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DUAL-DEPTH ADAPTED IRREDUCIBLE
FORMAL MULTIZETA VALUES
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Abstract
Let �� denote the double shuffle Lie algebra, equipped with the standard weight grading and depth
filtration; we write �� = ⊕n≥3��n and denote the filtration by ��1 ⊃ ��2 ⊃ · · ·. The double
shuffle Lie algebra is dual to the new formal multizeta space ��� = ⊕n≥3���n, which is equipped

with the dual depth filtration ���1 ⊂ ���2 ⊂ · · ·Via an explicit canonical isomorphism ��
∼→ ���,

we define the “dual” in ��� of an element in ��. For each weight n ≥ 3 and depth d ≥ 1, we then
define the vector subspace ��n,d of �� as the space of elements in ��d

n − ��d+1
n whose duals lie

in ���d
n . We prove the direct sum decomposition

�� =
⊕

n≥3

⊕

d≥1

��n,d ,

which yields a canonical vector space isomorphism between �� and its associated graded for the
depth filtration, ��n,d � ��d

n/��d+1
n . A basis of �� respecting this decomposition is dual-depth

adapted, which means that it is adapted to the depth filtration on ��, and the basis of dual elements
is adapted to the dual depth filtration on ���. We use this notion to give a canonical depth 1
generator fn for �� in each odd weight n ≥ 3, namely the dual of the new formal single zeta value
ζ(n) ∈ ���n. At the end, we also apply the result to give canonical irreducibles for the formal
multizeta algebra in weights up to 12.

1. Formal multizeta values and the double shuffle

We begin by briefly recalling the definitions of the Hopf algebra of formal
multizeta values, the double shuffle Lie algebra, their duals, and the relations
between them.

Consider the following diagram, in which the four top spaces are Hopf
algebras. The top right-hand space is the free polynomial ring in two non-
commutative variables, and the top left-hand space is its dual, with the dual of
a word w ∈ Q〈x, y〉 denoted by the formal symbol Z(w). The space Q〈x, y〉
is equipped with the standard coproduct defined by �(x) = x⊗1+1⊗x and
�(y) = y⊗1+1⊗y, and its dual is equipped with the Goncharov coproduct
�G (cf. [4]). The multiplication on Q[Z(w)] is the shuffle; the multiplication
on Q〈x, y〉 is difficult to write down explicitly, but is defined by being dual
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to �G. The top horizontal arrow simply maps a word w to the formal dual
symbol Z(w).

(1)

Q[Z(w)] ∼←−−−−− Q〈x, y〉

FZ ∼←−−−−−−−− FZ ∗.

��� ∼←−−−−−−−−− ��.

The Hopf algebra of formal multizeta values FZ is the quotient of Q[Z(w)]
modulo the regularized shuffle and stuffle relations; we write Z(w) for the
image of Z(w) in this space.

All spaces in the diagram inherit the positive weight grading from the top
level, which is simply the degree of monomials in x and y. On the left-hand
side of the diagram, this follows from the fact that the linear relations defining
the quotients all take place within fixed weights. In particular, the weight 0
part of the top four spaces is equal to Q.

At the bottom left is the Lie coalgebra of new formal multizeta values, ob-
tained by quotienting FZ by the ideal generated by FZ 0 = Q, by Z(xy) (usu-
ally denoted Z(2) under the frequently used notation Z(xk1−1y . . . xkr−1y) =
Z(k1, . . . , kr) for words w ending in y), and by products (FZ≥1)

2. The Gon-
charov coproduct passes to a Lie cobracket δG on ��� (by first removing the
primitive part, i.e. setting �′G(x) = �G(x)− x ⊗ 1− 1⊗ x, and then taking
δG to be �′G modulo products). Any vector space basis of ���, together with 1
and Z(2), yields a system of multiplicative generators (“irreducibles”) for the
Q-algebra FZ . One of the frequently asked questions about FZ is whether
there exists a canonical, or at least a very natural system of irreducibles.

