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DIMENSION OF THE BOUNDARY IN
DIFFERENT METRICS

RIKU KLÉN and VILLE SUOMALA

Abstract
We consider metrics on Euclidean domains � ⊂ Rn that are induced by continuous densities
ρ: � → (0, ∞) and study the Hausdorff and packing dimensions of the boundary of � with
respect to these metrics.

1. Introduction

Let � ⊂ Rn be a domain. For x, y ∈ �, we denote by d(x, y) the internal
Euclidean distance between x and y defined as

d(x, y) = inf
γ

�(γ ),

where the infimum is taken over all rectifiable curves in � with endpoints x

and y and � refers to the standard Euclidean length. It is well known and easy
to see that d defines a metric on � called the internal metric. Furthermore, we
may extend this metric to the internal boundary ∂�d = �d \ �, where �d is
the standard metric completion of � with respect to d.

Let ρ: � → (0, ∞) be a continuous function. We define the ρ-length of a
rectifiable curve γ ⊂ � as

�ρ(γ ) =
∫

γ

ρ(z) |dz|

where |dz| denotes integration with respect to arclength. The ρ-distance be-
tween x, y ∈ � is then given by

dρ(x, y) = inf
γ

�ρ(γ ),

where the infimum is again over all curves joining x to y in �. This defines a
metric on � and as with the internal metric, we may extend it to the ρ-boundary
of � defined as ∂ρ� = �ρ \ �, where �ρ is the standard metric completion
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of � with respect to dρ . Observe that the internal metric d corresponds to dρ

for the constant function ρ ≡ 1.
Thus, given ρ as above (a density in what follows), we have two complete

metric spaces (�d, d) and (�ρ, dρ) which need not be topologically equivalent.
For simplicity, however, we only deal with cases in which ∂ρ� may be naturally
identified with a metric subspace of ∂�d .

In this paper, we will consider dimρ(∂ρ�) and Dimρ(∂ρ�), the Hausdorff
and packing dimensions of ∂ρ� with respect to dρ (For more comprehensive
notation and definitions, we refer to Section 2 below). Classically, this sort
of problems arise in connection to harmonic measures and the boundary be-
haviour of conformal maps [8], [9], [13], [5], [7]. In that setting, ρ = |f ′|
for a conformal map f and dρ corresponds to the internal metric on the im-
age domain. The Hausdorff dimension, dimρ(∂ρ�), has been analysed also
for a much larger collection of so called conformal densities on the unit ball
Bn ⊂ Rn. See [2], [1], [11]. Although we provide some estimates in the setting
of conformal densities, our main goal is to study general densities defined on
John domains in Rn, and to provide tools to estimate the values of the dimen-
sions dimρ(∂ρ�) and Dimρ(∂ρ�). Because of this, our methods are perhaps
more geometric than analytic.

Given A ⊂ �d , we denote by d(x, A) = infa∈A d(x, a) the internal distance
from x to A and, moreover, abbreviate d(x) = d(x, ∂�d). Of course, d(x) is
just the Euclidean distance to the boundary of �.

Let us consider the following simple example: Suppose that � � Rn has
smooth boundary, −1 < β < 0, and define a density ρ(x) = d(x)β . Then
it is well known, and easy to see that ∂ρ� is a “snowflake”. More precisely,
dρ(x, y) ≈ d(x, y)1+β for all x, y ∈ ∂ρ�. Thus, the effect of ρ on the dimen-
sions of the boundary is described by a power law

Dimd(∂�d)/Dimρ(∂ρ�) = dimd(∂�d)/ dimρ(∂ρ�)

= 1 + log ρ(x)/ log d(x).

Keeping this example in mind, it is now natural to consider (the upper and
lower) limits of the quantity log ρ(y)/ log d(y) as y approaches the boundary
of �. Under sufficient assumptions, this leads to multifractal type formulas for
the dimension of ∂ρ�. For instance, we obtain the following result.

Theorem 1.1. Let � ⊂ Rn be a John domain and ρ > c > 0 a density.
Suppose that

i(x) = lim
y∈�,y→x

log ρ(y)

log d(y)
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exists at all points x ∈ ∂�d and satisfies i(x) > −1. Then

dimρ(∂ρ�) = sup
β>−1

(1 + β)−1 dimd({x ∈ ∂�d : i(x) ≤ β}).

An analogous formula holds for the packing dimension.

This theorem is a simple special case of a more general result, Theorem 4.2,
and it can be used to obtain a formula for the dimensions dimρ(∂ρ�) and
Dimρ(∂ρ�) in many situations. A generic case is the following: � = Bn, C ⊂
∂Bn is a Cantor set with 0 < dimd C < Dimd C < n and ρ(x) = d(x, C)β

for some β > −1 (Example 4.4).
In Theorem 1.1, there is an annoying lack of generality since we have to con-

sider inner limits in the definition of i(x). The situation is different if we know
that the distance dρ(x, y) between points x, y ∈ ∂ρ� is realised along curves
that are “non-tangential”. If the density satisfies a suitable Harnack inequality
together with a Gehring-Hayman type estimate, then it is enough to consider
limits along some fixed cones. For conformal densities, for instance, we may re-
place the quantity i(x) by a radial version k(x) = limt↑1 log ρ(tx)/ log(1− t);
see Section 5 where we actually consider upper and lower limits as t ↑ 1.

Section 6 contains several examples and some open questions. Most notably,
in Example 6.3 we construct a new nontrivial example of a conformal density
with multifractal type boundary behavior.

As our results indicate, a careful inspection of the power exponents and the
size of certain sub and super level sets of these quantities can be used to study
the dimensions dimρ(∂ρ�) and Dimρ(∂ρ�). Although the main idea in most
of our results is the same, it is perhaps not possible to find a general statement
which would fit into all, or even most, of the interesting situations. Often, a
suitable case study and a combination of different ideas is needed in order to
deduce the relevant information (for instance, see Examples 4.7, 6.2, and 6.3).
We strongly believe that the ideas we have used can be applied also elsewhere,
beyond the results of this paper.

2. Notation

Let � ⊂ Rn be a domain. For technical reasons, we want to be able to naturally
identify ∂ρ� with a subset of ∂�d . To ensure this, we assume throughout this
paper that for all sequences (xi), xi ∈ �, the following two conditions are
satisfied:

(A1) If (xi) converges in �ρ , then it converges in �d .

(A2) If (xi) converges in �d , it has at most one accumulation point in ∂ρ�.
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In other words, (A1) means that the identity mapping (�, dρ) → (�, d) has a
continuous extension f : �ρ → �d and, furthermore, (A2) means that this f

is injective.

Definition 2.1. A density is a continuous function ρ: � → (0, ∞) satis-
fying (A1) and (A2). For simplicity, we also require that ∂ρ� �= ∅.

