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PARTITIONED BINARY RELATIONS

PAUL MARTIN and VOLODYMYR MAZORCHUK

Abstract
We define the category of partitioned binary relations and show that it contains many classical
diagram categories, including categories of binary relations, maps, injective maps, partitions, (ori-
ented) Brauer diagrams and (oriented) Temperley-Lieb diagrams. We construct a one-parameter
deformation of the category of partitioned binary relations and show that it gives rise to classical
one-parameter deformations of partition, Brauer and Temperley-Lieb categories. Finally, we de-
scribe a factorization of partitioned binary relations into a product of certain idempotents and pairs
of usual binary relations.

1. Introduction and description of the results

Diagram algebras and categories are interesting and rich objects of study in
modern representation theory with many application to, among others, statist-
ical mechanics, see the book [17] and the surveys [18], [13], and topology, see
[24]. Classical diagram categories include the Brauer category (see [3]), the
partition category (see [16]), the Temperley-Lieb category (which has many
important applications in topology, combinatorics and categorification, see e.g.
[26], [2]) and their partial (alias rook) analogues (see [20], [10], [11]), together
with the category of binary relations (confer e.g. [23]). From the algebraic per-
spective all these categories have rich and non-trivial structure, though much
less is known for the category of binary relations than the others. Morphisms
in these categories are described in terms of certain combinatorially defined
sets with diagrammatic realization. Furthermore, most of the classical diagram
categories admit a non-trivial one-parameter deformation, which also plays a
very important role in certain applications (see e.g. [3]).

The aim of the present paper is to show that both the partition category
and the category of binary relations are shadows of a more general natural
construction. We define a new category which we call category of partitioned
binary relations and show that it provides a single overarching setting for all
the categories mentioned above. Our main results are:

• The well-definedness of the new category (Theorem 2.3).
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• Connection of the new category with the above mentioned classical ob-
jects (Section 3).

• Functorial comparison of the representation theories of the new category
and the category of binary relations (Subsection 3.1).

• Well-definedness of a certain flat deformation (Theorem 4.3), which has
application in representation theory (confer [4], [5]).

• Factorization of morphisms in the new category in terms of simpler
structures (Theorem 5.5).

As a consequence, the partition category and the category of binary relations
can be studied simultaneously withing this new bigger object.

A notable feature of our construction is that it is not straightforward. An
obvious approach to such an overarching construction is to relax the reflexive-
symmetric-transitive condition on the relations that constitute morphisms in the
partition category. In fact, this does yield the morphisms in the new category,
but it does not determine a composition. Another indication comes from the
Temperley-Lieb category, or rather its (topologically motivated) “oriented”
generalization (see e.g. [27]). This is easy to extend to the level of the Brauer
category and the corresponding partial analogues. The diagrams of this oriented
version can be viewed as oriented graphs, which suggests a connection to the
category of binary relations. It is worth pointing out that both the partition
category and the category of binary relations have also recently appeared in a
different context in [6].

The category of binary relations, or rather its endomorphism monoids, are
classical objects of study in semigroup theory, see [23], [25], [14] and refer-
ences therein. In [22] it is shown that every finite group appears as a maximal
subgroup of some monoid of binary relations, which shows that these monoids
are structurally more complicated than the classical transformation semigroups
generalizing the symmetric group (see [9] for the latter).

The paper is organized as follows: In Section 2 we define the category �� of
partitioned binary relations; in Section 3 we show that it contains many classical
categories mentioned above; in Section 4 we show that the category �� has
a flat one-parameter deformation. In Section 5 we describe a factorization of
partitioned binary relations, which we call polarized factorization. It turns
out that every partitioned binary relation can be written as a product of three
elements, two of which are idempotents of a certain simple form, and the third
one is a “pair” of usual binary relations. As an application, we show that almost
all products of partitioned binary relations result in the full partitioned binary
relation (in the limit of “large” objects).
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2. Category of partitioned binary relations

We denote by N and N0 the sets of all positive and non-negative integers,
respectively.

2.1. Partitioned binary relations

Let X and Y be finite sets. A partitioned binary relation (PBR) on (X, Y )

is a binary relation α on the disjoint union of X and Y . The sets X and Y

are called the domain and the codomain of α and denoted by Dom(α) and
Codom(α), respectively. Clearly, the number of partitioned binary relations
on (X, Y ) equals 2(|X|+|Y |)2

.
Sometimes it might happen that X ∩Y �= ∅, or even X = Y . In this case to

distinguish between elements of the domain and the codomain, we write a(d)

or a(c) for elements of Dom(α) and Codom(α), respectively.
A PBR α on (X, Y ) will be depicted as a directed graph drawn within a

rectangular frame, with elements ofX andY represented by vertexes positioned
on the right and left hand sides of the frame, respectively. The fact that α

contains an edge (a, b) ∈ (X � Y )2 will be written (a, b) ∈ α and visualized
by an arrow from a to b on the graph. We will call a and b elements while
(a, b) will be called an edge. An example of a partitioned binary relation
from X = {x1, x2, x3, x4} to Y = {y1, y2, y3, y4, y5, y6, y7, y8, y9} is shown
in Figure 1. One can and we will use diagrams interchangeably with the set
theoretic approach to PBRs.

2.2. Composition of partitioned binary relations

In this subsection we define composition of PBRs in a categorical sense. That
is, given a PBR α on (X, Y ) and a PBR β on (Y, Z), we define their composition
β ◦ α, which will be a PBR on (X, Z).

