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THE CHOW MOTIVES OF RELATIVE
FULTON-MACPHERSON SPACE

FUMITOSHI SATO

Abstract
Suppose that X is a complex nonsingular projective variety and D is a smooth divisor. Com-
pactifications of configuration spaces of distinct and non-distinct n points in X away from D

were constructed by the author and B. Kim in “A generalization of Fulton-MacPherson configur-
ation spaces” by using the method of wonderful compactification. In this paper, we give explicit
presentations of Chow motives and Chow groups of these configuration spaces.

1. Introduction

Let X be a complex connected nonsingular projective algebraic variety and
let D be a smooth divisor. In [4], two generalizations of Fulton-MacPherson
spaces were constructed by using the method of wonderful compactification
[5]. These spaces were important because they were used to give simple con-
structions of moduli of relative stable maps and logarithmic stable maps [1],
[3].

Two spaces are defined as following:

(1) A compactification X
[n]
D of the configuration space of n labeled points in

X \ D, i.e. “not allowing those points to meets D.”

(2) A compactification XD[n] of the configuration space of n distinct labeled
points in X \ D, i.e. “not allowing those points to meet each other as
well as D.”

The goal of this paper is to give an explicit presentation of Chow motives
and Chow groups of these configuration spaces. Our main theorems are:

Theorem 1.1. We have the Chow group and motive decompositions

A∗(X[n]
D ) =

⊕
CH

⊕
�μ∈MCH

A∗−‖�μ‖(DSCH
),

h(X
[n]
D ) =

⊕
CH

⊕
�μ∈MCH

h(DSCH
)(‖�μ‖),
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where CH runs through all the chains of {1, 2, . . . , n}, SCH is the maximal
element in CH and ‖·‖ is the l1 norm.

Theorem 1.2. We have the Chow group and motive decompositions

A∗(XD[n]) =
⊕

N

⊕
�μ∈MN

(⊕
CH

⊕
�λ∈MCH

A∗−‖�μ‖−‖�λ‖(DSCH
)

)
,

h(XD[n]) =
⊕

N

⊕
�μ∈MN

(⊕
CH

⊕
�λ∈MCH

h(DSCH
)(‖�μ‖ + ‖�λ‖)

)
,

where N runs through all the nests of {1, 2, . . . , n} and CH runs through all
the chains whose length is the number of connected components of the forest
which corresponds to N .

The paper is organized as follows. In section 2, we review theory of wonder-
ful compactification and Chow motives after blow-up. In section 3, we review
the construction of compactifications of n points in X \ D. In section 4, we
compute Chow groups and motives explicitly.

1.1. Notation
• As in [2], for a subset I of N := {1, 2, . . . , n}, let

I+ := I ∪ {n + 1}.
• Let BlZ Y be the blow-up of a nonsingular complex projective variety Y

along a nonsingular closed subvariety Z.
• Let Y1 be the blow-up of a nonsingular complex projective variety Y0 along

a nonsingular closed subvariety Z. If V is an irreducible subvariety of Y0,
we will use Ṽ or V (Y1) to denote

– the total transform of V , if V ⊆ Z;
– the proper transform of V , otherwise.

If there is no risk to cause confusion, we will use simply V to denote Ṽ . The
space BlṼ Y1 will be called the iterated blow-ups of Y0 along centers Z, V

(with the order). When we want to indicate where an iterated transform of
V lives explicitly, we will write it V (Yn).

• For a partition of I of N , �I denotes the polydiagonal associated to I . And
consider a binary operation I ∧ J on the set of all partitions satisfying

�I ∩ �J = �I∧J .

We use �I0 instead of �I when I = {I0, I1, . . . , Il} such that |Ii | = 1 for
all i ≥ 1.
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2. Wonderful Compactification of Arrangements of Subvarieties

In this section, we review the theory of wonderful compactification of arrange-
ments of subvarieties. See the detail and proofs in [5], [6].

2.1. Arrangement, building set and nest

Definition 2.1 (Of clean intersection). Let Y be a complex nonsingular
projective algebraic variety and let U and V be two smooth subvarieties of Y .
We say that U and V intersect cleanly if U �= V and their scheme-theoretic
intersection is nonsingular and the tangent bundles satisfy T (U ∩V ) = T U ∩
T V .

Remark 2.2. If the intersection is transversal, then it is a clean intersection.

Definition 2.3 (Of simple arrangement). A simple arrangement of sub-
varieties of Y is a finite set S = {Si} of nonsingular closed irreducible sub-
varieties of Y satisfying the following conditions

(1) Si and Sj intersect cleanly,

(2) Si ∩ Sj is either empty or some Sk’s.