Whenever we talk about a curve γ , we assume that it is rectifiable, is arc-
length parametrized, and that γ (t) ∈ � for all 0 < t < �(γ ) (the endpoints
may or may not belong to ∂�d ). Note that the internal length of a curve equals
the Euclidean length of the curve. We say that � ⊂ Rn is an α-John domain
for 0 < α ≤ 1, if there is x0 ∈ � such that all points x ∈ � may be joined to
x0 by an α-cone, i.e. by a curve γ joining x to x0 such that d(γ (t)) ≥ α t for
all 0 ≤ t ≤ �(γ ). If α is not important, we simply talk about John domains.
Let γ ⊂ � be a curve. We say that γ is an α-cigar if

(2.1) d(γ (t)) ≥ α min{t, �(γ ) − t} for all 0 ≤ t ≤ �(γ ).

For technical purposes, we define an α-distance between points x, y ∈ � as

dα(x, y) = inf
γ

�(γ )

and this time the infimum is taken over all α-cigars γ joining x and y. It is
easy to see that if � is an α-John domain, then any two points x, y ∈ �d may
be joined by an α-cigar. Thus dα(x, y) < ∞ for all x, y ∈ �d . Note however
that dα is not necessarily a metric since it may be infinite and even if it happens
to be finite, it may fail to satisfy the triangle inequality.

Let X = (X, dX) be a separable metric space. We denote balls BX(x, r) =
{y ∈ X : dX(y, x) < r} and spheres SX(x, r) = {y ∈ X : dX(x, y) = r}.
Given A ⊂ X, we define its s-dimensional Hausdorff and packing measures,
H s

X(A) and P s
X(A), respectively, by the following procedure:

H
s,ε
X (A) = inf

{ ∞∑
i=1

diamX(Ai)
s : A ⊂

⋃
i∈N

Ai and diamX(Ai) < ε for all i

}
,

H s
X(A) = lim

ε↓0
H

s,ε
X (A),

P
s,ε
X (A) = sup

{ ∞∑
i=1

rs
i : {BX(xi, ri)} is a packing of A with ri ≤ ε

}
,

P s
X(A) = lim

ε↓0
P

s,ε
X (A),

P s
X(A) = inf

{ ∞∑
i=1

P s
X(Ai): A ⊂

∞⋃
i=0

Ai

}
,
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where 0 < ε, s < ∞ and a packing of A is a disjoint collection of balls with
centres in A. We define the Hausdorff and packing dimensions of A ⊂ X,
respectively, as

dimX(A) = sup{s ≥ 0: H s
X(A) = ∞} = inf{s ≥ 0 : H s

X(A) = 0},
DimX(A) = sup{s ≥ 0: P s

X(A) = ∞} = inf{s ≥ 0 : P s
X(A) = 0},

with the conventions sup ∅ = 0, inf ∅ = ∞.
When the domain � ⊂ Rn has been fixed, we use all the notation introduced

above with the subscript d when referring to the internal metric. Moreover,
given a density ρ: � → (0, ∞), we use the subscript ρ to refer to the corres-
ponding notions in terms of the metric dρ . For example, given x ∈ �d , y ∈ �ρ ,
and r > 0 we have Bd(x, r) = {z ∈ �d : d(z, x) < r} and Sρ(y, r) = {z ∈
�ρ : dρ(z, y) = r}. We also use the notation Bα(x, r) for balls in terms of the
“distance” dα . When referring to “round” Euclidean balls we use a subindex e,
so Be(x, r) = {y ∈ Rn : |y −x| < r} where |·| is the usual Euclidean distance.
We also denote Bn = Be(0, 1) ⊂ Rn and Sn−1 = Se(0, 1) ⊂ Rn. Observe that
if A ⊂ �ρ , both notations diamd(A) and diamρ(A) make sense, since by (A1)
and (A2), if x, y ∈ A, then d(x, y), dρ(x, y) < ∞ are well defined.

To finish this section, we introduce various limits that are used later to obtain
dimension bounds for ∂ρ�. For a domain � ⊂ Rn, a density ρ and x ∈ ∂�d ,
we define

(2.2) i−(x) = lim inf
y∈�
y→x

log ρ(y)

log d(y)
, i+(x) = lim sup

y∈�
y→x

log ρ(y)

log d(y)
,

where the limits are considered with respect to the internal metric. Observe
that i+(x) ≥ −1 for all x ∈ ∂ρ�, but i−(x) does not have to be bounded from
below.

For a domain � ⊂ Rn, a density ρ and β > −1, we define

d+(β) = dimd{x ∈ ∂ρ� : i+(x) ≤ β},(2.3)

D+(β) = Dimd{x ∈ ∂ρ� : i+(x) ≤ β},(2.4)

d−(β) = dimd{x ∈ ∂ρ� : i−(x) ≤ β},(2.5)

D−(β) = Dimd{x ∈ ∂ρ� : i−(x) ≤ β}.(2.6)

For a density ρ on Bn and x ∈ Sn−1, we set

(2.7) k−(x) = lim inf
r↑1

log ρ(rx)

log(1 − r)
, k+(x) = lim sup

r↑1

log ρ(rx)

log(1 − r)
.
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Table 1.

ρ density: A continuous ρ: � → (0, ∞) satisfying (A1) and (A2)

�ρ(γ ) the ρ-length of a rectifiable curve γ

d internal metric

dρ ρ-metric

dα α-distance

d(x) Euclidean distance from x to the boundary

Bd(x, r), Sd(x, r) ball and sphere with respect to the internal metric d

Bρ(x, r), Sρ(x, r) ball and sphere with respect to dρ

Be(x, r), Se(x, r) ball and sphere with respect to the Euclidean distance

Bα(x, r), Sα(x, r) ball and sphere with respect to dα

dimd Hausdorff dimension with respect to d

Dimd packing dimension with respect to d

dimρ Hausdorff dimension with respect to dρ

Dimρ packing dimension with respect to dρ

�d metric completion of � with respect to d

∂�d internal boundary �d \ �

�ρ metric completion of � with respect to dρ

∂ρ� ρ-boundary �ρ \ ∂ρ�.

i±, k± limits used for dimension bounds

Note that for � = Bn we have i−(x) ≤ k−(x) ≤ k+(x) ≤ i+(x) for x ∈ Sn−1.
Occasionally, we need to make the following technical assumption for the

metric dρ :

Assumption 2.2. For each x ∈ ∂ρ� and each ε > 0, there is r > 0 such
that for all y ∈ Bρ(x, r) there is a curve γ joining x to y in � such that
h(γ ) ≥ d(x, y)1+ε and �ρ(γ ) ≤ dρ(x, y)1−ε.