It will be convenient to start slightly more generally. Let ℵ = (α1, α2,

α3, . . . , αk) be a composable sequence of PBRs in the above sense, that is
Codom(αi) = Dom(αi+1) for all i = 1, 2, . . . , k − 1. Set Xi := Dom(αi)

for i = 1, 2, . . . , k, Xk+1 := Codom(αk), and X� := ∐k+1
i=1 Xi . A sequence

ξ = (a1, b1), (a2, b2), . . . , (am, bm) of edges taken from the PBRs in ℵ is
called ℵ-connected provided that
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Figure 1. A partitioned binary relation on (X, Y )

(I) no two successive edges in ξ are in the same PBR;

(II) for every i = 1, 2, . . . , m − 1 we have bi = ai+1 (as elements of X�).

We will also say that the ℵ-connected sequence ξ connects a1 to bm. Note
that on every step i the element bi defines the PBR αj containing (ai+1, bi+1)

uniquely due to condition (II). Note also that in the case k = 1, we necessarily
have m = 1.

Let α be a PBR on (X, Y ) and β be a PBR on (Y, Z). We define the com-
position β ◦ α as the PBR on (X, Z) such that for every a, b ∈ X � Z the
PBR β ◦ α contains (a, b) if and only if there exists an (α, β)-connected se-
quence connecting a to b. An example of composition of two PBRs is shown
in Figure 2.

β α β � α

Figure 2. Composition of partitioned binary relations
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2.3. Category of partitioned binary relations

A principal observation is the following:

Proposition 2.1. Composition ◦ defined above is associative.

Proof. Let α be a PBR on (X, Y ), β be a PBR on (Y, Z), and γ be a PBR
on (Z, U). Set ℵ := (α, β, γ ), ξ := β ◦ α and ζ := γ ◦ β. To prove our
theorem we have to check that (a, b) ∈ γ ◦ ξ implies (a, b) ∈ ζ ◦ α for every
(a, b) ∈ (X � U)2 and vice versa. We prove the first claim, the second one is
proved similarly.

Let (a, b) ∈ γ ◦ ξ for some (a, b) ∈ (X � U)2. Then there is a (ξ, γ )-
connected sequence (a1, b1), (a2, b2), . . . , (ak, bk) connecting a to b. From
this (ξ, γ )-connected sequence create a new sequence of edges by replacing
every edge (ai, bi) ∈ ξ in this sequence by an (α, β)-connected sequence
connecting ai to bi (such a sequence exists by definition of composition, but
it is not necessarily unique). By construction, the obtained sequence will be
ℵ-connected.

Consider now all maximal consecutive subsequences of this sequence, con-
taining only edges from β and γ . By maximality, each such subsequences is
both preceded and followed by an edge from α, if any. From the ℵ-connected-
ness of the original sequence it follows that any such subsequence is a (β, γ )-
connected sequence connecting its first element to its last element. Construct a
new sequence by replacing each such maximal (β, γ )-connected subsequence
by the pair of elements which this subsequence connects. This pair of elements
gives an edge in ζ by definition. As a result, we obtain an (α, ζ )-connected
sequence connecting a to b. Hence (a, b) ∈ ζ ◦ α. The claim follows.

For a finite set X define the PBR εX on (X, X) as the one containing all
edges (x(d), x(c)) and (x(c), x(d)) for all x ∈ X. The diagram of the PBR εX is
shown in Figure 3.

Proposition 2.2. The PBR εX is the identity morphism for X with respect
to ◦, that is εX ◦α = α for any PBR α on (Y, X), and β ◦ εX = β for any PBR
β on (X, Y ).

Proof. This is a straightforward computation.

Adding all loops to the PBR εX one obtains the idempotent PBR εX (see
Figure 3). Deleting all right arrows from the PBR εX one obtains the idempotent
PBR ε̂X (see Figure 3). The PBRs εX and ε̂X will appear as identity morphisms
for certain categorical substructures later on.

Define the category �� of partitioned binary relations in the following
way. Firstly: objects of �� are finite sets; for X, Y ∈ �� the morphism set
��(X, Y ) is the set of all PBRs on (X, Y ); the composition ��(Y, Z) ×
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Figure 3. The partitioned binary relations εX , εX and ε̂X

��(X, Y ) → ��(X, Z) is given by ◦; for X ∈ �� the identity morphism
for X is εX. Then, from Propositions 2.1 and 2.2 we obtain:

Theorem 2.3. The construct �� above is a category.

2.4. Tensor product and duality

The category �� has a natural monoidal structure in which the tensor product is
given on objects by the disjoint union and on morphisms by drawing diagrams
next to each other as shown in Figure 4.

⊗ =

Figure 4. Tensor product

The category �� has a natural involution (that is a contravariant object pre-
serving involutive anti-automorphism), which we will denote by �, given by
taking the mirror image of the diagram with respect to a vertical mirror as
shown in Figure 5.
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α α�

Figure 5. Anti-automorphism �

3. Some substructures of ��

3.1. Binary relations, first inclusion

Consider the category � of binary relations between finite sets (confer [23]).
Objects of � are finite sets. For X, Y ∈ �, the set �(X, Y ) is the set of all
binary relations from X to Y . A binary relation from X to Y is a subset of X×Y .
Such a binary relation can be viewed as a boolean matrix whose columns are
indexed by elements of X and rows are indexed by elements of Y . We shall
treat the two realizations as interchangeable. Composition of binary relations
may then be lifted from the usual boolean multiplication of boolean matrices
(see, e.g. [23]). The identity morphism for X is the equality relation (it is given
by the identity matrix with respect to the same ordering of the two copies of
X). The category � has a natural involution �� given by matrix transposition.

