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ON ARTINIANNESS OF FORMAL LOCAL
COHOMOLOGY, COLOCALIZATION

AND COASSOCIATED PRIMES

MAJID EGHBALI

Abstract

This paper at first concerns some criteria onArtinianness and vanishing of formal local cohomology
modules. Then we consider the cosupport and the set of coassociated primes of these modules
more precisely.

1. Introduction

Throughout, � is an ideal of a commutative Noetherian ring R and M an R-
module. Let V (�) be the set of prime ideals in R containing �. For an integer
i, let Hi

�(M) denote the i-th local cohomology module of M . We have the
isomorphism of Hi

�(M) to lim−→
n

ExtiR(R/�n,M) for every i ∈ Z, see [2] for

more details.
Consider the family of local cohomology modules {Hi

�(M/�nM)}n∈N. For
every n there is a natural homomorphism Hi

�(M/�n+1M) → Hi
�(M/�nM)

such that the family forms a projective system. The projective limit �i�(M) :=
lim←−
n

H i
�(M/�nM) is called the i-th formal local cohomology ofM with respect

to �. Formal local cohomology modules were used by Peskine and Szpiro in
[12] when R is a regular ring in order to solve a conjecture of Hartshorne in
prime characteristic. It is noteworthy to mention that if U = Spec(R) \ {�}
and (Û ,Oû) denote the formal completion of U along V (�) \ {�} and also F̂

denotes the Oû-sheaf associated to lim←−
n

M/�nM , they have described the formal

cohomology modulesHi(Û ,Oû) via the isomorphismsHi(Û ,Oû) ∼= �i�(M),
i ≥ 1. See also [11, proposition (2.2)] when R is a Gorenstein ring.

Let x = {x1, . . . , xr} denote a system of elements such that � = Rad(x).
In [15], Schenzel has studied formal local cohomology module via following
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isomorphism

lim←−
n

H i
�(M/�nM) ∼= Hi

(
lim←−
n

(Čx ⊗M/�nM)
)

where Čx denotes the Čech complex of R with respect to x.
When the local ring (R,�) is a quotient of a local Gorenstein ring (S,�),

we have

(1.1) �i�(M)
∼= HomR

(
H dim S−i

�′ (M, S), E
)
, i ∈ Z

whereE denotes the injective hull of R/� and �′ is the preimage of � in S (cf.
[15, Remark 3.6]).

Important problems concerning local cohomology modules are vanishing,
finiteness and Artinianness results (see, e.g., [6]). In Section 2 we examine the
vanishing and Artinianness of formal local cohomology modules. In the next
theorem we give some criteria for vanishing and Artinianness of formal local
cohomology modules:

Theorem 1.1. Let (R,�) be a local ring and M be a finitely generated
R-module. For given integers i and t > 0, the following statements are equi-
valent:

(1) SuppR̂(�
i
�(M)) ⊆ V (�R̂) for all i < t;

(2) �i�(M) is Artinian for all i < t;

(3) SuppR̂(�
i
�(M)) ⊆ V (�R̂) for all i < t;

(4) � ⊆ Rad(AnnR(�i�(M))) for all i < t;

Suppose that t ≤ depthM , then the above conditions are equivalent to

(5) �i�(M) = 0 for all i < t;

where R̂ denotes the �-adic completion of R.

It should be noted that it has been shown independently in [8] that statements
(2) and (4) are equivalent.

Note that as we see in Theorem 1.1, we have the equivalence between
SuppR̂(�

i
�(M)) ⊆ V (�R̂) for all i < t and � ⊆ Rad(AnnR(�i�(M))) for all

i < t , which is not true in general for an arbitrary module.
In Section 3, we study the cosupport of formal local cohomology via

Richardson’s definition of colocalization (cf. Definition 3.1). We show that
when (R,�) is a local ring, M is a finite R-module and �i�(M) is Artinian
(i ∈ Z), then CoSupp(�i�(M)) ⊆ V (�) (cf. 3.5). As a further result we reduce
to the case M = R when considering the cosupport of top formal local co-
homology modules which is the analogue for formal local cohomology of the
result due to Huneke-Katz-Marley in [7, Proposition 2.1]:
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Theorem 1.2. Let (R,�) be a local ring. Let M be a finitely generated
R-module. Then

(1) CoSupp(�c�(M)) = CoSupp(�c�(R/J )),

(2) Supp(�c�(M)) = Supp(�c�(R/J )),

where J is AnnR(M) and c := dimR/�.