Here h(γ ) = supy∈γ d(y) is the maximal distance of γ from the boundary
(the “height” of γ ). This assumption should be understood as a very mild
monotonicity condition with respect to d(x). It is used to obtain dimension
lower bounds for the part of ∂ρ� where i+ ≥ 0. Close to such points, it is hard
to obtain lower estimates for the ρ-length of curves that stay very close to ∂�.
In fact, ifAssumption 2.2 fails, it may happen that dimρ ∂ρ� = Dimρ ∂ρ� = 0
even if � is a half-space, dimd ∂ρ� > 0, and i+ is uniformly bounded. See
Example 4.6.

Assumption 2.2 is a natural generalisation of the Gehring-Hayman condition
valid for conformal densities, see (5.3).

We summarise our main notation in Table 1.
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3. Preliminary lemmas

We start by recalling the following simple lemma giving estimates on expansion
and compression behaviour of Hölder type maps.

Lemma 3.1. Suppose that Z and Y are separable metric spaces and let
f : Z → Y , 0 < δ < ∞ and X ⊂ Z.

(1) If for each x ∈ X there are 0 < rx, Cx < ∞ so that f (BZ(x, r)) ⊂
BY (f (x), Cxr

δ) for all 0 < r < rx , then

(3.1) δ dimY (f (X)) ≤ dimZ(X),

(3.2) δ DimY (f (X)) ≤ DimZ(X).

(2) If for each x ∈ X there are 0 < Cx < ∞ and a sequence rx,i > 0 such
that limi→∞ rx,i = 0 and f (BZ(x, rx,i)) ⊂ BY (f (x), Cxr

δ
x,i) for all i,

then

(3.3) δ dimY (f (X)) ≤ DimZ(X).

Proof. The proof of (3.1) is standard. We give some details for (3.2) and
(3.3).

To prove (3.2), we first observe that X = ⋃
n∈N Xn where

Xn = {x ∈ X : f (BZ(x, r)) ⊂ BY (f (x), nrδ) for all 0 < r < 1/n}.
Let 0 < ε, s < ∞, A ⊂ Xn and suppose that BY (xi, ri), i ∈ N is a packing
of f (A) so that ri < min{ε, n1−δ} for each i. If yi ∈ A ∩ f −1{xi} it follows
that f (BZ(yi, n

−1/δr
1/δ

i )) ⊂ BY (xi, ri) (note that there can be more than one
yi with f (yi) = xi , choosing any of them will do). Thus, BZ(yi, n

−1/δr
1/δ

i )

is a packing of A. Letting ε ↓ 0, this implies P s
Y (f (A)) ≤ nsP sδ

Z (A) for
all A ⊂ Xn. As A ⊂ Xn is arbitrary, we also get P s

Y (f (Xn) ≤ nsP sδ
Z (Xn),

in particular DimY (f (Xn)) ≤ DimZ(Xn)/δ. The claim (3.2) now follows as
X = ∪n∈NXn.

In order to prove (3.3), let

Xn = {x ∈ X : f (BZ(x, rx,i)) ⊂ BY (f (x), nrδ
x,i) for some sequence rx,i ↓ 0}.

Then X = ∪n∈NXn. Choose A ⊂ Xn and fix s, ε > 0. Applying the standard
5R-covering theorem (see e.g. [10, Theorem 2.1]) to the collection

B = {BY (f (x), nrδ) : x ∈ A, 0 < r < ε, f (BZ(x, r)) ⊂ BY (f (x), nrδ)}
we find a pairwise disjoint subcollection {BY (f (xi), nrδ

i )}i of B so that f (A)⊂
∪i BY (f (xi), 5nrδ

i ). As {BZ(xi, ri)}i is a packing of A, we get H
s/δ,5nεδ

Y (f (A))
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≤ (5n)s/δP
s,ε
Z (A) and letting ε ↓ 0, H

s/δ

Y (f (A)) ≤ (5n)s/δP s
Z(A). As A ⊂ Xn

is arbitrary, we also get H
s/δ

Y (f (Xn)) ≤ (5n)s/δP s
Z(Xn) and finally

dimY (f (X)) ≤ DimZ(X)/δ since X = ∪n∈NXn.

Below, we give a variant of Lemma 3.1 in terms of the metrics d and dρ .

Lemma 3.2. Suppose that � ⊂ Rn is a domain and ρ: � → (0, ∞) is a
density. Let A ⊂ ∂ρ� and 0 ≤ δ ≤ ∞.

(1) If

lim inf
r↓0

log(diamρ(Bd(x, r)))

log r
≥ δ

for all x ∈ A, then δ dimρ(A) ≤ dimd(A) and δ Dimρ(A) ≤ Dimd(A).

(2) If

lim inf
r↓0

log(diamd(Bρ(x, r)))

log r
≥ δ

for all x ∈ A, then dimρ(A) ≥ δ dimd(A) and Dimρ(A) ≥ δ Dimd(A).

(3) If

lim sup
r↓0

log(diamρ(Bd(x, r)))

log r
≥ δ

for all x ∈ A, then δ dimρ(A) ≤ Dimd(A).

(4) If

lim sup
r↓0

log(diamd(Bρ(x, r)))

log r
≥ δ

for all x ∈ A, then Dimρ(A) ≥ δ dimd(A).

Proof. All the claims (1)–(4) follow easily from Lemma 3.1 applied to the
mapping f : (�ρ, d) → (�ρ, dρ), x �→ x and its inverse. To prove (1), for
instance, fix λ < δ. Then for all x ∈ A, there is rx > 0 so that Bd(x, r) ⊂
Bρ(x, rλ) when 0 < r < rx . Thus, Lemma 3.1 (1) implies λ dimρ(A) ≤
dimd(A) and λ Dimρ(A) ≤ Dimd(A). Letting λ ↑ δ, yields (1).

We end the preliminaries with the following lemma.

Lemma 3.3. For all 0 < α ≤ 1 and n ∈ N, there exists constants N =
N(α, n) ∈ N and c = c(α) < ∞ so that for all α-John domains � ⊂ Rn the
following holds: For all x ∈ �d and r > 0, there are points x1, . . . , xN ∈ �d

so that Bd(x, r) ⊂ ∪N
i=1Bα/2(xi, cr).