Definition 2.4 (Of building set). Let S be a simple arrangement of sub-
varieties of Y . A subset G ⊆ S is called a building set with respect to S , if , for
any S ∈ S , the minimal elements in G which contain S intersect transversally
and their intersection is S. These minimal elements are called the G-factors of
S.

Definition 2.5 (Of G-nest). A subset T ⊆ G is called a G-nest if there
is a flag of elements in S : S1 ⊂ S2 ⊂ · · · ⊂ Sk such that

T =
k⋃

i=1

{A : A is a G-factor of Si}.
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2.2. Construction of YG by a sequence of blow-ups

Let Y be a complex nonsingular projective algebraic variety, S be a simple
arrangement of subvarieties of Y and G be a building set with respect to S . Or-
der G = {G1, . . . , GN } such that i < j if Gi ⊂ Gj . We define (Yk, S (k), G (k))

inductively, where Yk is a blow-up of Yk−1 along a nonsingular variety, S (k)

is a simple arrangement of subvarieties of Yk and G (k) is a building set with
respect to S (k).

Theorem 2.6. Assume S is a simple arrangement of subvarieties of Y and
G is a building set. Let G be a minimal element in G and consider π : Ỹ :=
BlG Y → Y . Denote the exceptional divisor by E. For any nonsingular variety
V in Y , we define Ṽ ⊂ BlG Y , the ∼-transform of V , to be the proper transform
of V if V �⊆ G, and to be π−1(V ) if V ⊆ G.

For simplicity of notation, for a sequence of blow-ups, we use the same
notation Ṽ to denote the iterated one.

(1) The collection S ′ of subvarieties in Ỹ defined by

S ′ := {S̃}S∈S ∪ {S̃ ∩ E}∅⊂S∩G⊂S

is a simple arrangement in Ỹ

(2) G ′ := {G̃i}Gi∈G is a building set with respect to S ′.
(3) Given a subset T of G , define T ′ := {Ã}A∈T ⊆ G ′. T is a G-nest if

and only if T ′ is a G ′-nest.

Let’s go back to the construction of YG .

(1) For k = 0, Y0 = Y, S (0) = S , G (0) = G = {G1, . . . , GN }, G(0)
i = Gi .

(2) Assume Yk−1 is already constructed. Let Yk be the blow-up of Yk−1 along

the nonsingular subvariety G
(k−1)
k . Define G

(k)
i := G̃

(k−1)
i . Since G

(k−1)
i

for i < k are all divisors, G
(k−1)
k is minimal in G (k−1). Thus there is a

naturally induced simple arrangement S (k) and a building set G (k) by
the Theorem 2.6.

(3) Continue the inductive construction to k = N , where all elements in the
building set G (N) are divisors.

Theorem 2.7. Denote Y ◦ = Y \ ∪G∈GG. There is a natural locally closed
embedding

Y ◦ ↪→ Y ×
∏
G∈G

BlG Y,

and its cloure is denoted by YG and called the wonderful compactification of
Y with respect to G . Then YG is isomorphic to YN which is constructed in the
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above. The variety YG is nonsingular. For each G ∈ G , there is a nonsingular
divisors DG ⊂ YG such that

(1) The union of these divisors is YG \ Y ◦.

(2) Any set of these divisors meets transversally. An intersection of divisors
DT1 ∩ · · · ∩ DTl

is not empty exactly when {T1, . . . , Tl} forms a G-nest.

Theorem 2.8 (Order of blow-ups).
(1) Let Ii be the ideal sheaf of Gi ∈ G . Then

YG
∼= BlI1...IN

Y.

(2) If we arrange G = {G1, . . . , GN } in such an order that

(∗) for any 1 ≤ i ≤ N , the first i terms G1, . . . , Gi form a building set.

Then
YG

∼= BlG̃N
. . . BlG̃2

BlG1 Y,

where each blow-up is along a smooth subvariety.

2.3. Chow group and motive of YG

Let Y0 := Y, Y0T := ∩T ∈T T where T is a G-nest. Define rT (G) :=
dim(∩G⊂T ∈T T ) − dim G (here we use a convention that ∩G⊂T ∈T T = Y

if no T strictly contains G). Then define

MT := {�μ = {μG}G∈T : 1 ≤ μG ≤ rT (G) − 1}.
Let ‖�μ‖ := ∑

G∈G μG for �μ ∈ MT .