Each binary relation from X to Y is a partitioned binary relation from X

to Y , in other words, �(X, Y ) ⊂ ��(X, Y ). For an example, see the left
element in Figure 6. It is straightforward to check that this inclusion respects
composition. We will denote this inclusion by 	1. Note that 	1 is not a functor
as it does not send the identity binary relation to the identity partitioned binary
relation.

Note that � has several classical subcategories, in particular,

(i) the subcategory of all maps;

(ii) the subcategory of all injective maps;

(iii) the subcategory of all partial injective maps;

(iv) the subcategory of all surjective maps;

(v) the subcategory of all partial surjective maps.
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We refer the reader to [15] for details on categories (iii) and (v). Using 	1 we
obtain inclusions of all these categories into �� by restriction.

The image 	1(�) can also be understood as an idempotent subcategory of
��. Let C be a category and e = (eX)X∈C a fixed collection of idempotent en-
domorphisms such that eX ∈ C (X, X). An e-subcategory D of C is a category
such that

• objects of D form a subclass of objects of C ;
• D(X, Y ) ⊂ C (X, Y ) for any X, Y ∈ D ;
• the multiplication in D is obtained from the one in C by restriction;
• for any X ∈ D the morphism eX is the corresponding identity morphism

for X.

Among all e-subcategories of C there is the unique maximum one with respect
to inclusions. This category is denoted by Ce, it has the same objects as C and
for X, Y ∈ C we have

Ce(X, Y ) = eY C (X, Y )eX.

Remark 3.1. Similarly to [1, Section 5] one shows that the category of Ce-
representations over some field k (that is functors from Ce to k-vector spaces)
fully embeds into the category of C -representations.

For X ∈ � recall the idempotent PBR ε̂X defined in Subsection 2.3 (see
Figure 3). The PBR ε̂X is the image of the identity relation on X under 	1.

Proposition 3.2. For e := (ε̂X)X∈� we have 	1(�) = ��e.

Proof. We have to check that for any X, Y ∈ �� and α ∈ ��(X, Y )

the following is true: α ∈ 	1(�) if and only if α = ε̂Y ◦ β ◦ ε̂X for some
β ∈ ��(X, Y ).

If α ∈ 	1(�), then ε̂Y ◦α ◦ ε̂X = α. On the other hand, let β ∈ ��(X, Y ),
α = ε̂Y ◦ β ◦ ε̂X and (a, b) be an edge of α. Let (a1, b1), . . . , (am, bm) be an
(ε̂X, β, ε̂Y )-connected sequence connecting a to b. From the definition of ε̂Y

it follows that (a1, b1) is an edge from ε̂X. Similarly, (am, bm) is an edge from
ε̂Y . This implies a ∈ X and b ∈ Y . The claim follows.

3.2. Binary relations, second inclusion

With each binary relation θ from X to Y we associate a partitioned binary
relation 	2(θ) on (X, Y ) in the following way: 	2(θ) := 	1(θ) ∪ 	1(θ

��).
The effect of 	2 on binary relations is illustrated in Figure 6.

Proposition 3.3. The map 	2 gives rise to a faithful functor from � to ��.

Proof. A proof will be given in Remark 5.3.
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	2(θ)θ

Figure 6. Injection 	2

Similarly to Subsection 3.1, using 	2 we realize categories of various types
of maps as subcategories of ��.

3.3. Partition category

Denote by � the partition category, defined as follows (see [16]): Objects of
� are finite sets. For X, Y ∈ � the set �(X, Y ) is the set of all partitions
of X � Y into a disjoint union of subsets (called parts). For α ∈ �(X, Y )

and β ∈ �(Y, Z) the composition β ◦ α is defined as the unique partition
in �(X, Z) such that for any a, b ∈ X � Z the elements a and b belong to
the same part of the partition β ◦ α if and only if for some k ∈ N0 there is
a sequence a = a0, a1, . . . , ak = b of elements from X � Y � Z such that
for every i = 0, 1, . . . , k − 1 the elements ai and ai+1 belong to the same
part of either α or β. The identity morphism πX of �(X, X) is the partition of
X �X = X ∪X′, where X′ := {x ′, x ∈ X}, consisting of parts {x, x ′}, x ∈ X.

For X ∈ � set �(X) = X ∈ ��. For α ∈ �(X, Y ) denote by �(α)

the unique PBR in ��(X, Y ) such that for every a, b ∈ X � Y we have
(a, b) ∈ �(α) if and only if a and b belong to the same part of α. Alternatively,
we can say that the binary relation �(α) is obtained by considering the partition
α of X � Y as an equivalence relation on X � Y . Note that �(πX) = εX.

A partition is usually drawn as a diagram similarly to a diagram of PBR.
Elements of the diagram are connected such that the connected components
correspond to parts of the partition (note that a diagram of a partition is not
uniquely defined). An example of how � works is given in Figure 7 (note the
use of double arrows there to simplify the picture). It is straightforward to verify
that for any α ∈ �(X, Y ) and β ∈ �(Y, Z) we have �(β ◦α) = �(β)◦�(α).

Note that � is a not a functor as it does not map identity morphisms to
identity morphisms. The image of � does not coincide with the idempotent
subcategory of �� generated by e = {εX, X ∈ ��}. The latter idempotent
subcategory is larger. One can readily see that the subset of reflexive, transitive
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� (α)α

Figure 7. Inclusion �

relations in �� is closed under composition, and that this is ��e.
Partition category contains many classical subcategories, for example, Bra-

uer category ([3]), partial (alias rook) Brauer category ([20]) and Temperley-
Lieb category ([26]). The map � embeds them into �� by restriction.