The dual of ��� is known as the double shuffle Lie algebra ��. The horizontal
arrows in the diagram are duality isomorphisms obtained by restricting the top
arrow w �→ Z(w) to the lower right-hand entries of the diagram, which are
subsets of Q〈x, y〉.

The space Q〈x, y〉 is equipped with a depth filtration defined by taking the
depth of a polynomial f (x, y) to be the smallest number of y’s occurring in
any monomial of f ; the space Qd〈x, y〉 is the vector space of polynomials
of depth ≥ d. This is a decreasing filtration Qd〈x, y〉 ⊃ Qd+1〈x, y〉, and
by intersection it induces a decreasing filtration on the subspaces FZ ∗ and
���∗ = ��. Each of the left-hand spaces A is equipped with the dual filtration,
in which on each horizontal level A ← A ∗, we define A d to be the subspace
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of A annihilated by (A ∗)d+1; thus the filtration on the left-hand spaces is
increasing, A d ⊂ A d+1. The filtrations induce filtrations on each weight
graded piece An and A ∗n . By duality, on each horizontal level A ← A ∗ of
the diagram we have

(2) (A ∗)dn/(A
∗)d+1

n � A d
n /A d−1

n .

One can also give a direct definition of the double shuffle Lie algebra by
characterizing the polynomials of Q〈x, y〉 which lie in �� as follows.

Let Lie[x, y] denote the free Lie algebra on two generators, with a weight
grading given by polynomial degree. For a polynomial f in x and y and any
word w in x and y, let (f |w) denote the coefficient of the word w in f , and
extend this definition to (f |g) for polynomials g in x and y by right linearity.
Then the underlying vector space of the double shuffle Lie algebra �� can be
defined as follows:

�� = {
f ∈ Lie≥3[x, y]

∣∣ (f |st (u, v)) = 0 ∀ u, v ∈ Q〈x, y〉 y}
,

where st (u, v) denotes the stuffle product of words ending in y. For every
f ∈ Lie[x, y], let Df be the associated derivation of Lie[x, y] defined by
Df (x) = 0, Dg(y) = [y, f ]. The Poisson bracket

{f, g} = [f, g]+Df (g)−Dg(f )

arises naturally from bracketing derivations since [Df , Dg] = Df ◦ Dg −
Dg ◦ Df = D{f,g}. One of the main known results concerning �� is that it is
actually a Lie algebra under the Poisson bracket. There are two independent
and very different proofs of this fact. Racinet [5] gave a direct proof (but see
the appendix of [3] for a simplified exposition). Ecalle [1] gave a very different
proof, by embedding the whole situation in the vaster “ARI/GARI” theory.

2. Canonical dual-depth adapted decomposition of the double shuffle
Lie algebra

In this section we show how the double shuffle Lie algebra �� is canonic-
ally isomorphic, as a vector space, to its associated graded ⊕��d

n/��d+1
n , and

how this leads to the choice of particularly well-adapted bases for the depth
filtrations of �� and its dual ���.

The striking fact about placing the Lie algebra �� and its new formal mul-
tizeta value dual ��� within the diagram (1) is that the canonical top arrow
δ : Q〈x, y〉 ∼→ Q[Z(w)] induces explicit canonical duality isomorphisms
(also called δ) all the way down the diagram, i.e. isomorphisms

(3) δ : FZ ∗ ∼→ FZ , δ : ��
∼→ ���.
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The maps δ are completely explicit: to calculate the image of a polynomial
f under δ, one first replaces each word w in f by the formal symbol Z(w),
then replaces each non-convergent symbol Z(w) by a linear combination of
convergent symbols (“shuffle regularization”) using for example the explicit
formulas in Prop. 3.2.3 of [2], and finally passes to the quotient modulo the
linear system of regularized stuffle relations.