For a representable module M , CoSupp(M) = V (AnnM) (cf. [13, The-
orem 2.7]). It motivates us to see when the cosupport of formal local co-
homology module is a closed subset of SpecR in Zariski topology. For this
reason in Section 4 we study the set of coassociated primes of formal local
cohomology more precisely. In this direction when (R,�) is a local ring and
M is an R-module, the set of minimal primes in CoSupp(M) is finite if and
only if CoSupp(M) is a closed subset of Spec(R) (Lemma 4.2). Hence, it
is enough to ask when the CoassM is finite. We give affirmative answers
to this question in some cases, see Proposition 4.4 and Theorem 1.4 below.
It is noteworthy that for a finitely generated module M over a local ring
(R,�), CoassR̂(�

0
�(M)) is finite since �0

�(M) is a finite R̂-module (cf. [15,
Lemma 4.1]) and Coass(�dim

� (M)) is finite as �dimM
� (M) is an Artinian R-

module (cf. [1, Lemma 2.2] or Proposition 2.1).
As final results in Section 4, we give the following results for top formal

local cohomology modules:

Theorem 1.3. Let (R,�) be a local ring of dimension d > 1. Let �d�(R) =
0. Then:

(1) If � ∈ Coass(�d−1
� (R)), then it implies that dim(R/(�, �)) = d − 1.

(2) Assh(R)∩Coass(�d−1
� (R)) ⊆ {� ∈ Spec(R) : dim(R/�) = d,Rad(�+

�) �= �}.
(3) If Coass(�d−1

� (R)) ⊆ Assh(R), then {� ∈ Spec(R) : dim(R/(�, �)) =
d − 1} ⊆ Coass(�d−1

� (R)).

Next result shows that for a one dimensional ideal � of a complete local
ring R of dimension d, Cosupp(�d−1

� (R)) is closed.

Theorem 1.4. Let (R,�) be a local complete ring of dimension d. Let �
be an ideal of dimension one. Then

�d−1
� (R) = 0, when d > 2,

in particular CoassR(�d−1
� (R)) = ∅.

CoassR(�
d−1
� (R)) ⊆ {�}, when d = 1,



8 majid eghbali

and in the case d = 2 we have

CoassR(�
d−1
� (R)) =

r⋃
i=1

CoassR(R̂�i )

= {�1, . . . , �r} ∪
( s⋃
j=1

{�j : R�i /�jR�i is not complete}
)
,

where �1, . . . , �r are minimal prime ideals of � and �1, . . . , �s are minimal
prime ideals of R with �j ⊆ �i for i ∈ {1, . . . , r}.

In particular Cosupp(�d−1
� (R)) is closed for all d > 0.

My thanks are due to my phd. adviser, Professor Peter Schenzel, for his
guidance to prepare this paper and useful hints and to the reviewer for sug-
gesting several improvements. Some parts of this paper was written while the
author was at Oberwolfach: Representations of Finite Groups, Local Cohomo-
logy and Support. Many thanks to the organisers.

2. On Artinianness of �i
�(M)

Important problems concerning local cohomology modules are vanishing, fi-
niteness and Artinianness results. In the present section we study the vanishing
and Artinianness conditions of formal local cohomology modules as our main
result. Not so much is known about the mentioned properties. In [1] Asghar-
zadeh and Divani-Aazar have investigated some properties of formal local
cohomology modules. For instance they showed that �d�(M) is Artinian for
d := dim(M). Here we give an alternative proof of it with more information
on the attached primes of �d�(M):

Proposition 2.1. Let � be an ideal of a local ring (R,�) and M a finitely
generated R-module of dimension d. Then �d�(M) is Artinian. Furthermore

AttR(�
d
�(M)) = {� ∈ Ass(M) : dim(R/�) = d} ∩ V (�).