4. Deformation

In this section we establish existence of a 1-parameter deformation of the
category ��.

4.1. Frothy elements, edges and alternating cycles

Let ℵ = (α1, α2, α3, . . . , αk) be a composable sequence of PBRs (see Sub-
section 2.2). Let Xi , i = 1, 2, . . . , k + 1 be as in Subsection 2.2. An edge
(a, b) ∈ αi , i = 1, 2, . . . , k, is said to be ℵ-frothy provided that it does not
occur in any ℵ-connected sequence connecting two (not necessarily distinct)
elements from X1 � Xk+1. For example, in the case k = 2 shown in Figure 8
all frothy edges are drawn doubled.

An ℵ-connected sequence (a1, b1), (a2, b2), . . . , (am, bm), where m ∈ {2,

3, 4, . . .}, is called an ℵ-frothy cycle provided that the following conditions are
satisfied:

(III) a1 = bm as elements of X�;

(IV) (a1, b1) and (am, bm) come from different PBRs;

(V) all edges (ai, bi), i = 1, 2, . . . , m, are ℵ-frothy.

Directly from the definition we have that a cyclic permutation of an ℵ-frothy
cycle is again an ℵ-frothy cycle (note here importance of condition (IV) to guar-
antee preservation of condition (I)). We will call two ℵ-frothy cycles naïvely
equivalent if they can be obtained from each other by a cyclic permutation. In
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Figure 8. Example with (α, β)-frothy edges drawn doubled

what follows we will call a naïve equivalence class of ℵ-frothy cycles simply
a frothy cycle (if ℵ is clear from the context).

Two frothy cycles are called elementary-equivalent provided that they con-
tain a common edge and in both cycles this edge appears as an edge of the same
PBR (note that the relation of elementary-equivalence is both symmetric and
reflexive but not transitive in general). In the example shown in Figure 8 the
two frothy cycles (y6, y7), (y7, y6) and (y4, y5), (y5, y6), (y6, y7), (y7, y4) are
elementary-equivalent. Finally, two frothy cycles ξ and ζ are called equivalent
provided that there is a sequence ξ = ξ0, ξ1, . . . , ξk = ζ of frothy cycles for
some k ∈ N such that every pair of consecutive frothy cycles in this sequence is
elementary-equivalent. This is the minimum equivalence relations containing
the relation of elementary-equivalence.

Write Mℵ for the set of equivalence classes of ℵ-frothy cycles; and define
�(ℵ) = |Mℵ|. By definition, every frothy edge appears in at most one equival-
ence class of frothy cycles, which implies that �(ℵ) is finite. In the example
shown in Figure 8 we have �((α, β)) = 1.

Proposition 4.1. Let α ∈ ��(X, Y ), β ∈ ��(Y, Z) and γ ∈ ��(Z, U).
Then

(4.1) �((β ◦ α, γ )) + �((α, β)) = �((α, β, γ )) = �((α, γ ◦ β)) + �((β, γ )).

Proof. We prove the left equality. The right equality then follows apply-
ing the involution �. Set ℵ := (α, β, γ ). Then let Mαβ ⊂ Mℵ be the subset
of equivalence classes of ℵ-frothy cycles satisfying the condition that every
frothy cycle in the class contains only edges from α and β. Define Mγ as the
complement, so that Mℵ = Mαβ � Mγ . It is easy to see that Mαβ can be al-
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ternatively described as the set of equivalence classes containing an ℵ-frothy
cycle all edges of which are (α, β)-frothy and hence |Mαβ | = �((α, β)).

It remains to show that |Mγ | = �((β ◦ α, γ )) := |M(β◦α,γ )|. For this it is
enough to establish a bijection F : M(β◦α,γ ) → Mγ . Note that an ℵ-frothy
cycle belonging to a class in Mγ may contain no edges from γ . However, in
this case it contains at least one edge from α or β, which is not (α, β)-frothy
(since there must be another cycle in its class that passes via γ ).

We now construct F . Given a (β ◦α, γ )-frothy cycle ω, we substitute every
β ◦α-edge (a, b) in ω by an (α, β)-connected sequence connecting a to b. The
obtained sequence (a1, a2), . . . , (ak, bk) obviously satisfies (I)–(IV). We claim
that it also satisfies (V), that is that all (ai, bi) are ℵ-frothy. Since equivalence
classes contain naïve equivalence classes, it is enough to show that (a1, b1)

is ℵ-frothy. Assume not, and let ω1, (a1, b1), ω2 be an ℵ-connected sequence
connecting two elements of X � U (here ω1 and ω2 are two ℵ-connected
sequences). Then the sequence

ξ := ω1, (a1, b1), (a2, b2), . . . , (ak, bk), (a1, b1), ω2

is again ℵ-connected connecting the same two elements of X � U . By defin-
ition, the original (β ◦ α, γ )-frothy cycle ω contained at least one edge from
γ , say (s, t). By construction, this edge appears in ξ . Applying to ξ the pro-
cedure described in the proof of Proposition 2.1, we obtain a (β ◦ α, γ )-
connected sequence which connects two elements from X � U and contains
(s, t). This means that (s, t) is not (β ◦ α, γ )-frothy, a contradiction. As the
result, (a1, a2), . . . , (ak, bk) is an ℵ-frothy cycle. It is of the second type as
it contains an edge from γ . Clearly, equivalent (β ◦ α, γ )-frothy cycles are
mapped to equivalent ℵ-frothy cycles and hence we obtain a map from M(β◦α,γ )