Proof. For all y ∈ Bd(x, r), let γy be an α-cone that joins y to x0, where
x0 ∈ � is a fixed John centre of �. Moreover, we let

Ay = {z ∈ � : d(z, γy(t)) < α
3 t for some 0 < t < �(γy)}.
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We may assume that d(x, x0) ≥ 2r since otherwise Bd(x, r) ⊂ Bα(x0, 2r).
We first claim that if y, z ∈ Bd(x, r) such that Bd(x, 2r) ∩ Ay ∩ Az �= ∅,

then y and z may be joined by an (α/2)-cigar γ with �(γ ) ≤ c(α)r . For this, we
may assume that d(x) < 2r as otherwise the Euclidean line segment joining y

to z suites as γ . Assume that w ∈ Bd(x, 2r)∩Ay ∩Az and choose ty, tz > 0 so
that d(w, γy(ty)) < α

3 ty and d(w, γz(tz)) < α
3 tz. Let γ denote the curve which

consists of γy |0<t≤ty , γz|0<t<tz and the two (Euclidean) line segments joining
w to γy(ty) and γz(tz). As

(
ty + α

3 ty
)

α
2 ≤ αty − α

3 ty (and similarly for tz), it
follows that γ is an α

2 -cigar. Now Be

(
w, 2

3αty
) ⊂ �, Be

(
w, 2

3αtz
) ⊂ � by the

α-cone condition. Combining this with the fact d(w) ≤ |w − x| + d(x) ≤ 4r

implies ty, tz ≤ 6
α
r and consequently

�(γ ) ≤
(

1 + α

3

)
(ty + tz) ≤

(
4

α
+ 1

)
r = c(α)r.

Let x1, . . . , xN ∈ Bd(x, r) be such that Bd(x, 2r)∩Axj
∩Axi

= ∅ whenever
i �= j . It suffices to show that N ≤ N(n, α). For each i, let yi = γxi

(r). Then
Bd(yi, αr/3) = Be(yi, αr/3) ⊂ Axi

∩ Bd(x, 2r) and a volume comparison
yields N(rα/3)n ≤ 2nrn implying the claim for N(n, α) = (6/α)n.

Remark 3.4. A subset of the boundary of a John domain has the same
Hausdorff dimension both in the internal and the Euclidean metric. Indeed, it
follows as in the above proof that for any x which is an Euclidean boundary
point of �, the set Be(x, r) ∩ � may be covered by N = N(α, r) balls of
radius c(α)r in the internal metric. A slightly more detailed argument implies
a similar statement for the packing dimension.

4. Dimension estimates on general domains

We first derive some straightforward dimension bounds arising from the local
power law behaviour of the density ρ near ∂�. For the definition of i−(x) and
i+(x) recall (2.2). The relevant assumptions are slightly different for the upper
and lower bounds, and also depend on the sign of i±. Roughly speaking, the
positive values of i± correspond to expansion behaviour (of dρ compared to
d), whereas the negative values are related to compression of dimensions. If
we aim to find the exact values of dimρ(∂ρ�) and Dimρ(∂ρ�), then we are
usually more interested in the set where i± are negative.

Lemma 4.1. Suppose that � ⊂ Rn, ρ is a density on �, β > −1, A ⊂ {x ∈
∂ρ� : i+(x) ≤ β} and B ⊂ {x ∈ ∂ρ� : i−(x) ≥ β}.

If β < 0 or if Assumption 2.2 holds, then

(1) (1 + β) dimρ(A) ≥ dimd(A),



284 riku klén and ville suomala

(2) (1 + β) Dimρ(A) ≥ Dimd(A).

If � is a John domain, or if β > 0, we have

(3) (1 + β) dimρ(B) ≤ dimd(B),

(4) (1 + β) Dimρ(B) ≤ Dimd(B).

Proof. Assume first that β < 0 and choose β < s < 0. Now, for all x ∈ A,
there is q > 0 so that ρ(y) > d(y)s for all y ∈ Bd(x, q). Let r < (q/2)1+s

and choose y ∈ Bρ(x, r) such that d(x, y) > diamd(Bρ(x, r))/3. Also, let γ

be a curve joining x to y such that �ρ(γ ) < r . Then γ ⊂ Bd(x, q) as otherwise
there is a curve γ ′ ⊂ γ ∩ Bd(x, q) connecting x to ∂Bd(x, q), and then

�ρ(γ ) ≥ �ρ(γ
′) =

∫
γ ′

ρ(z) |dz| ≥
∫

γ ′
d(γ (t))s dt ≥ �(γ ′)1+s ≥ q1+s ,

which is impossible. Now ρ(z) > d(z)s for all z ∈ γ and combining this with
the fact �(γ ) ≥ d(x, y), we obtain

r > �ρ(γ ) =
∫

γ

ρ(z) |dz| >

(
d(x, y)

2

)1+s

.

This yields diamd(Bρ(x, r)) < 3d(x, y) < 6r1/(1+s). As this holds for all
0 < r < (q/2)1/(1+s), we get

(4.1) lim inf
r↓0

log diamd(Bρ(x, r))

log r
≥ 1

1 + s

for all x ∈ A.
Assume now that s > β ≥ 0 and that Assumption 2.2 holds. Let x ∈ A,

ε > 0, y ∈ �ρ . If dρ(x, y) is small, then Assumption 2.2 gives a curve γ

joining x to y with h(γ ) ≥ d(x, y)1+ε and �ρ(γ ) ≤ dρ(x, y)1−ε. Thus, for
r > 0 small enough, and all y ∈ Bρ(x, r), we have

dρ(x, y)1−ε ≥ �ρ(γ ) =
∫

γ

ρ(z) |dz| ≥ h(γ )(h(γ )/2)s ≥ 2−sd(x, y)(1+s)(1+ε)

for some curve joining x and y. This shows that under Assumption 2.2, (4.1)
holds true also if β ≥ 0. The claims (1) and (2) now follow using Lemma 3.2
(2) and letting s ↓ β.

In order to prove the claims (3) and (4), in view of Lemma 3.2 (1), it suffices
to show that

(4.2) lim inf
r↓0

log diamρ(Bd(x, r))

log r
≥ 1 + β
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for all x ∈ B. Let x ∈ B and s < β. Then there is q > 0 so that ρ(y) < d(y)s

for all y ∈ Bd(x, q). Let r < q/(2c + 1), where c = c(α) < ∞ is the
constant of Lemma 3.3 and where α > 0 is such that � is an α-John domain.
By Lemma 3.3, we find x1, . . . , xN ∈ Bd(x, (c + 1)r), N = N(n, α), such
that Bd(x, r) ⊂ ⋃N

i=1 Bα/2(xi, cr).
Let xi ∈ {x1, . . . , xN } and y ∈ Bα/2(xi, cr). Then there is an (α/2)-cigar

γ joining xi to y with �(γ ) < cr . Assume that s ≤ 0. Since r < q/(2c + 1),
we have ρ(γ (t)) < d(γ (t))s ≤ αs min{t, �(γ ) − t}s for all 0 < t < �(γ ) and
thus

dρ(xi, y) ≤
∫

γ

ρ(z) |dz| ≤ 2αs

∫ �(γ )/2

t=0
t s dt = c1�(γ )1+s < c1+sc1r

1+s

giving diamρ(Bα/2(xi, r)) ≤ 2 · c1+sc1r
1+s = c2r

1+s , where c2 < ∞ depends
only on α, n, and s. As Bd(x, r) is connected, we arrive at

(4.3) diamρ(Bd(x, r)) ≤
N∑

i=1

diamρ(Bα/2(xi, cr)) ≤ Nc2r
1+s .