Proof. By Independence Theorem we may assume that Ann(M) = 0 and
so d = dim(R). As Hd

�(M/�nM) is right exact (n ∈ N), we have

Hd
�(M/�nM) ∼= Hd

�(R)⊗R M/�nM

∼= Hd
�(M)⊗R R/�n

∼= Hd
�(M)/�nHd

�(M).

Since Hd
�(M) is an Artinian module so there exists an integer n0 such that for

all integer t ≥ n0 we have �tH d
�(M) = �n0Hd

�(M). Then one can see that

�d�(M)
∼= Hd

�(M)/�n0Hd
�(M),
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which is an Artinian module. By virtue of above equations and [2, The-
orem 7.3.2], the second claim is clear.

Lemma 2.2. Let (R,�) be a complete local ring andM a finitely generated
R-module. Then Supp(�0

�(M)) = ⋃
�∈AssR(�0

�(M))
V (�). Moreover

Supp(�0
�(M)) ∩ V (�) ⊆ V (�).

Proof. To prove the claim, it is enough to consider that AssR(�0
�(M)) =

{� ∈ AssR(M) : dim(R/(�+ �)) = 0} (cf. [15, Lemma 4.1]).

Using Lemma 2.2 we are now able to prove Theorem 1.1:

Proof of Theorem 1.1. (1)⇒ (3) and (2)⇒ (1) are obvious.
(3)⇒ (2): By passing to the completion, we may assume thatR is complete

(cf. [15, Proposition 3.3]).
We argue by induction on t . When t = 1, there is nothing to prove, since

Lemma 2.2 and the assumptions imply that

Supp(�0
�(M)) = Supp(�0

�(M)) ∩ V (�) ⊆ V (�).
Hence �0

�(M) is Artinian. To this end note that �0
�(M) is a finitely generated

submodule of M . So suppose that t > 1 and the result has been proved for
smaller values of t . Put M = M/H 0

� (M). From the short exact sequences

0 −→ H 0
� (M) −→ M −→ M −→ 0

and by [15, Proposition 3.11]), we get the following long exact sequence

· · · −→ �i�(H
0
� (M)) −→ �i�(M) −→ �i�(M) −→ �i+1

� (H 0
� (M)) −→ · · · .

As �
j
�(H

0
� (M)) = Hj

�(H
0
� (M)) is an Artinian R-module for every j ∈ Z ([2,

Theorem 7.1.3]) then, one can see that Supp(�i�(M)) ⊆ V (�) for all i < t .
Hence, it is enough to show that �i�(M) is Artinian, so we may assume that
H 0

� (M) = 0. Thus, there exists an M-regular element x in � such that from
the short exact sequence

0 −→ M
x−→ M −→ M/xM = M̃ −→ 0

we deduce the next long exact sequence

(∗) · · · −→ �i�(M)
x−→ �i�(M) −→ �i�(M̃) −→ �i+1

� (M) −→ · · · .
Since Supp(�i�(M)) ⊆ V (�) for all i < t , it follows from the above long exact
sequence that Supp(�i�(M̃)) ⊆ V (�) for all i < t − 1. Hence, by induction
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hypothesis we have �i�(M̃) is Artinian for all i < t − 1. Therefore in the view
of (∗), (0 :�i�(M)

x) is Artinian for all i < t .
On the other hand since Supp(�i�(M)) ⊆ V (�) for all i < t , one can see

that
�i�(M) =

⋃
(0 :�i�(M)

�α) ⊆
⋃
(0 :�i�(M)

xα) ⊆ �i�(M)

so �i�(M) =
⋃
(0 :�i�(M)

xα). Therefore by [9, Theorem 1.3], �i�(M) will be
Artinian for all i < t .

(2)⇒ (4): Since �i�(M) is �-adically complete for every i ∈ Z (cf. [15,
Theorem 3.9] or [5, Remark 3.1]), we get

⋂
n �n�i�(M) = 0. Moreover for all

i < t , �i�(M) is Artinian. Hence, there is an integer u such that �u�i�(M) = 0.
(4)⇒ (3) is obvious.
(1)⇒ (5): By passing to the completion we may assume thatR is complete.