to Mγ .
Now given an equivalence class in Mγ , choose a representative ω, con-

taining some edge from γ . Using the naïve equivalence, we may assume that
the first edge in ω is from γ . Substitute in ω every maximal subsequence of
consecutive edges from α and β by the pair of elements which this sequence
connects. The result will be an (β ◦ α, γ )-connected cycle and, using the ar-
guments as in the previous paragraph, one shows that this cycle is frothy. For
this procedure to define a map from Mγ to M(β◦α,γ ) we thus are left to check
that equivalent ℵ-frothy cycles are mapped to equivalent (β ◦ α, γ )-frothy
cycles. By construction, two elementary-equivalent ℵ-frothy cycles sharing
an edge from γ are mapped to elementary-equivalent (β ◦α, γ )-frothy cycles.
To proceed we will use the following lemma:
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Lemma 4.2. Let ω′ and ω′′ be equivalent ℵ-frothy cycles. Then there exists
an ℵ-frothy cycle ω containing all the edges of both.

Proof. For ℵ-frothy cycles ξ and ξ ′ sharing some edge (s, t) we may
write ξ = ξ1, (s, t), ξ2 and ξ ′ = ξ ′

1, (s, t), ξ
′
2. Then denote by ξ � ξ ′ the ℵ-

frothy cycle ξ1, (s, t), ξ
′
2, ξ

′
1, (s, t), ξ2. Now let ω′ = ω1, ω2, . . . , ωm = ω′′

be a sequence of ℵ-frothy cycles such that every pair of consecutive cycles is
elementary-equivalent, with a given shared edge; and take

ω := (· · · ((ω1 � ω2) � ω3) � · · ·) � ωm.

Let ω′ and ω′′ be equivalent ℵ-frothy cycles, each containing some edge
from γ , and ω be an ℵ-frothy cycle given by Lemma 4.2. Then ω′ and
ω are elementary-equivalent, as are ω′′ and ω. By the paragraph preceding
Lemma 4.2, we have that ω′ and ω are mapped to elementary-equivalent
(β ◦ α, γ )-frothy cycles, as are ω′′ and ω. It follows that the images of ω′
and ω′′ are equivalent, giving us a well-defined map from Mγ to M(β◦α,γ ).

From their constructions it follows directly that the maps between Mγ and
M(β◦α,γ ) are mutually inverse bijections. This completes the proof.

4.2. Deformed category

We consider N0 as an additive monoid in the natural way. Consider the category
�� defined as follows: objects of �� are the same as objects of ��; for
X, Y ∈ �� the morphism set ��(X, Y ) equals ��(X, Y ) × N0; for (α, k) ∈
��(X, Y ) and (β, m) ∈ ��(Y, Z) set

(4.2) (β, m) � (α, k) := (β ◦ α, m + k + �(α, β)).

Theorem 4.3. The above definition makes �� into a category.

Proof. Associativity of � follows from Proposition 4.1. Note that the iden-
tity morphism εX in ��(X, X) does not have any edges connecting two ele-
ments of the codomain. This implies that for any α ∈ ��(X, Y ) we have
�(εX, α) = �(α, εY ) = 0. Hence (εX, 0) is the identity morphism in ��(X, X).
The claim follows.

4.3. Deformed partition category via restriction

Recall, from [16], that the category � admits deformation �, similar to the
deformation �� of ��. It is constructed as follows: The category � has the
same objects as �. For X, Y ∈ � the set �(X, Y ) equals �(X, Y )×N0 and the
multiplication in �(X, Y ) is given for (α, k) ∈ �(X, Y ) and (β, m) ∈ �(Y, Z)

by the following:

(β, m) � (α, k) := (β ◦ α, m + k + �(α, β)),
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where �(α, β) is defined as follows: Denote by Y ′ the set of all y ∈ Y for
which there does not exist a sequence y = a1, a2, a3, . . . , ap, where all ai ∈
X �Y �Z, ap ∈ X �Z, and such that every two consecutive elements in this
sequence belong to the same part of either α or β. Introduce an equivalence
relation ∼ on Y ′ as follows: y1 ∼ y2 for y1, y2 ∈ Y ′ if and only if there is
a sequence y1 = a1, a2, a3, . . . , ap = y2, where all ai ∈ Y , such that every
two consecutive elements in this sequence belong to the same part of either α

or β. Then �(α, β) is defined as the number of equivalence classes of ∼. Our
main observation in this subsection is the following statement which says that
� can be lifted up to the level of deformed categories.

Proposition 4.4. Define � : � → �� as the identity on objects and
�((α, k)) := (�(α), k) for any morphism (α, k). Then

�((β, m) � (α, k)) = �((β, m)) � �((α, k))

for all composable morphisms (α, k) and (β, m) in �.

Proof. To prove this statement we need to check that for any morphisms
α ∈ �(X, Y ) and β ∈ �(Y, Z) there is a bijection between the set M1 of equi-
valence classes for the relation ∼ defined above and the set M2 of equivalence
classes of (�(α), �(β))-frothy cycles.

Every (�(α), �(β))-frothy cycle consists of edges between elements in Y .
From the definition of � it follows easily that all these elements, in fact, belong
to Y ′. Moreover, from the definition of ∼ it follows that all these element are
∼-related. Hence we can define a map from the set of (�(α), �(β))-frothy
cycles to M1 by sending each cycle to the corresponding equivalence class of
∼ described above. Since ∼ is an equivalence relation, elementary equivalent
cycles have the same image. This means that this map factors through M2

giving us a map from M2 to M1.
First of all we claim that this map is surjective. Indeed, given an equival-

ence class N of ∼, let y ∈ N . Then the construction of � implies that the
edge (y, y) is contained both in �(α) and �(β). Therefore (y, y), (y, y) is a
(�(α), �(β))-frothy cycle (in which the first edge is in �(α) and the second
edge is in �(β)). By construction, the cycle (y, y), (y, y) is mapped to N ,
which implies surjectivity.