Theorem 2.9. We have the Chow group decomposition

A∗(YG ) = A∗(Y ) ⊕
⊕

T

⊕
�μ∈MT

A∗−‖�μ‖(Y0T )

where T runs through all G-nests. We also have the Chow motive decompos-
ition

h(YG ) = h(Y ) ⊕
⊕

T

⊕
�μ∈MT

h(Y0T )(‖�μ‖)

where T runs through all G-nests.
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3. Construction of X
[n]
D and XD[n]

Fix a nonsingular divisor D of a complex nonsingular projective algebraic
variety X of dimension m. In this section, we review constructions of a com-
pactification of configuration space of n points in X \ D, X

[n]
D , and a com-

pactification of configuration space of n distinct points in X \ D, XD[n]. In
this paper, we assume that D is a divisor but every thing will work in the case
where D is a smooth subvariety after some adjustment. See the details in [4].

3.1. Construction

For a subset S of N := {1, 2, . . . , n} define a nonsingular subvariety in Xn

DS := {x ∈ Xn | xi ∈ D, ∀ i ∈ S}.
Let A be the collection of DS for all S ⊆ N := {1, . . . , n} with |S| ≥ 2. It is
clear that the collection is a simple arrangement of smooth subvarieties of Xn.
Take a building set G = A . Then define X

[n]
D to be the closure of Xn \ ⋃

S DS

in
Xn ×

∏
S

BlDS
Xn

It can be constructed by a successive blow-ups by Theorem 2.7. In particular
we may order G as D12; D123; D13, D23; . . . ; D12...n; DU∪{n} with |U | = n−2
and U ⊂ N \ {n}; . . . ; Din for i = 1, . . . , n − 1 by Theorem 2.8.

For I ⊆ N with |I | ≥ 2, {�I(X
[n]
D )} forms a building set of nonsingular

subvarieties of X
[n]
D with respect to the set of ∼-transforms of all polydiagonals.

So we define XD[n] as followings.

Definition 3.1. Define XD[n] to be the closure of X
[n]
D \ ⋃

|I |≥2 �I(X
[n]
D )

in
X

[n]
D ×

∏
|I |≥2

Bl�I (X
[n]
D ) X

[n]
D

Then, it satisfies the following properties.

Theorem 3.2.
(1) XD[n] is a nonsingular variety. There is a natural projection from XD[n]

to XD[|I |] for any subset I of N . There is a natural Sn-action on XD[n].

(2) The boundary is the union of divisors D̃S with |S| ≥ 1, and �̃I with
|I | ≥ 2 of normal crossings.

(3) The intersections of boundary divisors are nonempty if and only if they
are nested. Here {DSi

, �Ij } is nested if each pair Si and Si ′ (Ij and Ij ′ )
is either disjoint or one is contained in the other and each pair Si and
Ij is either disjoint or Ij is contained in Si .
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(4) We may take a following order of blow-ups: DS; �I for n �∈ S, I ; DT

with n ∈ T ; �J with n ∈ J .

This is a summary of Theorem 1 and 2 in [4].

4. Chow groups and motives

In this section, we will apply Theorem 2.9 to X
[n]
D and XD[n].

4.1. Chow group and motive of X
[n]
D

In this case, our Y = Xn, S = G = {DS : S ⊆ N with |S| ≥ 2} where
DS = {x ∈ Xn | xi ∈ D, ∀ i ∈ S}. We have S = G , so a G-nest T is
just a chain of elements in S , that is T = {DS1 ⊂ DS2 ⊂ · · · ⊂ DSk

}. Thus
Y0T = DS1 .

A chain CH is a chain of proper subset of N , Sk ⊂ · · · ⊂ S2 ⊂ S1 , such that
Sk is not a singleton. Obviously, there is one-to-one correspondence between a
set of chains of S and a set of chains of N . We say ∅ is also a chain. We define
maxCH (T ) S as the maximal element of CH (T ) which is strictly contained in
S, where CH (T ) is the chain of N which corresponds to T . If there is no
such element, then we define maxCH (T ) S = ∅

Now let G = DS and let’s compute rT (G);

rT (G) = dim
( ⋂

G⊂T ∈T

T
)

− dim G

= dim(DmaxCH (T ) S) − dim DS

= |S| − | maxCH (T ) S|.
Remark 4.1 (When D is not a divisor). When D is not a divisor, then

we also blow up along D{i}. So we will not exclude the case such that Sk is
a singleton for {Sk ⊂ · · · ⊂ S2 ⊂ S1}. The definition of rT (G) will be also
changed. It will be multiplied by the codimension of D in X. See more details
in [6].

For a chain CH (�= ∅) , define

MCH := {�μ = {μS}S∈CH : 1 ≤ μS ≤ |S| − | maxCH S| − 1}.