If s ≥ 0, we arrive at the same estimate by using the trivial estimate ρ(z) ≤
�(γ )s for all z ∈ γ . Since (4.3) holds for all sufficiently small r > 0 and s < β

is arbitrary, we get (4.2).

Next we will use the Lemma 4.1 to obtain multifractal type formulas for
estimating the dimension of ∂ρ�. To recall the definitions of d±(β) and D±(β),
see (2.3)–(2.6).

Theorem 4.2. Let � ⊂ Rn be a John domain, and ρ a density on � so that
Assumption 2.2 is satisfied. Then

(4.4) dimρ(∂ρ�) ≥ sup
β>−1

d+(β)

1 + β
,

(4.5) Dimρ(∂ρ�) ≥ sup
β>−1

D+(β)

1 + β
,

(4.6) dimρ

(
∂ρ� ∩ {x : i−(x) > −1}) ≤ sup

β>−1

d−(β)

1 + β
,

(4.7) Dimρ

(
∂ρ� ∩ {x : i−(x) > −1}) ≤ sup

β>−1

D−(β)

1 + β
.

Proof. Let us prove (4.4) and (4.6). The other estimates are obtained sim-
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ilarly with the help of the corresponding statements of Lemma 4.1. Let

s < sup
β>−1

d+(β)

1 + β

and pick β > −1 such that dimd{x ∈ ∂ρ� : i+(x) ≤ β} > s(1 + β).
Combining this with Lemma 4.1 (1) gives

dimρ

(
∂ρ�

) ≥ dimρ{x ∈ ∂ρ� : i+(x) ≤ β}

≥ dimd{x ∈ ∂ρ� : i+(x) ≤ β}
1 + β

> s

proving (4.4).
To prove (4.6), we observe that given an interval [a, b] ⊂ (−1, ∞), Lem-

ma 4.1 (3) gives

dimρ{x ∈ ∂ρ� : i−(x) ∈ [a, b]} ≤ dimd{x ∈ ∂�d : i−(x) ∈ [a, b]}/(1 + a)

≤ 1 + b

1 + a
sup

β>−1

d−(β)

1 + β
.

For any ε > 0 we may cover the interval (−1, ∞) with intervals [ai, bi]i∈N so
that 1 + bi < (1 + ε)(1 + ai) for all i. Consequently,

dimρ(∂ρ� ∩ {x : i−(x) > −1}) ≤ sup
i∈N

dimρ(∂ρ� ∩ {x : i−(x) ∈ [ai, bi]})

< (1 + ε) sup
β>−1

d−(β)

1 + β
.

Now (4.6) follows as ε ↓ 0.

Remarks 4.3. a) Suppose that � is a John domain, ρ satisfies Assump-
tion 2.2 and i−(x) > −1 for all x ∈ ∂ρ�. Then Theorem 4.2 gives a for-
mula for calculating dimρ(∂ρ�) provided that supβ>−1 d+(β)/(1 + β) and
supβ>−1 d−(β)/(1+β) coincide. In particular, this is the case if −1 < i−(x) =
i+(x) for all x ∈ ∂ρ�. A similar statement is, of course, true for the packing
dimension. See also the examples below.

b) In general it is not possible to control dimρ{x ∈ ∂ρ� : i−(x) ≤ −1} in
terms of dimd{x ∈ ∂ρ� : i−(x) ≤ −1}. Let � = Bn and choose a continuous
f : (0, ∞) → (0, ∞) such that

∫ 1
t=0 f (t) dt < ∞ and log f (t)/ log t → −1

as t ↓ 0. Then it is possible to construct a Cantor set C ⊂ Sn−1 such that
dimd(C) = 0 and dimρ(C) = ∞ for ρ(x) = f (dist(x, C)). See also [2,
Proposition 7.1], where a similar type of example is considered.

In the following example, all four of the inequalities (4.4)–(4.7) hold with
equalities.
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Example 4.4. Let � = Be(0, 1) ⊂ Rn and let C ⊂ Sn−1 be a Cantor
set with dimd C = s and Dimd C = t . Let β > −1 and ρ(x) = d(x, C)β .
Then dimρ(C) = s/(1 + β), Dimρ(C) = t/(1 + β), and dimρ(∂�d \ C) =
Dimρ(∂�d \ C) = n − 1. Thus dimρ(∂ρ�) = max{n − 1, s/(1 + β)} and
Dimρ(∂ρ�) = max{n − 1, t/(1 + β)}.

Below, we construct an example to show that all inequalities in Theorem 4.2
can be strict.

Example 4.5. There exist domains � and densities ρ such that all four of
the inequalities (4.4)–(4.7) are strict.

Let � = {(x, y) ∈ R2 : y > 0} be the upper half-plane and fix −1 < q <

s < p < 0. Define Ak = {(n2−2k, 2−2k) : n ∈ Z}, Bk = {(n2−2k+1, 2−2k+1) :
n ∈ Z}, and rk = 2−100k2

for all k ∈ N. Then choose a continuous density
ρ: � → (0, ∞) so that ρ(z) = 2−2kq if z ∈ Ak , ρ(z) = 2−(2k+1)p if z ∈ Bk

and ρ(z) = d(z)s if z ∈ � \ (∪k∈N ∪x∈Ak∪Bk
Bd(x, rk)

)
. Then i+(x) ≥ p and

i−(x) ≤ q for all x ∈ ∂�d . Thus

sup
β>−1

d+(β)/(1 + β) = sup
β>−1

D+(β)/(1 + β) ≤ 1/(1 + p),

sup
β>−1

d−(β)/(1 + β) = sup
β>−1

D−(β)/(1 + β) ≥ 1/(1 + q).

On the other hand, it is easy to see that dimρ(∂ρ�) = Dimρ(∂ρ�) = 1/(1+s).

Our next example shows that the claims (1) and (2) of Lemma 4.1 do not
necessarily hold without Assumption 2.2.