Now we claim that our map is injective. Let N be an equivalence class
of ∼. To prove the assertion we have to show that all (�(α), �(β))-frothy
cycles mapped to N are equivalent. For this it is enough to show that every
(�(α), �(β))-frothy cycle mapped to N is equivalent to a (�(α), �(β))-
frothy cycle of the form (y, y), (y, y) as above; and that all such (�(α), �(β))-
frothy cycles are equivalent.
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Let ω be one of the (�(α), �(β))-frothy cycles and (s, t) its first edge.
Then (s, s), (s, s), ω, where the first edge (s, s) is considered from the same
factor (α or β) as the edge (s, t) of ω, is a (�(α), �(β))-frothy cycle, which
is elementary equivalent to ω. On the other hand, the cycle (s, s), (s, s), ω is
elementary equivalent to (s, s), (s, s). Hence ω is equivalent to (s, s), (s, s).

Now let s, t ∈ N and s = a1, a2, . . . , ak = t be a sequence of elements
from Y ′ in which every pair of consecutive elements belongs to the same part
of either α or β. Without loss of generality we may even assume that this
alternates in the sense that if a1 and a2 belong to the same edge of α, then
a2 and a3 belong to the same edge of β and so on. From the definition of
� it follows that we have a (�(α), �(β))-connected sequence as follows:
(a1, a2), (a2, a3), . . . , (ak−1, ak). This yields existence of a (�(α), �(β))-
frothy cycle as follows:

ω := (a1, a2), (a2, a3), . . . , (ak−1, ak),

(ak, ak), (ak, ak−1), . . . , (a2, a1), (a1, a1).

Here (ai, ai−1) and (ai−1, ai) are considered as edges of the same factor (α
or β), (ak, ak) is considered as an edge from the factor, different from the
factor containing (ak−1, ak), and (a1, a1) is considered as an edge from the
factor, different from the factor containing (a1, a2). The cycle ω is elementary
equivalent to both (s, s), (s, s) and (t, t), (t, t), which implies that the latter
two cycles are equivalent. This yields injectivity.

The above implies that our map is bijective and the claim of the proposition
follows.

The deformation � of the partition category contains deformations of both
Brauer and Temperley-Lieb categories as well as the one-parameter deforma-
tion of the partial Brauer category ([21]). We note that by a Brauer category we
mean the category defined combinatorially using Brauer diagrams (this corres-
ponds to the classical definition of [3] when the defining parameter is 1) while
by a one-parameter deformation of the Brauer category we mean the category
which corresponds to the classical definition of [3] for generic parameter.

The map � embeds them into �� by restriction. Some diagram categories
admit a two-parameter deformation, see [21], [19], [18]. However, we do not
know how to realize these one in terms of the category ��.

4.4. Oriented Brauer and Temperley-Lieb categories

For finite sets X and Y a PBR α ∈ ��(X, Y ) is called an oriented partial
Brauer diagram provided that every element s ∈ X � Y appears in at most
one edge of α. An oriented partial Brauer diagram α for which every element
s ∈ X � Y appears in exactly one edge of α is called an oriented Brauer
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diagram. An example of an oriented partial Brauer diagram is given in Figure 9.
One can say that an oriented (partial) Brauer diagram is obtained from a usual
(partial) Brauer diagram (see [3], [20]) by choosing orientation of all chords
on the latter. A (partial) Brauer diagram is obtained from an oriented (partial)
Brauer diagram by forgetting the orientation.

x1

x2

x3

x4

y1

y2

y3

y4

y5

y6

y7

y8

Y X

α

Figure 9. Oriented partial Brauer diagram

Lemma 4.5. Let α be a PBR on (X, Y ) and β be a PBR on (Y, Z). Assume
that both α and β are oriented partial Brauer diagrams. Then we have the
following:

(a) The composition β ◦ α is an oriented partial Brauer diagram.

(b) The number �((α, β)) is the number of oriented cycles on the diagram
from Figure 8.

Proof. Any element of X and Z appears in at most one edge of α or β,
respectively. Any element of Y appears in at most one edge of α and in at most
one edge of β. Hence for every s ∈ X�Z, there is at most one (α, β)-connected
sequence connecting s to some element t ∈ X � Z, moreover, s �= t . This
implies both claim (a) and the fact that every equivalence class of (α, β)-frothy
cycles consists of a single element. The latter implies claim (b).

The collection of all oriented partial Brauer diagrams does not give rise to a
subcategory of �� (or ��) because of the absence of identity morphisms. The
collection of all oriented Brauer diagrams is not even closed under composition
(the composition of two oriented Brauer diagrams is only an oriented partial
Brauer diagram in general). One can remedy the situation in the following way
(confer [24]).

Define the category � as follows: Objects of � are pairs X := (X1, X2) of
finite sets such that X1 ⊂ X2. For X, Y ∈ � the set �(X, Y) consists of all
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pairs (α, k), where k ∈ N0 and α is an oriented Brauer diagram α on (X2, Y2)

such that the following condition is satisfied:

(4.3) For every edge (a, b) ∈ α we have

a ∈ X1 ∪ (Y2 \ Y1) and b ∈ Y1 ∪ (X2 \ X1).

