an ordered open cover (U, J ) of X,

2) for each α < β in J an object Eαβ in C , such that for each α < β < γ

we have
Eαβ · Eβγ = Eαγ

on the level of objects, and

3) for each α < β < γ we have maps

φαβγ : Uαβγ → Mor(Eαβ · Eβγ , Eαγ ),

called the coherency maps such that
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4) the diagram

(15)

Eαβ · (Eβγ · Eγδ)
ααβγ δ−−−−−−−−−−→ (Eαβ · Eβγ ) · Eγδ

Id ·φβγ δ φαβγ ·Id

Eαβ · Eβδ −−−−−→
φαβδ

Eαδ ←−−−−−
φαγ δ

Eαγ · Eγδ

commutes for all points in each quadruple intersection Uαβγ δ .

Here ααβγ δ denotes the associator for the product · in C related to the two
different choices of parentheses. The diagram may be thought of as a cocycle
condition.

Note that the definition of principal C -bundles is obviously functorial with
respect to continuous strict monoidal functors.

Definition 5.3. A charted 2-vector bundle E of rank n ∈ N over X is
a principal Gln(V )-bundle. An oriented charted 2-vector bundle E of rank n

over X is a principal O(V n)-bundle.

This is slightly different from the definition in [5]. However, in the unori-
ented case the definition is equivalent in the following sense.

Definition 5.4. Two (oriented) charted 2-vector bundles Ei , i = 0, 1 over
X are equivalent if they are cobordant. I.e., if there exists a (oriented) charted
2-vector bundle E over X × [0, 1] such that E|X×{i} = Ei for i = 0, 1. Here
restriction of the ordered open cover removes the sets (and their indices) which
have empty intersection with X × {i}.

We use Definition 5.4, which is from [3], as opposed to the alternative in
[5]. Indeed, it is easier to work with. However, it is less explicit.

Recall the functor PV from Equation (12).

Definition 5.5. A charted 2-vector bundle is said to be orientable if it is
equivalent to PV (E ), where E is an oriented charted 2-vector bundle.

Lemma 5.6. For a charted 2-vector bundle E on an ordered open cover
(U, J ) the signs

sgn(ααβγ δ), α < β < γ < δ ∈ J

of the associators define a 3-cocycle in the Čech complex Č∗(U, {±1}). The
represented class in Čech cohomology only depends on the equivalence class
of the 2-vector bundle. Furthermore, this class is zero if and only if the vector
bundle is orientable.
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The following proof is very similar to the arguments in Section 4.
Proof. The Lane-Stasheff pentagon axiom tells us that

ααγ δε ◦ ααβγ ε = (ααβγ δ · IdEδε ) ◦ ααβδε ◦ (IdEαβ ·αβγ δε).

Taking sgn, and using the properties of sgn from Section 4, we get

sgn(ααγ δε) sgn(ααβγ ε) = sgn(ααβγ δ) sgn(ααβδε) sgn(αβγ δε),

which is the cocycle condition. Obviously the associated homology class only
depends on the equivalence class since the inclusions of X×{i} into X× [0, 1]
is a homotopy equivalence.

This class is zero if and only if there is a refinement (U ′, J ′) of the ordered
open cover and a chain a in Č2(U ′, {±1}) s.t. ∂a = sgn(α). Furthermore, such
a choice exactly corresponds to a lift of the coherency maps φαβγ to (φαβγ , a)

in O(V n) satisfying the diagram in Equation (15).

6. The Determinant Gerbe

In this section, we define gerbes and their inclusion into 2-vector bundles. We
then lift this to oriented 2-vector bundles and define a retraction back to gerbes.
As described in the introduction such a retraction does not exist for unoriented
2-vector bundles.

Definition 6.1. A charted gerbe is a charted Gl1(V )-bundle.

Note that Gl1(V ) has one object with automorphisms C∗. So, this is the
same as having a standard 2-cocycle with coefficients in C∗. So, the definition
is compatible with Brylinski’s definition of a charted gerbe in [6].

The block sum construction on matrices defines the strict monoidal functor

(16) S: Gln(V )× Glm(V )→ Gln+m(V ).

Let

(In−1)ij =
{

C0 i �= j

C1 i = j
.

be the n−1 by n−1 identity matrix in Gln−1(V ) (identity object). Block sum
with In−1 thus defines a strict monoidal functor

iG : Gl1(V )→ Gln(V ).