Example 4.6. Let 0 < αn < 1 be a sequence satisfying
∑∞

n=1 αn < ∞.
We construct a Cantor set C ⊂ [0, 1] with the following procedure: Let I∅ =
[0, 1], �0 = 1, I0 = [0, (1−α1)/2], I1 = [(1+α1)/2, 1] and �1 = (1−α1)/2.
Suppose n ∈ N, i ∈ {0, 1}n, and that Ii with diam(Ii) = �n has been defined.
We then define inductively Ii0 and Ii1 to be the subintervals of Ii with length
�n+1 = �n(1 −αn)/2 such that Ii0 has the same left endpoint as Ii and Ii1 has
the same right endpoint as Ii. We also denote by Ji the interval between Ii0

and Ii1. The (αn)-Cantor set C = C(αn) is then defined as

C =
⋂
n∈N

⋃
i∈{0,1}n

Ii.

For each n ∈ N, we may choose 0 < hn < �n such that

(4.8) 2n�1/n
n h1/n

n ≤ 1.

We also require that hn+1 ≤ hn.
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Next we define a density ρ on the upper half-plane H . For each n, and
i ∈ {0, 1}n, let Ti and Ui be the isosceles triangles with base Ji and heights
hn and hn/2 respectively. For i = ∅, we define T∅ = {(x, y) ∈ H : x <

0 and y < −2x} ∪ {(x, y ∈ H : x > 1 and y < 2x − 2} and U∅ = {(x, y) ∈
H : (x, 2y) ∈ T }. We define

ρ(z) =
{

d(z)−1, if z ∈ ∪iUi

d(z), if z /∈ ∪iTi,

where the union is over all i ∈ {∅} ∪n∈N {0, 1}n Moreover, we extend ρ

continuously into the strips Ti\Ui such that it is monotone in the y-coordinate.
It is now easy to see that ∂ρH = C and that i+ = 1 on ∂ρH . Since

∑
n αn <

∞, it follows that L (C) > 0 and thus in particular dimd(C) = Dimd(C) = 1.
If n ∈ N and i ∈ {0, 1}n, we can connect any two points of C ∩ Ii by two
vertical segments of length hn and the horisontal segment between their tops
such that apart from endpoints, these segments lie completely outside ∪iTi.
This implies diamρ(C ∩ Ii) ≤ h2

n + �nhn ≤ 2�nhn and thus for each n, there
is a covering of ∂ρH by 2n sets of ρ-diameter 2�nhn. Combining with (4.8)
and letting n → ∞ yields dimρ(∂ρH) = Dimρ(∂ρH) = 0. This shows that
the claims (1) and (2) of Lemma 4.1 are not valid.

The final example of this section shows that neither the estimates (3)–(4)
of Lemma 4.1 nor (4.6)–(4.7) of Theorem 4.2 need hold if � is not a John
domain.

Example 4.7. We construct a snowflake type domain � ⊂ R2 that does not
satisfy (3) nor (4) of Lemma 4.1.

To begin with, we fix 0 < s < 1/2 and let 0 < α1 < 1/2. We start with an
equilateral triangle with sides of length l0 = 1 and replace the middle α1-th
portion of each of the sides by two segments of length l1 = (1 − α1)/2. We
continue inductively. At the step k, we have 3 · 4k segments of length lk and
we replace the middle αk-th portion of each of these segments by two line
segments of length lk+1 = lk(1 − αk+1)/2, see Figure 1. The numbers αk are
defined so that

(4.9) αk+1 = l1−2s
k (1 − αk+1)/2.

Observe that αk ↓ 0 as k → ∞. We denote by �k the domain bounded by the
line segments at step k and define � = ∪k∈N�k . We denote by � ⊂ ∂�d the
part of the boundary that joins two vertexes of the original equilateral triangle
and does not contain the third vertex. For notational convenience, we consider
only points of �. This does not affect the generality as ∂�d \� consist of two
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αk�1lk

Ω3

lk�1lk�1

lk�1lk�1

1

2 3

4

Figure 1. Three figures concerning Example 4.7: domain �3 (left), construction at level
k + 1 (middle) and enumeration of the segments (right).

translates of �. For x ∈ �, we let a(x) ∈ {1, 2, 3, 4}N denote its coding or
“address” arising from the enumeration of the segments in each level as in the
Figure 1. Note that this address is unique outside a countable set of points.

Next we define ρ(z) = d(z)−1/2 for all z ∈ � and consider the set A = {x ∈
� : a(x) ∈ {2, 3}N}. It is easy to see that there are numbers 0 < D1 < D2 <

∞, so that dimd(A) = D1 = Dimd(A) and dimd(∂�d) = D2 = Dimd(∂�d)

(actually D1 = 1 and D2 = 2 but this is not essential). If we show that

(4.10) dimρ(A) = Dimρ(A) = D1/s,

then it follows that the claims (3) and (4) of Lemma 4.1 do not hold. Observe
that i−(x) = i+(x) = −1/2 for all x ∈ ∂�d .

x

y

z

Figure 2. Selection of the “base point” z in Example 4.7.

Let x ∈ A and y ∈ �d and choose the smallest k ∈ N so that lk < 2d(x, y). Let
z be as in Figure 2, i.e. z is the “base point” of a cone of �k with “side-length”
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lk which is closest to x. Then

dρ(x, z) ≤ c0

∞∑
n=k

α−1/2
n l1/2

n = c0

∞∑
n=k

lsn−1 ≤ c1l
s
k ≤ 2sc1d(x, y)s.

Here the first equality follows from (4.9) and the former estimate holds because
lk/4 < lk+1 < lk/2 for all k ∈ N. By a similar argument, it follows that
dρ(z, y) ≤ c2l

s
k ≤ c3d(x, y)s . Thus dρ(x, y) ≤ cd(x, y)s . On the other hand, it

is clear that dρ(x, y) ≥ c4l
s
k ≥ c′d(x, y)s , since a(x) ∈ {2, 3}N. Thus, we have

c′dρ(x, y) ≤ d(x, y)s ≤ cdρ(x, y), in other words Bρ(x, c′r) ⊂ Bd(x, rs) ⊂
Bρ(x, cr), for all x ∈ A and y ∈ �d where the constants 0 < c′, c < ∞
are independent of the points x and y. The claim (4.10) now follows from
Lemma 3.2.

Remark 4.8. Suppose that A ⊂ {x ∈ ∂ρ� : i−(x) ≥ β} has the following
accessibility property for some 1 ≤ λ < −1/β: For each x ∈ ∂�d there are
0 < r, c < ∞ such that for all y ∈ Bd(x, r)∩A there exists a curve γ joining x

and y so that d(γ (t), ∂�d) ≥ c min{tλ, (�(γ )−t)λ} for all 0 < t < �(γ ). Then
the proof of Lemma 4.1 with trivial modifications implies (1+λβ) dimρ(A) ≤
dimd(A) and (1 + λβ) Dimρ(A) ≤ Dimd(A). On the other hand, if for each
x ∈ B ⊂ {x ∈ ∂ρ� : i+(x) ≤ β} there are 0 < r, c < ∞ so that for all curves
γ with γ (0) = x we have d(γ (t), ∂�d) < ctλ for 0 < t < r , then we get
(1 + λβ) dimρ(B) ≥ dimd(B), (1 + λβ) Dimρ(B) ≥ Dimd(B). The previous
example shows that these estimates are sharp.