For (α, k) ∈ �(X, Y) and (β, m) ∈ �(Y, Z) define the composition (β, m) �
(α, k) by formula (4.2). For X ∈ � denote by ε̌X the oriented Brauer diagram
of the identity morphism for X. This diagram consists of all edges (x(d), x(c)),
x ∈ X1, and (x(c), x(d)), x ∈ X2 \ X1, see example in Figure 10.

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

Figure 10. The oriented Brauer diagram ε̌({x1,x4,x5},{x1,x2,x3,x4,x5})

Proposition 4.6. The construct � above is a category, called oriented
Brauer category.

Proof. For (α, k) ∈ �(X, Y) and (β, m) ∈ �(Y, Z), from the definition
of � it follows immediately that β ◦ α is an oriented Brauer diagram. Now
associativity is obtained from Theorem 4.3 by restriction. The fact that the ε̌X’s
are identity morphisms is proved by a straightforward computation.

The (standard skeleton of) classical Brauer category has a natural topolo-
gical counterpart, known as the category of tangles (see e.g. [28]). The natural
topological counterpart of the category � is the category of oriented tangles,
see [27]. The corresponding planar objects are the Temperley-Lieb and the
oriented Temperley-Lieb categories. To define the oriented Temperley-Lieb
category ��� for every finite set X fix a linear order <X on X. Then the cat-
egory ��� is defined as the subcategory of � with the same set of objects and
containing all those morphisms (α, k) for which the diagram of α can be drawn
planar (whenever the elements of the domain and the codomain are listed with
respect to the fixed linear order from top to bottom). Similarly one defines the
partial oriented Brauer category P� and the partial oriented Temperley-Lieb
category P���.
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5. Polarized factorization

In this section we establish a factorization of partitioned binary relations, called
polarized factorization.

5.1. Pure partitioned binary relations

Let X, Y ∈ �� and α ∈ ��(X, Y ). The PBR α is called pure provided that
every edge in α consists of an element in Dom(α) and an element in Codom(α).
For example, both PBRs εX and ε̂X are pure while the PBR εX is not pure (see
Figure 3). Another example of a pure PBR is shown in Figure 11 in the middle.

Y Y Y X X X

Figure 11. Left polarized idempotent, pure PBR and right
polarized idempotent

Lemma 5.1. The composition of two composable pure PBRs is pure. Hence,
taking all pure PBRs as morphisms defines a subcategory of �� of pure PBRs,
which we will denote by ���.

Proof. As the PBR εX of the identity morphism is pure, to prove the claim
we have only to check that pure PBRs are closed with respect to composition.
This follows directly from definitions.

The category �� of Section 4.2 contains a subcategory ��� which has
the same objects as �� and whose morphisms are all morphisms of the form
(α, 0), where α is a morphism from ���. It is easy to see that no frothy cycles
appear when composing two pure PBRs, and hence the categories ��� and
��� are isomorphic.

The category ��� admits a nice description in terms of the category � of
binary relations. Consider the double �� of the category � defined as follows:
Objects of �� are the same as objects of �. For X, Y ∈ �� the set ��(X, Y )

consists of pairs (β, γ ), where β ∈ �(X, Y ) and γ ∈ �op(X, Y ) (the opposite
category). For (β, γ ) ∈ ��(X, Y ) and (β ′, γ ′) ∈ ��(Y, Z) the composition
is defined as follows:

(β ′, γ ′)(β, γ ) = (β ′β, γ γ ′).
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Proposition 5.2. The categories �� and ��� are isomorphic.

Proof. By definition, these categories have the same objects. For α ∈
���(X, Y ), where X, Y ∈ ���, let β ∈ �(X, Y ) be the collection of
all edges (a, b) of α such that a ∈ Dom(α) and b ∈ Codom(α). Let γ ∈
�op(X, Y ) be the collection of all edges (a, b) of α such that a ∈ Codom(α)

and b ∈ Dom(α). From the definition of pure PBRs it follows easily that the
map α �→ (β, γ ) is a bijection from ���(X, Y ) to ��(X, Y ). It is also easy
to check that this map is compatible with compositions on both sides. The
claim follows.

Remark 5.3. Under the identification of �� and ��� from Proposi-
tion 5.2, the “diagonal” image of � in �� given by α �→ (α, α��) coincides
with 	2(�) (see Subsection 3.2). This implies Proposition 3.3.

5.2. Left and right polarized idempotents

Let X ∈ �� and α ∈ ��(X, X). The element α is called a left polarized
idempotent provided that α contains all edges from εX and any other edge of
α has the form (a, b), where a, b ∈ Codom(α). Define a right polarized idem-
potent similarly using Dom(α). It is easy to see that every left (right) polarized
idempotent is indeed an idempotent. In particular, the identity morphism εX

is both, left and right, polarized. An example of a left polarized idempotent is
given in Figure 11 on the left. An example of a right polarized idempotent is
given in Figure 11 on the right. We denote by PI(X, l) and PI(X, r) the sets
of left and right polarized idempotents in ��(X, X), respectively.

Lemma 5.4. Both PI(X, l) and PI(X, r) are submonoids of ��(X, X)

isomorphic to the commutative band (semilattice) (�(X, X),∪). In particular,
we have |PI(X, l)| = |PI(X, r)| = 2|X|2 .

Proof. Straightforward computation.