For odd n ≥ 3, let z(n) ∈ ��� denote the image in ��� of the single zeta value
Z(n) ∈ FZ . The intuition which makes it desirable to single out elements of
�� which are “dual to” the new single zeta values z(n) ∈ ��� for odd n ≥ 3
acquires a meaning in this context; there is a “dual element” of z(n) in ��,
namely the unique depth 1 element fn ∈ ��n which maps to z(n) under the
duality isomorphism δ of (3).

Definition 2.1. A canonical system of depth 1 generators in odd weights
n ≥ 3 for �� is given by the set of elements

fn ∈ ��n such that δ(fn) = z(n) ∈ ���n.

In the following theorem, we generalize this approach to finding “good”
bases of the double shuffle Lie algebra, and in §3, we will use the map δ to
turn these bases into systems of ring generators for FZ .

Theorem 2.2.
(i) The Lie algebra �� has a canonical decomposition as a direct sum of

subvector spaces

(4) �� =
⊕

n≥3

⊕

d≥1

��n,d ,

where ��n,d =
{
f ∈ ��d

n − ��d+1
n

∣∣ δ(f ) ∈ ���d
n

}
.

(ii) For every n ≥ 3, d ≥ 1, the map

(5) ��n,d → ��d
n/��d+1

n

sending an element of ��n,d ⊂ ��d
n to the quotient is an isomorphism. Thus,

as a vector space, �� is canonically isomorphic to its associated graded for
the depth filtration.

Remark 2.3. The existence of a canonical system of irreducibles (ring
generators) for FZ has been an open question for a long time. The present
paper does not give a unique system of irreducibles, but it gives rise to systems
having the agreeable property of being dual-depth adapted. To obtain a set
of irreducibles for FZ from a basis of ��, one considers the basis elements
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as lying in FZ ∗, and takes their duals (images under δ) in FZ . Note that
in fact, the choice of irreducible is canonical up to scalar multiple whenever
dim ��n,d = 1; this is always the case for d = 1 and odd n, as we saw (the
spaces ��n,1 = 0 for even n), and also for all d in weights up to 12. We can
thus give a complete table of canonical irreducibles for FZ up through weight
12, which is done in §3.

Remark 2.4. The decomposition (4) of �� does not respect the Lie algebra
structure of ��, in the sense that

{��n,d , ��n′,d ′ } �⊂ ��n+n′,d+d ′ .

Indeed, take f3 ∈ ��1
3, f9 ∈ ��1

9; then the dual of the Poisson bracket {f3, f9}
lies in ���4

12 but not in ���2
12.

The proof of Theorem 2.2 is just a consequence of totally general results
on filtered vector spaces and their filtered duals, when these vector spaces are
linked by an explicit isomorphism mapping. Let us first explain the general
situation.

Definition 2.5. Let V be a finite-dimensional vector space equipped with
an increasing (resp. decreasing) filtration and a fixed isomorphism δ : V ∗ →
V . A basis for V is said to be adapted to the filtration if the images of the basis
elements in V d−V d−1 (resp. V d−V d+1) form a basis for the filtered quotient
V d/V d−1 (resp. V d/V d+1). A basis of V ∗ is said to be adapted to the dual
filtrations if it is adapted to the filtration on V ∗, and the dual basis elements
(images of the basis elements under the isomorphism V ∗ → V ) form a basis
adapted to the dual filtration of V .

In the cases of FZ ∗ and FZ , or �� and ���, equipped with the dual depth
filtrations and the isomorphisms that descend from the top level of diagram
(1), we say that a basis adapted to the dual filtrations is dual-depth adapted.