We use induction on t . Let t = 1. As Supp(�0
�(M)) ⊆ V (�) so �0

�(M) must
be zero. Otherwise since

∅ �= Ass(�0
�(M)) ⊆ Supp(�0

�(M)) ⊆ V (�)
then,

� ∈ Ass(�0
�(M)) = {� ∈ Ass(M); dim(R/�+ �) = 0},

this is contradiction to depth(M) > 0.
Now suppose that depth(M) ≥ t > 1 and that the result has been proved

for smaller values of t . By this inductive assumption, �i�(M) = 0 for i =
0, 1, . . . , t − 2 and it only remains for us to prove that �t−1

� (M) = 0.
Since depth(M) > 1 then, there exists x ∈ � that is anM-regular element.

Consider the short exact sequence

0 −→ M
xl−→ M −→ M/xlM = M̄ −→ 0

for every l. Thus, we have the following long exact sequence

· · · −→ �i−1
� (M̄) −→ �i�(M)

xl−→ �i�(M) −→ �i�(M̄) −→ · · ·
for every l.

As depth(M̄) = depth(M)− 1 > 0 and for all i < t − 1, Supp(�i�(M̄)) ⊆
V (�) then, by inductive hypothesis �i�(M̄) = 0 for all i < t − 1. Thus, for
every l, (0 :�t−1

� (M) x
l) is a homomorphic image of �t−2

� (M̄). Hence, (0 :�t−1
� (M)

xl) = 0 for every l.
Take into account that by assumption Supp(�i�(M)) ⊆ V (�) for every

i < t . Then, �t−1
� (M) = ∪(0 :�t−1

� (M) x
l) = 0. This completes the proof.
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3. Cosupport

In this section we examine the cosupport of formal local cohomology. The
notion of cosupport was introduced by S. Yassemi in [17]. He defined the
CosuppR(M) as the set of prime ideals � such that there exists a cocyclic
homomorphic image L of M with � ⊇ Ann(L). His definition is equival-
ent to Melkersson-Schenzel’s definition for Artinian R-modules. Melkersson-
Schenzel’s definition of colocalization does not map Artinian R-module to
Artinian S−1R-module through colocalization at a multiplicative closed sub-
set of R (cf. [10]). In this note we use the concept of cosupport has been
introduced by A. Richardson [13]. It maps Artinian R-modules to Artinian
S−1R-modules (when R is complete). Also it is suitable to investigate formal
local cohomology modules.

Definition 3.1 (cf. [13]). Let R be a ring and M an R-module.

(1) LetS be a multiplicative closed subset ofR andDR(−) := HomR(−,ER),
where ER is the injective hull of ⊕R/�, the sum running over all max-
imal ideals � of R. The colocalization of M relative to S is the S−1R-
module S−1M = DS−1R(S

−1DR(M)). If S = R \ � for some prime
ideal � ∈ Spec(R), we write �M for S−1M .

(2) The cosupport of M is defined as follows

CosuppR(M) := {� ∈ Spec(R) : �M �= 0}.

For brevity we often write Cosupp(M) for CosuppR(M) when there is no
ambiguity about the ring R.

Below we recall some properties of cosupport:

Lemma 3.2 (cf. [13, Theorem 2.7]). Let R be a ring and M an R-module.

(1) Cosupp(M) = Supp(DR(M)).

(2) If M is finitely generated, then CoSupp(M) = V (Ann(M)) ∩max(R).

(3) Cosupp(M) = ∅ if and only if M = 0.

(4) Cosupp(M) ⊆ V (Ann(M)).

(5) If 0 −→ M ′ −→ M −→ M ′′ −→ 0 is exact, then Cosupp(M) =
Cosupp(M ′) ∪ CoSupp(M ′′).

(6) If M is representable, then Cosupp(M) = V (Ann(M)).

Proposition 3.3. Let R be a ring and M and N be R-modules. Then the
following statements are true:

(1) Cosupp(M) is stable under specialization, i.e.