5. Conformal densities

The results in the last section, are based on estimates of the quantities i+(x)

and i−(x) which are defined as internal limits when � � y → x ∈ ∂�d . This
causes a lack of the generality; it is quite possible that i+(x) = 0 and i−(x) =
−1 for all x ∈ ∂�d . (For instance, choose β = −1, λ = 0 in the forthcoming
Example 6.3.) However, if we have additional information on the geometry
of (�ρ, dρ), then it might be enough to consider the ratios log ρ(y)/ log d(y)

along some fixed curves or cones. The purpose of this section is to show that this
is the case for so called conformal densities which arise naturally in connection
with conformal and quasiconformal mappings and their generalisations, see
[2].

A density ρ on Bn is called a conformal density if there are constants 1 ≤
c0, c1 ≤ ∞ such that for each x ∈ Bn and for all y ∈ Be(x, d(x)/2) we have

(5.1) c−1
0 ≤ ρ(y)/ρ(x) ≤ c0,
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and moreover,

(5.2) μρ(Bρ(x, r)) ≤ c1r
n

for all r > 0. Here μρ is the measure given by μρ(E) = ∫
E

ρn dL n for
E ⊂ Bn. In the literature, (5.1) is often called the Harnack inequality, and one
refers to (5.2) as a volume growth condition. An important corollary of the
conditions (5.1)–(5.2) is the following Gehring-Hayman type estimate: There
exists 1 ≤ c < ∞ such that

(5.3) c−1dρ(x, y) ≤
∫ d(x,y)

t=0
ρ ((1 − t)x) dt

+
∫ d(x,y)

t=0
ρ ((1 − t)y) dt ≤ cdρ(x, y)

for all x, y ∈ ∂ρBn. See [2, Theorem 3.1] and also [6].
Motivated by this estimate, we consider variants k− and k+ of the quant-

ities i− and i+ for a density ρ on Bn at x ∈ Sn−1. Recall that k−(x) =
lim infr↑1 log ρ(rx)/ log(1−r), and k+(x) = lim supr↑1 log ρ(rx)/ log(1−r).
Occasionally we also use k− and k+ when � = H is an open half space and
then the limits are considered along straight lines orthogonal to the boundary
of H. The reduction to k± is possible since (5.3) is a much stronger condition
than Assumption 2.2 that was used earlier for the same purpose.

In the following result we only assume that (5.1) and (5.3) hold. Thus, the
result applies to a slightly larger collection of densities than the conformal
densities. See [12], and also Example 6.3 to follow.

Theorem 5.1. Suppose that ρ is a density on Bn that satisfies the conditions
(5.1) and (5.3). Let β > −1,

A ⊂ {x ∈ ∂ρBn : k+(x) ≤ β},
B ⊂ {x ∈ ∂ρBn : k−(x) ≥ β},
C ⊂ {x ∈ ∂ρBn : k−(x) ≤ β}.

Then

(1) (1 + β) dimρ(A) ≥ dimd(A),

(2) (1 + β) dimρ(B) ≤ dimd(B),

(3) (1 + β) Dimρ(A) ≥ Dimd(A),

(4) (1 + β) Dimρ(B) ≤ Dimd(B),

(5) (1 + β) Dimρ(C) ≥ dimd(C).
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Proof. The claims (1)–(4) have proofs very similar to the proofs of the
corresponding statements of Lemma 4.1. We first apply (5.3) to conclude that
for each x ∈ A and y ∈ Bn \ Bd(x, r), we have

dρ(x, y) ≥ c−1
∫ r

t=0
ρ((1 − t)x) dt ≥ c−1

∫ r

t=0
t s ≥ c0r

1+s

if s > β and r > 0 is small. This implies diamd(Bρ(x, r)) ≤ c1r
1/(1+s) and

the claims (1) and (3) now follow by Lemma 3.2 (2).
To prove (2) and (4), let s < β and for n ∈ N, denote

Bn = {x ∈ B : ρ((1 − t)x) < ts for all 0 < t < 1/n}.
Using (5.3), we find r0 > 0 so that

dρ(x, y) ≤ c2

∫ d(x,y)

t=0
t s ≤ c3d(x, y)1+s

whenever x, y ∈ Bn and d(x, y) < r0. In other words, diamρ(Bd(x, r) ∩
Bn) ≤ c4r

1+s when 0 < r < r
1/(1+s)

0 . Now the Lemma 3.2 (1) implies
(1 + s) dimρ(Bn) ≤ dimd(Bn) and (1 + s) Dimρ(Bn) ≤ Dimd(Bn). Note
that it is enough to assume lim infr↓0(log

(
diamρ(Bd(x, r) ∩ A)

)
)/(log r) ≥

δ in Lemma 3.2 (1) (since dim∂ρBn (A) = dim(A,dρ)(A) and Dim∂ρBn (A) =
Dim(A,dρ)(A)). The claims (2) and (4) now follow since B = ∪n∈N and s < β

is arbitrary.
It remains to prove (5). Let x ∈ C and s > β. Then there is a sequence

0 < ri ↓ 0 such that ρ((1 − ri)x) > rs
i for all i. Combined with (5.1), this

gives ∫ ri

t=0
((1 − t)x) dt ≥ c5r

1+s
i

and using also (5.3), diamd(Bρ(x, c6r
1+s
i )) ≤ ri . Thus

lim sup
r↓0

log diamd(Bρ(x, r))

log r
≥ 1

1 + s

and (5) follows from Lemma 3.2 (4).