Lemma 2.6. Let V be a finite dimensional Q-vector space V equipped with
an increasing filtration {0} = V 1 ⊂ · · · ⊂ V d ⊂ V d+1 ⊂ · · ·. Equip the dual
space V ∗ with the dual decreasing filtration (V ∗)1 = V ∗ ⊃ · · · ⊃ (V ∗)d ⊃
(V ∗)d+1 ⊃ · · · such that (V ∗)d annihilates V d−1. Let δ : V ∗ ∼→ V be an
explicit isomorphism having the property that δ((V ∗)d+1)∩V d = {0} for each
d ≥ 1. Then for every d ≥ 1 and every g ∈ (V ∗)d − (V ∗)d+1, there exists a
unique g′ ∈ (V ∗)d+1 such that δ(g + g′) ∈ V d .

Proof. Let g ∈ (V ∗)d − (V ∗)d+1. We want to show the existence of a
unique g′ ∈ (V ∗)d+1 such that δ(g + g′) ∈ V d . Note that by hypothesis on
δ, the injection δ : (V ∗)d+1 → V induces an injection δ̄ : (V ∗)d+1 → V/V d

which is an isomorphism, considering the dimensions. Thus, there exists a
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unique g′ ∈ (V ∗)d+1 such that δ̄(g′) is equal to the image of −δ(g) in the
quotient V/V d . In other words, δ(g)+ δ(g′) ∈ V d .

Lemma 2.7. Let δ : V ∗ ∼→ V be as in Lemma 2.6. Then there exists a basis
adapted to the dual filtrations for V ∗.

Proof. Let m = dim V ∗ and let h1, . . . , hm be a basis adapted to the
filtration for V , i.e. a basis such that the elements hi ∈ (V ∗)d − (V ∗)d+1 pass
to a basis of (V ∗)d/(V ∗)d+1. Correct each hi by an h′i as in Lemma 2.6, and let
g1, . . . , gm denote the corrected elements. Then δ(g1), . . . , δ(gm) form a basis
for V . Let us show that it is depth adapted for the filtration on V . By definition
of the correction, if gi ∈ (V ∗)d − (V ∗)d+1, then δ(gi) ∈ V d . Furthermore, the
set of gi ∈ (V ∗)d − (V ∗)d+1 passes to a basis for (V ∗)d/(V ∗)d+1, which is
isomorphic to V d/V d−1, so the δ(gi) for these gi pass to a basis of V d/V d−1.
Thus the basis g1, . . . , gm of V ∗ is adapted to the dual filtration.

Lemma 2.8. Let δ : V ∗ ∼→ V be as in Lemma 2.6. Let V ∗d denote the
subspace of elements g ∈ (V ∗)d − (V ∗)d+1 such that δ(g) ∈ V d . Then V ∗ =
⊕dV

∗
d , and the bases of V ∗ respecting this direct sum decomposition are exactly

the bases of V ∗ adapted to the dual filtrations.

Proof. Let g1, . . . , gm be a basis for V ∗ adapted to the dual filtrations. Let
(V ∗)d denote the subspace spanned by the gi ∈ (V ∗)d−(V ∗)d+1. We claim that
(V ∗)d is the subspace of elements h ∈ (V ∗)d − (V ∗)d+1 such that δ(h) ∈ V d .
Indeed, because the basis is adapted to the filtration, h = ∑

i>p aigi , where
g1, . . . , gp are the basis elements of level < d for the filtration. But then
δ(h) = ∑

i>p aiδ(gi) and because the basis is adapted to the dual filtrations,
this element lies in V d if and only if aj = 0 for all gi ∈ (V ∗)d+1. Thus any
basis adapted to the dual filtrations respects the direct sum decomposition, and
conversely, any basis respecting the decomposition is obviously adapted to the
dual filtrations.

Lemma 2.9. Let δ : V ∗ ∼→ V and the spaces (V ∗)d be as in Lemma 2.8.
Then (V ∗)d � (V ∗)d/(V ∗)d+1 for d ≥ 1.

Proof. We saw in Lemma 2.8 that if g1, . . . , gm is a basis adapted to the
dual filtrations, then the gi ∈ (V ∗)d − (V ∗)d+1 form a basis for (V ∗)d . Since
in particular they form a basis adapted to the filtration, they also pass to a basis
of (V ∗)d/(V ∗)d+1, yielding the desired isomorphism.