5.3. Polarized factorization of partitioned binary relations

Let X, Y ∈ �� and α ∈ ��(X, Y ). Define γα as the pure PBR on (X, Y )

consisting of all edges from α, which contain an element in Dom(α) and an
element in Codom(α). Define βα as the left polarized idempotent in ��(Y, Y )

such that for every edge (a, b), where a, b ∈ Y = Codom(α) we have (a, b) ∈
α if and only if (a, b) ∈ βα. Define δα as the right polarized idempotent in
��(X, X) such that for every edge (a, b), where a, b ∈ X = Dom(α) we
have (a, b) ∈ α if and only if (a, b) ∈ δα.

The main result of this section is the following statement establishing po-
larized factorization of partitioned binary relations.
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Theorem 5.5. Let X, Y ∈ ��, α ∈ ��(X, Y ) and βα, γα and δα be as
defined above. Then α = βα ◦ γα ◦ δα is the unique factorization of α into
a product of a left polarized idempotent, a pure PBR and a right polarized
idempotent.

Proof. That α = βα ◦ γα ◦ δα is checked by a straightforward computa-
tion, proving existence. Having established existence, uniqueness is proved
by a counting argument. Indeed, we have |��(X, Y )| = 2(|X|+|Y |)2

. At the
same time, the number of left polarized idempotents in ��(Y, Y ) equals 2|Y |2 ,
the number of right polarized idempotents in ��(X, X) equals 2|X|2 and the
number of pure PBRs on (X, Y ) equals 22|X||Y |. Hence the multiplication rule
implies that

|��(X, Y )| = |PI(Y, l) × ���(X, Y ) × PI(X, r)|

and the claim follows.

It is easy to see that the polarized factorization in �� gives rise to a factoriz-
ation in ��. Theorem 5.5 shows that morphisms of the relatively complicated
category �� decompose canonically into a product of morphisms from the
less complicated category ��� and elements of some commutative bands.

5.4. Composition of PBRs via composition of binary relations

The polarized decomposition of PBRs motivates the following construction:
For a PBR α consider the following subsets of α:

α11 := {(a, b) ∈ α : a ∈ Dom(α), b ∈ Dom(α)},
α12 := {(a, b) ∈ α : a ∈ Dom(α), b ∈ Codom(α)},
α21 := {(a, b) ∈ α : a ∈ Codom(α), b ∈ Dom(α)},
α22 := {(a, b) ∈ α : a ∈ Codom(α), b ∈ Codom(α)}.

Then α is a disjoint union of the αij ’s, i, j = 1, 2. Moreover, the αij ’s can
be interpreted in terms of factors of the polarized decomposition of α in the
obvious way (i.e. γα = α12 ∪ α21, δα = εX ∪ α11 and βα = εY ∪ α22).

Given a PBR β composable with α, directly from the definition of the
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product we obtain the following formulae:

(5.1)

(β ◦ α)11 = α11 ∪
⋃

i≥1

α21 ◦ (β11 ◦ α22)
i ◦ β11 ◦ α12,

(β ◦ α)22 = β22 ∪
⋃

i≥1

β12 ◦ (α22 ◦ β11)
i ◦ α22 ◦ β21,

(β ◦ α)12 =
⋃

i≥0

β12 ◦ (α22 ◦ β11)
i ◦ α12,

(β ◦ α)21 =
⋃

i≥0

α21 ◦ (β11 ◦ α22)
i ◦ β21.

5.5. On random products of PBRs

For a finite set X denote by ωX the maximum binary relation on X with
respect to inclusions (i.e. the full relation). Denote also by ωX the maximum
PBR on (X, X) with respect to inclusions. Let AX denote the set of all pairs
(α, α′) ∈ �(X, X) × �(X, X) such that α ◦ α′ = ωX. Let AX denote the set
of all pairs (α, α′) ∈ ��(X, X) × ��(X, X) such that α ◦ α′ = ωX. Recall
the following classical result (see e.g. [12, Theorem 4]):

Proposition 5.6. We have:

lim|X|→∞
|AX|

|�(X, X) × �(X, X)| = 1.

Let A′
X denote the set of all (α, α′, α′′) ∈ �(X, X) × �(X, X) × �(X, X)

such that α ◦ α′ ◦ α′′ = ωX.

Corollary 5.7. We have:

lim|X|→∞
|A′

X|
|�(X, X) × �(X, X) × �(X, X)| = 1.

Proof. By Proposition 5.6, when |X| → ∞ both the probability of α◦α′ =
ωX and of α′ ◦ α′′ = ωX tend to 1. Hence the probability of the intersection of
these events tends to 1 as well. However, if α′ ◦ α′′ = ωX, then the Boolean
matrix of α′′ cannot have zero columns. Hence, in this case α◦α′ = ωX implies
α ◦ α′ ◦ α′′ = ωX. The claim follows.

Remark 5.8. Proposition 5.6 combined with [7, Theorem 6] implies [8,
Conjecture 5].

In the following statement we extend Proposition 5.6 to PBRs.
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Theorem 5.9. We have:

lim|X|→∞
|AX|

|��(X, X) × ��(X, X)| = 1.

Proof. By Subsection 5.4, choosing a PBR α is equivalent to choosing
four binary relations αij , i, j = 1, 2. By (5.1), β ◦ α = ωX is guaranteed by
the following list of conditions:

β12 ◦ α12 = ωX;
α21 ◦ β21 = ωX;

α21 ◦ β11 ◦ α12 = ωX;
β12 ◦ α22 ◦ β21 = ωX.

By Proposition 5.6 and Corollary 5.7, when |X| → ∞, the probability of each
of these conditions tends to 1. Hence the probability of their intersection tends
to 1 as well. The claim follows.
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