Of course to define the block sum with In−1 on morphisms we use the identity
morphism on In−1. The inclusion iG induces the standard inclusion of gerbes
into 2-vector bundles.
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The associator in Gl1(V ) is the associator for⊗ in V on the object C. This
means that it is the identity and has sign 1. The inclusion of Gl1(V )→ Gln(V )

may thus be lifted to the oriented category O(V n). Indeed, we have a strict
monoidal functor

ior
G : Gl1(V )→ O(V n),

given by block summing with In−1 and simply assigning the sign 1 to all
morphisms.

In [5] and [3] (and something similar appeared in [10]) it is described how
to construct a simplicial category BC from a monoidal category C . This has
the property that the geometric realization

|BC |
of the nerve of BC is a classifying space for equivalence classes of principal C -
bundles (for well-behaved X). There are certain conditions that C must satisfy,
but all the categories we consider here satisfy these. It is used repeatedly in
the following that B is a functor from the category of monoidal categories and
strict monoidal functors to simplicial categories.

Since Gl1(V ) has one object with automorphisms C∗ it follows that
|BGl1(V )| is a K(Z, 3) and in [1] it is proven that the map

|B(iG )|∗: π3(|BGl1(V )|)→ π3(|BGln(V )|)
sends the canonical generator to an element divisible by 2 modulo torsion.
Indeed, this is the magnetic monopole, which obstructs the existence of a
retraction back to |BGl1(V )| � K(Z, 3). The point of the orientations is that
the monoidal functor G from equation (14) provides a retraction:

|BG |: |BO(V n)| → |BGl1(V )| � K(Z, 3)

of |Bior
G |. We thus conclude that we have removed the obstruction and that any

half magnetic monopole must be a non-norientable 2-vector bundle over S3.
The following corollary is used only as motivation in the introduction.

However, it follows rather nicely from the construction thus far; and it puts a
nice perspective on some issues.

Corollary 6.2. There is a retraction of the inclusion

K(Z, 3) � B⊗BU(1)→ B⊗({±1} × BU) � B⊗(ku∗).

Note that this fact is equivalent to the fact that the third Postnikov section
of B⊗(ku∗) splits as K(Z/2, 1)×K(Z, 3).
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Sketch of proof. We know that the second Postnikov section of the loop
space of B⊗(ku∗) splits as Z/2×K(Z, 2). Indeed, the loops space is Z/2×BU .

By Lemma 2.6 we see that this second Postnikov section with the loop
structure coming from ⊗ is represented by (L ,⊗). So since the functor p

from Equation (13) is monoidal with respect to ⊗ we get the retraction as

B⊗(ku∗) P3−−→ |B⊗(L ∗)| |B⊗p|−−−−→ |BL ∗+| � K(Z, 3),

where P3 is the third Postnikov section.

Notice that in constructing p we used that the monoidal product⊗ is trivial.
However, it is not trivial as a symmetric monoidal product, and this is precisely
why the splitting can deloop once, but we cannot assume any more deloopings.

7. Oriented Block Sum and Kor(ku)

In this section we generalize the block sum functor from Equation (16) to the
oriented categories. We also define Kor(V ), which is an oriented version of
K(V ) � K(ku).

To generalize the block sum functor to the oriented categories we need to
incorporate the sign. So, we define the functor

Sor: O(V n)× O(V m)→ O(V n+m)

by block sum on objects, block sum on the first factor of the morphisms, and
by multiplying the signs on the second factor. This is obviously a product
preserving functor (by ignoring the coherencies in the definition of O(V n)).
So, if it preserves the associators it will be strictly monoidal. Since we know
standard block sum to be strictly monoidal all we need is to check the signs.
Again this works out because we restricted to the weakly invertible matrices.
Indeed, we see that

detV (S(αn, αm)) = detV (αn)⊗ detV (αm)

= (±1, sgn(αn))⊗ (±1, sgn(αm))

= (±1, sgn(αn) sgn(αm))

for αn and αm associators in Gln(V ) and Glm(V ) respectively. So, the sign of
the block sum of two associators is the product of the signs of the associators.
So, Sor is strictly monoidal.

We may thus define oriented K-theory of V as

Kor(V ) = �B
∐
n∈N

|BO(V n)| � Z× |BO(V ∞)|+,
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where the monoid structure on
∐

n∈N |BO(V n)| is induced by the block sum
functor Sor.
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