Proof of Theorem 2.2. For each n ≥ 3, set V ∗ = ��n, V = ���n, and δ

the map in (3). Let us show that δ satisfies the property of Lemma 2.6, i.e. that
δ(��d+1

n ) ∩ ���d
n = {0} for d ≥ 1.

Let f ∈ ��d+1
n and write f = ∑

w aww over words w all having at least
d + 1 y’s, and suppose that δ(f ) ∈ ���d

n. Then by definition of the dual
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filtrations, which are the depth filtrations in this situation, the scalar product
(f | δ(f )) = 0. But if we consider f ∈ Q〈x, y〉, then we can consider
δ(f ) ∈ Q[Z(w)], and the value of the scalar product of f and δ(f ) is the
same, namely

(f | δ(f )) =
∑

w

a2
w.

Thus it is equal to zero if and only if f = 0, showing that δ satisfies the
hypothesis of Lemma 2.6.

Then Lemma 2.7 shows that dual-depth adapted basis exist. From Lem-
ma 2.9, we deduce that the direct-sum decomposition exists, that the dual-
depth adapted bases are in bijection with the bases that respect it, and finally,
the isomorphism with the associated graded. This concludes the proof of The-
orem 2.2.

3. Canonical ring generators for the formal multiple zeta value
algebra

By the duality isomorphism δ, any explicit basis of �� yields not only a basis of
���, but by considering �� ⊂ FZ ∗, also a set of irreducibles (ring generators)
for FZ . Thus, a dual-depth adapted basis for �� yields a set of irreducibles,
and in particular, for any values of n and d such that dim ��d

n/��d+1
n = 1, we

obtain a canonical irreducible (up to scalar multiple).
No dimensions larger than 1 appear in the associated graded for weights

3 ≤ n ≤ 12; thus the dual-depth adapted bases for ��n for these values of n are
uniquely determined (up to scalar multiple), providing canonical irreducibles
in those weights.

For the depth 1 irreducibles that occur for odd values of n, we fix the scalar
multiple by choosing the unique fn ∈ ��n satisfying δ(fn) = z(n) ∈ ���n

for n = 3, 5, 7, 9, 11. For example, f3 = 1
12

(
[x, [x, y]] + [[x, y], y]

)
. The

first main result of this paper is the singling out of these canonical depth 1
irreducibles in odd weight, which conjecturally form a set of generators for
the Lie algebra ��.

The second main result is the production of irreducibles in higher depth,
by taking dual-depth adapted bases of ��n for each n, but the irreducibles
obtained this way are not uniquely determined except for those of depths
d where dim ��d

n/��d+1
n = 1. Since dim ��4

12/��5
12 = 1, our method does

produce two canonical (up to scalar multiple) irreducible generators of weight
12 in FZ 12. Such explicit canonical generators have not been found previously
in any depth, even d = 1 (though J. Ecalle has proposed several alternative
methods to find bases, cf. [1]).
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We give the dual-depth adapted bases of ��n up to weight n = 12 in
the following table, where the fn denote the canonical elements defined by
δ(fn) = ζ(n) ∈ ���n.

Dual-depth adapted bases up to weight 12

n = 3 : f3

n = 4 : 0

n = 5 : f5

n = 6 : 0

n = 7 : f7

n = 8 : {f3, f5}
n = 9 : f9

n = 10: {f3, f7}
n = 11: f11 (depth 1)

{f3, {f3, f5}} (depth 3)

n = 12: 114347612538029{f3, f9} + 29498081529840{f5, f7} (depth 2)
373659143{f3, f9} − 1022930370{f5, f7} (depth 4).