� ∈ Cosupp(M), � ⊆ �⇒ � ∈ Cosupp(M).
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(2) Let M be a finite module, then Cosupp(M ⊗R N) ⊆ Supp(M) ∩
Cosupp(N).

Proof.
(1) Let � ∈ Cosupp(M), then by definition DR�

(DR(M)�) is nonzero and
so isDR(M)�. As 0 �= DR(M)� = (DR(M)�)�R�

, thenDR(M)� �= 0. It
implies that �M �= 0.

(2) Use [13, 2.5] to prove.

Lemma 3.4. Let � be an ideal of a ring R. Let N be an Artinian R-module
with AttR(N) ⊆ V (�). Then, Cosupp(N) ⊆ V (�).

Proof. SinceN is anArtinian module then, the following descending chain

�N ⊇ �2N ⊇ · · · ⊇ �nN ⊇ · · ·
of submodules of N is stable, i.e. there exists an integer k that �kN = �k+1N .
As AttR(N/�kN) = AttR(N) ∩ V (�) (cf. [10, Proposition 5.2]) and
Cosupp(N/�kN) ⊆ V (�) by virtue of Proposition 3.3, hence, by passing
to N/�kN we may assume that �kN = 0.

Let � ∈ Cosupp(N) then, �N �= 0. Thus, for every s ∈ S = R \ �, sN �= 0
(cf. [13, 2.1]). On the other hand

⋂
n �nN = �kN = 0, hence, for every s ∈ S,

sN �⊆ �tN . It follows that for all s ∈ S, s /∈ �t and clearly � ∈ V (�).
Corollary 3.5. Let i ∈ Z. Let (R,�) be a local ring and M be a fi-

nitely generatedR-module. Assume that �i�(M) is an ArtinianR-module, then
Cosupp(�i�(M)) ⊆ V (�).

Proof. As �i�(M) is Artinian and �-adically complete so, there exists an
integer k such that

⋂
n≥1 �n�i�(M) = �k�i�(M) = 0. Hence, [2, Proposi-

tion 7.2.11] implies that Att(�i�(M)) ⊆ V (�) and in the light of Lemma 3.4
Cosupp(�i�(M)) ⊆ V (�).

Remark 3.6. Converse of Corollary 3.5 is not true in general. Let R =
k[|x|] denote the formal power series ring over a field k. Put � = (x)R. Then

Cosupp(�0
�(R)) = Supp(DR(DR(H

1
� (R)))) = Supp(H 1

� (R)) ⊆ V (�)
but �0

�(R) is not Artinian.

We now turn our attention to prove Theorem 1.2. For this reason we give a
preliminary Lemma:

Lemma 3.7. Let (R,�) be a d-dimensional local ring. Let M be a finitely
generated R-module. Then

�c�(M)
∼= �c�(R)⊗R M, where c := dim(R/�).
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Proof. At first note that by definition of inverse limit, �
j
�(−) preserves

finite direct sum, for every j ∈ Z. Furthermore �c�(−) is a right exact functor
(cf. [15, Theorem 4.5]). Hence, by Watts’ Theorem ([14, Theorem 3.33]) the
claim is proved.

Lemma 3.7 declares that �c�(R) = 0 if and only if �c�(M) = 0 for all finitely
generated R-module M .

In order to prove Theorem 1.2 we utilize the useful consequence of Gruson’s
Theorem (see, e.g., [16, Corollary 4.3]) allows us to reduce to the caseM = R
when considering the cosupport of top formal local cohomology modules:

Proof of Theorem 1.2. (1) Since �c�(M)
∼= �c�(R/J )(M), by Independ-

ence Theorem [2, 4.2.1], we may replace R by R/J to assume that M is
faithful. Note that for dim(R/(�, J )) < c, there is nothing to prove because,
�c�(M) = 0.

In the view of Lemma 3.7 and [13, Proposition 2.5], for every � ∈ Spec(R)

��c�(M)
∼= M� ⊗R�

��c�(R).

As M� is a faithful R�-module, [16, Corollary 4.3] implies that M� ⊗R
��c�(R) = 0 if and only if ��c�(R) = 0, which completes the proof.