For CH = ∅, define MCH to be the set consisting of one �μ with ‖�μ‖ = 0 and
D∅ = Xn.
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Theorem 4.2 (Theorem 1.1). We have the Chow group and motive decom-
positions

A∗(X[n]
D ) =

⊕
CH

⊕
�μ∈MCH

A∗−‖�μ‖(DSCH
),

h(X
[n]
D ) =

⊕
CH

⊕
�μ∈MCH

h(DSCH
)(‖�μ‖),

where CH runs through all the chains of N and SCH is the maximal element
in CH .

4.2. Chow group and motive of XD[n]

We use the same notation as [6].

(1) We call two subsets I, J ⊆ N are overlapped if I ∩ J is not a nonempty
proper subset of both I and J . For a set N of subsets of N , we call
I is compatible with N , denoted by I ∼ N , if I does not overlap
any elements of N . A nest N is a set of subset of N such that any
pair I �= J ∈ N are not overlapped and contains all singletons. For
a given nest N , define N ◦ := N \ {{1}, . . . , {n}}. A nest N naturally
corresponds to a tree (which may not be connected) with each node
being labeled by an element of N . Let c(N ) be the number of connected
components of the forest which corresponds to N . Denote by cI (N ) the
number of maximal elements of the set {J ∈ N : J ⊂ I }, which is
called the number of sons of the node I . Let �N := ∩I∈N �I(X

[n]
D ) in

this section.

(2) For a nest N (�={{1}, . . . , {n}}), define

MN := {�μ = {μI }I∈N : 1 ≤ μI ≤ m(cI (N ) − 1) − 1}
where m = dim X. For N = {{1}, . . . , {n}}, define MN = {�μ} with
‖�μ‖ = 0.

As in [6], we have

Proposition 4.3. We have the Chow group and motive decompositions

A∗(XD[n]) =
⊕

N

⊕
�μ∈MN

A∗−‖�μ‖(�N ),

h(XD[n]) =
⊕

N

⊕
�μ∈MN

h(�N )(‖�μ‖),

where N runs through all the nests of N
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Now we need to simplify A∗(�N ) and h(�N ).

Lemma 4.4. DS and �I intersect cleanly.

Proof. We only need to prove that T DS ∩ T �I ⊂ T (DS ∩ �I). An arc in
�I have a coordinate representative (xi ) ∈ Xn such that xi = xj for i, j ∈ I .
For an arc in �I to be an arc in DS , xi ∈ D for all i ∈ S. Thus the arc should
be an arc in DS ∩ �I .

Proposition 4.5. �I is isomorphic to X
[|I c|+1]
D .

Proof. We need to know which blow-ups along DS have an effect to �I in
a specific order of blow-ups. We can assume that I = {l, · · · , n} by arranging
the order. Then denote a = |I c| and b = |I |. We will denote �I by Xa × �

(∼= X|I c|+1). Then we have two different kinds of DS . The first one is that
S ⊂ I c, which we call the first kind, the second one is that S �⊆ I c, which
we call the second kind. We will change the order of blow-ups so that we
first blow up along DS’s of the first kind, and then along the second kind.
More precisely, we order DIc × Xb, D1,...,î,...,l × Xb, . . . , Di,j × Xb(i, j ∈
{1, . . . , a}) and then DIc ×Db, . . . , DS ′ ×DS ′′ , . . . (|S ′′| > 0 and (|S ′|, |S ′′|) :
non-increasing in lexicographical order). This order satisfies (∗)-condition in
Theorem 2.6, so that we can blow up in this order. In this order of blow-ups,
notice that ˜Xa × � and ˜DS ′ × DS ′′ for S ′′ ⊂ I are separated when we blow
up along ˜DS ′ × Db. Thus we can forget the process of blow-ups by ˜DS ′ × DS ′′

where S ′′ ⊂ I i.e. we only need to care about DS ′ × Db for the second kind.
Under the isomorphism Xa × � ∼= Xa+1, they are just DS ′ × D.

We can also apply the same technique to polydiagonals term by term. Thus
we can go further from proposition 4.3.

Theorem 4.6 (Theorem 1.2). We have the Chow group and motive decom-
positions

A∗(XD[n]) =
⊕

N

⊕
�μ∈MN

(⊕
CH

⊕
�λ∈MCH

A∗−‖�μ‖−‖�λ‖(DSCH
)

)
,

h(XD[n]) =
⊕

N

⊕
�μ∈MN

(⊕
CH

⊕
�λ∈MCH

h(DSCH
)(‖�μ‖ + ‖�λ‖)

)
,

where N runs through all the nests of N and CH runs through all the chains
whose length is c(N ).
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