The next table translates these bases into canonical irreducible generators for
FZ . This calculation is done based on the diagram (1). The Lie algebra �� is
contained in the Hopf algebra FZ ∗ ⊂ Q〈x, y〉, so elements of �� are nothing
but polynomials which lie in FZ ∗. If f =∑

w aww is an element of ��, we can
thus consider it in FZ ∗, and its dual is simply given by δ(f ) =∑

w awZ(w) ∈
FZ . To simplify the final expressions, we have fixed a basis of FZ n in each
weight 3 ≤ n ≤ 12 (the chosen basis contains irreducible multizeta values
and products), and used a computer program written in Maple to express each
Z(w) in this basis to obtain a simpler expression for δ(f ).

Dual-depth adapted irreducibles of FZ up to weight 12

FZ 1
3 Z(3)

FZ 1
5 Z(5)− 3

11
Z(2)Z(3)

FZ 1
7 Z(7)− 61

213
Z(2)Z(5)− 226

2343
Z(3)Z(2)2

FZ 2
8 −24453

2
Z(6, 2)− 60027

10
Z(2)4 + 77649

2
Z(3)Z(5)− 1683Z(2)Z(3)2
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FZ 1
9 Z(9)− 1242768

13065005
Z(2)2Z(5)− 3697886

91455035
Z(2)3Z(3)− 1479309

5226002
Z(2)Z(7)

+ 50274

2613001
Z(3)3

FZ 2
10 −6614309

32
Z(8, 2)+ 7569029

16
Z(5)2 − 5656181999

61600
Z(2)5 − 703339

4
Z(5)Z(2)Z(3)

+ 7205263

8
Z(3)Z(7)+ 84201

2
Z(2)Z(6, 2)− 2698111

80
Z(2)2Z(3)2

FZ 1
11 Z(11)− 89344789701892

4831579726916775
Z(2)4Z(3)− 1139040

28492287937
Z(3)Z(6, 2)

− 71379583588

256430591433
Z(2)Z(9)+ 30559167920

541353470803
Z(5)Z(3)2− 3101026096

541353470803
Z(2)Z(3)3

− 47806388544

541353470803
Z(2)2Z(7)− 143810356328

3789474295621
Z(5)Z(2)3

FZ 3
11 −1841904Z(8, 2, 1)− 425314163

4
Z(11)+ 104438821

140
Z(2)4Z(3)

− 1333368Z(3)Z(6, 2)+ 204483287

6
Z(2)Z(9)+ 3279105

2
Z(5)Z(3)2

− 78972Z(2)Z(3)3 + 36753903

4
Z(2)2Z(7)+ 124168102

35
Z(5)Z(2)3

FZ 2
12 −195054138110588251

64
Z(10, 2)− 8653643469032603353873

7644000
Z(2)6

+ 1077831097314738125

64
Z(3)Z(9)+ 1161844161287230993

64
Z(5)Z(7)

− 110785136392182147

64
Z(2)Z(5)2 − 194318216436736119

64
Z(7)Z(2)Z(3)

− 591899366895484531

1680
Z(2)3Z(3)2 − 266292350528747767

160
Z(5)Z(3)Z(2)2

+ 32687838480401691

160
Z(2)2Z(6, 2)+ 81857357214535231

128
Z(2)Z(8, 2)

+ 1256483182613535

16
Z(3)4

FZ 4
12 −2088509495

48
Z(8, 2, 1, 1)+ 40513131683

256
Z(10, 2)− 12283082576753783

168168000
Z(2)6

+ 328220974925

384
Z(3)Z(9)+ 1782213740011

1536
Z(5)Z(7)− 69224488487

768
Z(2)Z(5)2
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− 19970763059

128
Z(7)Z(2)Z(3)− 553292096341

20160
Z(2)3Z(3)2

− 131370683233

2880
Z(5)Z(3)Z(2)2 − 48581102573

1440
Z(2)2Z(6, 2)

− 454799848867

4608
Z(2)Z(8, 2)+ 2024205035

576
Z(3)4
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