(2) To prove, we use the localization instead of colocalization in the proof
of (1).

4. Coassociated primes

LetM be an R-module. A prime ideal � of R is called a coassociated prime of
M if there exists a cocyclic homomorphic imageL ofM such that � = Ann(L).
The set of coassociated prime ideals ofM is denoted by CoassR(M) (cf. [17]).
When the ambient R is understood, we will often write Coass(M) instead of
CoassR(M).

Note that for an Artinian module the set of coassociated primes is fi-
nite. In this section (R,�) is a local ring and we denote by DR(M) =
HomR(M,E(R/�)) the Matlis dual of R-module M , where E(R/�) is the
injective hull of residue field, so in this case Coass(M) = Ass(DR(M)).

Among other results, we will see that under certain assumptions
CosuppR(�

i
�(M)) as a subset of Spec(R) is closed in the Zariski topology

for some i ∈ Z.

Lemma 4.1. Let (R,�) be a local ring and M an R-module. Then the
following statements are true:

(1) Coass(M) ⊆ Cosupp(M).

(2) Every minimal element of Cosupp(M) belongs to Coass(M).
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(3) For any Noetherian R̂-module M , Coass(M) = Cosupp(M) ⊆ {�},
where R̂ denotes the �-adic completion of R.

Proof.
(1) Let � ∈ Coass(M), then, it implies that 0 �= HomR�

(R�/�R�,DR(M)�).
Note that it remains nonzero by taking HomR�

(−, ER�
(R�/�R�)) and

consequently � ∈ Cosupp(M).

(2) Let � ∈ min Cosupp(M) = min Supp(DR(M)), so,
� ∈ min Ass(DR(M)). It follows that � ∈ min Coass(M).

(3) It is clear by (1) and (2).

It should be noted that Supp(�i�(M)) is closed when Ass(�i�(M)) is finite. In
fact for a local Gorenstein ring (R,�), Ass(�i�(R)) = Ass(DR(H

dimR−i
� (R)))

see [4] for details. Take into account that it is not finite in general (see [4] or
[1, Remark 2.8(vi)]).

Lemma 4.2. Let (R,�) be a local ring and M be an R-module. The set of
minimal primes in Cosupp(M) is finite if and only if Cosupp(M) is a closed
subset of Spec(R).

Proof. Let Cosupp(M) = V (�) for some ideal � of R. As R is Noetherian
then so is R/�. It turns out that the set of minimal elements of Cosupp(M) is
finite.

For the reverse direction, let �1, . . . , �t be the minimal prime ideals of
Cosupp(M). Put � := ∩i�i . We claim that Cosupp(M) = V (�).

It is clear that Cosupp(M) ⊆ V (�). For the opposite direction assume that
there is a prime ideal Q ⊃ �. Then, Q ⊃ �j , for some 1 ≤ j ≤ t so the proof
follows by 3.3(1).

We deduce from above lemma that the cosupport of formal local cohomo-
logy module is closed, whenever its set of coassociated primes is finite. There-
fore if one of the situations in Theorem 1.1 is true, the cosupport of formal
local cohomology module is closed. Also Cosupp(�dim(M)

� (M)) is closed, as
�

dim(M)
� (M) isArtinian, wheneverM is a finitely generated module over a local

ring (R,�) (cf. [1, Lemma 2.2]).
Take into account that when R is a complete local Gorenstein ring and

�i�(M) is assumed to be either Noetherian or Artinian module, then

Cosupp(�i�(M)) = Supp(H dimR−i
� (M,R)).

By virtue of [1, Theorem 2.7], for a Cohen-Macaulay ringRwith ht(�) > 0,
�

dim(R/�)
� (R) is notArtinian. Moreover �

dim(M/�M)
� (M) is not finitely generated

for dim(M/�M) > 0 (cf. [1, Theorem 2.6(ii)]). Below we give an alternative
proof:
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Theorem 4.3. Let � be an ideal of a local ring (R,�) and M a finitely
generated R-module. Assume that dim(M/�M) > 0. Then �

dim(M/�M)
� (M) is

not a finitely generated R-module.

Proof. Put c := dim(M/�M). In the contrary assume that �c�(M) is a
finitely generated R-module. Let x ∈ � be a parameter element of M/�M .
Hence, [15, Theorem 3.15] implies the following long exact sequence

· · · −→ Hom(Rx,�c�(M)) −→ �c�(M) −→ �c(�,x)(M) −→ · · · ,
where i ∈ Z. As dim(M/(�, x)M) < dim(M/�M) then, �c(�,x)(M) = 0. Now
let f ∈ Hom(Rx,�c�(M)). Fix an arbitrary integer n, so

f (1/xn) = xmf (1/xm+n) ∈ xm�c�(M),

for every integer m. It implies that f (1/xn) ∈ ⋂
m x

m�c�(M) = 0 by Krull’s
Theorem and hence, f = 0. Now it follows that �c�(M) = 0, which is a
contradiction, see [15, Theorem 4.5].

Now we examine the set of coassociated primes of top formal local co-
homology to show that by some assumptions on R, it could be finite.

Proposition 4.4. Let � be an ideal of a complete Gorenstein local ring
(R,�) and c := dim(R/�). Let M be a finitely generated R-module. Then

CoassR(�
c
�(M)) = SuppR(M) ∩ Ass(H ht �

� (R)).

In particular, CoassR(�c�(M)) is finite.

Proof.

CoassR(�
c
�(M)) = CoassR(�

c
�(R)⊗R M)

= SuppR(M) ∩ CoassR(�
c
�(R))

= SuppR(M) ∩ AssR(H
ht �
� (R))

where the first equality is clear by Lemma 3.7, the second equality follows by
[17, Theorem 1.21].

It should be noted that by hypotheses in Proposition 4.4, ht(�) = gradeR(�)
and it is well-known that AssR(H

gradeR �
� (R)) is finite, cf. [3].

Corollary 4.5. Keep the notations and hypotheses in Proposition 4.4,

�c�(M) = 0⇐⇒ SuppR(M) ∩ Ass(H ht(�)
� (R)) = ∅.
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Proposition 4.6. Let i ∈ Z. Let � ⊂ R be an ideal of a ring R. If
CoassR(�i�(R)) is finite, then so is CoassR(�i�(R/H

0
� (R))).

Proof. Consider the exact sequence

0 −→ H 0
� (R) −→ R −→ R/H 0

� (R) = R −→ 0.

It provides the following long exact sequence

(∗) · · · −→ �i�(H
0
� (R))

ψ−→ �i�(R)
ϕ−→ �i�(R) −→ �i+1

� (H 0
� (R)) −→ · · · ,

for every i.
As �i�(H

0
� (R))=Hi

�(H
0
� (R)) isArtinian, it follows that Coass(�i�(H

0
� (R)))

is finite.
By virtue of (∗), we get the following short exact sequence

0 −→ U −→ �i�(R) −→ U ′ −→ 0,

where U = coker(ψ) and U ′ = coker(ϕ). It implies that Coass(�i�(R)) is
finite. To this end note that Coass(U) is finite by [17, Theorem 1.10] and
Coass(U ′) is finite as �i+1

� (H 0
� (R)) is Artinian.

Now we are going to give more information on the last non-vanishing formal
local cohomology module.

Theorem 4.7. Let (R,�) be a local ring of dimension d > 1. Let �d�(R) =
0. Then:

(1) If � ∈ Coass(�d−1
� (R)), then it implies that dim(R/(�, �)) = d − 1.

(2) Assh(R)∩Coass(�d−1
� (R)) ⊆ {� ∈ Spec(R) : dim(R/�) = d,Rad(�+

�) �= �}.
(3) If Coass(�d−1

� (R)) ⊆ Assh(R), then {� ∈ Spec(R) : dim(R/(�, �)) =
d − 1} ⊆ Coass(�d−1

� (R)).

Proof.
(1) Let � ∈ Coass(�d−1

� (R)). As �d�(R) = 0 then, by [15, Theorem 4.5] we
have

dim(R/(�, �)) ≤ dim(R/�) ≤ d − 1.

On the other hand � ∈ Coass(R/�⊗R �d−1
� (R)), because

Coass(R/�⊗R �d−1
� (R)) = Supp(R/�) ∩ Coass(�d−1

� (R)).
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It yields with the similar argument to Lemma 3.7 that 0 �= R/� ⊗R
�d−1

� (R) = �d−1
� (R/�). So, we have dim(R/(�, �)) ≥ d − 1. It com-

pletes the proof.

(2) Let � ∈ Assh(R)∩Coass(�d−1
� (R)). Then, similar to (1), �d−1

� (R/�) �=
0 and moreover Rad(�+�) �= �. To this end note that if Rad(�+�) = �
then, �d−1

� (R/�) = 0 by Grothendieck’s vanishing Theorem.

(3) Let � ∈ Spec(R) and dim(R/(�, �)) = d − 1. Then, it follows that
∅ �= Coass(�d−1

� (R/�)) = Supp(R/�) ∩ Coass(�d−1
� (R)). Let � ∈

Coass(�d−1
� (R)) then, � ⊇ �, but by assumption � is minimal so we

deduce that � = �.

Remark 4.8. The inclusion in Theorem 4.7(2) is not an equality in general.
For example Let R = k[[x, y, z]] denote the formal power series ring in
three variables over a field k. Let � = (x, y) be an ideal of R which is of
dimension one and put � = 0. It is clear that �3−1

� (R) = 0 = �3
�(R), that is

Coass(�3−1
� (R)) = ∅.

Lemma 4.9. Let (R,�) be a complete local ring and � an ideal of R. Let
� be a minimal prime ideal of �. Then � ∈ CoassR(R̂�) implies that � ⊆ �,
where the functor .̂ denotes the completion functor.

Proof. The proof is straightforward. Let � ∈ CoassR(R̂�), then

0 �= HomR(R/�,HomR(R̂�, ER(R/�))) = HomR(R/�⊗R R̂�, ER(R/�)).

It yields that
0 �= R/�⊗R R̂� = R/�⊗R R� ⊗R�

R̂�.

It is clear that R�/�R� �= 0 and so � must be contained in �.

Proof of Theorem 1.4. For d > 2 and d = 1, the claim is clear.
Let d = 2. Suppose that �1, . . . , �r are the minimal prime ideals of �. Put

S = ⋂r
i=1(R \ �i ) and choose y ∈ � \⋃r

i=1 �i . By [2, Theorem 2.2.4], for
any n ∈ N we have

0 −→ H 0
�(R/�n) −→ R/�n −→ D(y)(R/�n) −→ H 1

�(R/�n) −→ 0,

whereD(y)(R/�n) is the (y)-transform functor. One can see thatD(y)(R/�n) ∼=
RS/�nRS , so we get the following exact sequence

0 −→ H 0
�(R/�n) −→ R/�n −→ RS/�nRS −→ H 1

�(R/�n) −→ 0.

Furthermore RS/�nRS ∼= ⊕ri=1R�i /�nR�i . All the modules in the above exact
sequence satisfy the Mittag-Leffler condition so by applying inverse limits we
get

0 −→ R/�0
�(R) −→ ⊕ri=1R̂�i −→ �1

�(R) −→ 0.
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It yields that CoassR(�1
�(R)) ⊆

⋃r
i=1 CoassR(R̂�i ) ⊆ CoassR(�1

�(R)) ∪ {�}.
In the view of Lemma 4.9, CoassR(�1

�(R)) =
⋃r
i=1 CoassR(R̂�i ). Now the

claim is proved by [18, Beispiel 2.4]. To this end note that CoassR(R̂�i ) =
CoassR�i

(R̂�i ) ∩ R for every i ∈ {1, . . . , r}.
Remark 4.10. Keep the notations and hypotheses in Theorem 1.4 and let

M be a finitely generatedR-module. AsR is complete so by Cohen’s structure
Theorem, there exists a Gorenstein local ring (S,�)whereR is a homomorphic
image of S and dim(R) = dim(S). Then by virtue of 3.7 we have

AssR(H
1
�S(M, S)) ⊆ Coass(�d−1

� (R))

is finite.
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