Remarks 5.2. a) Using the claims (1)–(4) of Theorem 5.1 one may derive
multifractal type formulas completely analogous to (4.4)–(4.7). Using (5), we
have moreover, that Dimρ(∂ρBd(0, 1)) ≥ supβ>−1

e−(β)

1+β
where

(5.4) e−(β) = dimd({x ∈ ∂ρBd(0, 1) : k−(x) ≤ β}).
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Example 6.2 shows that this is sharp in the sense that one can not replace dimd

by Dimd in defining e−(β) even if ρ is a conformal density.
b) We formulated the above result for densities defined on Bn. The same

proof goes through for any John domain � ⊂ Rn if the condition (5.3) is
replaced by

c−1dρ(x, y) ≤
∫ d(x,y)

t=0
ρ(γx(t)) dt +

∫ d(x,y)

t=0
ρ(γy(t)) dt ≤ cdρ(x, y),

where γx is a fixed α-cone with γx(0) = x for each x ∈ ∂ρ�. Actually, we
could even weaken this in the spirit of Assumption 2.2 and assume only that
for all ε > 0, we have

dρ(x, y)1+ε ≤
∫ d(x,y)

t=0
ρ(γx(t)) dt +

∫ d(x,y)

t=0
ρ(γy(t)) dt ≤ dρ(x, y)1−ε

when d(x, y) is small enough.
c) Makarov [9, Theorems 0.5, 0.6] proved results essentially similar to

Theorem 5.1 (1)–(2) in case β > 0 and ρ = |f ′| for f conformal. He also
showed [9, Theorem 0.8] that k− cannot be replaced by k+ in (2).

d) In [2], Bonk, Koskela, and Rohde proved the following deep fact. If ρ is
a conformal density on Bn, then:

(5.5) There is E ⊂ Sn−1 with dimd E = 0 such that dimρ(∂ρBn \ E) ≤ n.

See [2, Theorem 7.2]. As a central tool, they used an estimate analogous to
Theorem 5.1 (2). In fact, combining Theorem 5.1 (2) and [2, Theorem 5.2]
gives a simpler proof for (5.5) than the one given in [2]. However, their result
is quantitatively stronger than (5.5).

e) A generic situation in which Theorem 5.1 is stronger than Theorem 4.2
will be discussed in Example 6.3.

6. Further examples, remarks, and questions

We first give the example mentioned in Remark 5.2 e) showing that one can not
replace dimd by Dimd in defining e−(β). We will make use of the following
lemma. We formulate it in a more general setting, for future reference.

Lemma 6.1. Let � ⊂ Rn be a (2α)-John domain and C ⊂ ∂�d . Suppose
that ρ̃: (0, ∞) → (0, ∞) is nonincreasing and and satisfies

∫ 1
0 ρ̃(t) dt < ∞.

Define ρ(x) = ρ̃(d(x, C)) for x ∈ �. Then for all x ∈ C and 0 < r <

diamd(�)/2, it holds

(6.1) diamd

(
Bρ

(
x,

1

2

∫ r

t=0
ρ̃(t) dt

))
≤ 2r,
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(6.2) diamρ (Bd(x, r)) ≤ c1

∫ c2r

t=0
ρ̃(t) dt

for some constants 0 < c1, c2 < ∞ that depend only on α and n.

Proof. Let x ∈ C and y ∈ �d . Denote d = d(x, y) and suppose that γ is
a curve joining x and y. To prove (6.1), it suffices to show that

(6.3) �ρ(γ ) ≥ 1

2

∫ d

t=0
ρ̃(t) dt.

Let h = h(γ ) = max0≤t≤L d(γ (t)) where L = �(γ ). Then �ρ(γ ) ≥
1
2

∫ h

t=0 ρ̃(t) dt + 1
2 dρ(h). If h ≥ d the estimate (6.3) clearly holds. If h < d,

then dρ̃(h) ≥ ∫ d

t=h
ρ̃(t) dt since ρ̃ is nonincreasing and consequently

�ρ(γ ) ≥ 1

2

(∫ h

r=0
ρ̃(r) dr + dρ̃(h)

)
≥ 1

2

∫ d

t=0
ρ̃(t) dt.

This settles the proof of (6.1).
To prove (6.2), let x ∈ C and r > 0. We use Lemma 3.3 to cover Bd(x, r)

with sets Bα(xi, cr), i = 1, . . . , N = N(n, α). Let y ∈ Bα(xi, cr) and pick
an α-cigar γ with �(γ ) ≤ cr joining y to xi . Now

(6.4) dρ(y, xi) ≤
∫

γ

ρ̃(d(z, C)) |dz| ≤ 2
∫ cr/2

t=0
ρ̃(αt) dt = 2

α

∫ αcr/2

t=0
ρ̃(t) dt.

As Bd(x, r) is (path-)connected and is covered by N sets of the type Bα(xi, cri),
we arrive at diamρ(Bd(x, r)) ≤ (4N/α)

∫ αcr/2
t=0 ρ̃(t) dt proving the claim.

Example 6.2. We show that dimd cannot be replaced by Dimd in (5.4) even
if ρ is a conformal density.

We first fix numbers 0 < a < b < 1/2, −1 < λ < η < 0, and ξ such that

(6.5) a1+λ = b1+η = ξ,

and

(6.6) − log 2 < log ξ < − 1
2 log 2.

Let us also pick natural numbers n1 < N1 < n2 < N2 < n3 < N3 < . . .. We
let C ⊂ S1 denote a Cantor set constructed as follows (See the construction
in Example 4.6). We start with an arc of length 1 and remove an arc of length
1 − 2a from the middle. Next, we remove arcs of length a(1 − 2a) from the
middle of the two remaining arcs. We iterate this construction for n1 steps.
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After these n1 steps, we have 2n1 arcs of length an1 . At the step n1 + 1, we
remove arcs of relative length 1−2b from the middle of each of these arcs. We
continue the construction with the parameter b for N1 −n1 steps. Then we use
again the parameter a for n2 −N1 steps and so on. We denote by Ek,1 . . . , Ek,2k

the arcs remaining after k steps and denote by �k the length of these arcs. What
remains at the end is the Cantor set C = ∩k∈N ∪2k

i=1 Ek,i .
Let r0 = R1 = 1, r1 = �n1 = an1 , R2 = �N1 = an1bN1−n1 , r2 = �n2 =

an1+n2−N1bN1−n1 and so on. Thus ri (resp. Ri) is the length of a construction
interval of C of level ni (resp. Ni−1). We define ρ(x) = ρ̃(dist(x, C)) for all
x ∈ B2, where ρ̃ is the function defined by

ρ̃(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

R1R2 . . . Rk

r0r1 . . . rk−1

)η−λ

tλ, rk ≤ t ≤ Rk ,

(
R1R2 . . . Rk

r0r1 . . . rk

)η−λ

tη, Rk+1 ≤ t ≤ rk .

Now, if Ni/ni, ni+1/Ni → ∞ fast enough, it is easy to see that dimd C =
− log 2/ log a and Dimd C = − log 2/ log b, see e.g. [10, p. 77]. Moreover,
it then follows that k−(x) = λ if x ∈ C and k−(x) = 0 otherwise. Next, let
hk = ∫ �k

t=0 ρ̃(t) dt . Since

(6.7) ρ̃(�k)�k = ξk

for all k (combine (6.5) with the definitions), it follows that

1
2ξk = 1

2 ρ̃(�k)�k ≤
∫ �k

t=�k+1

ρ̃(t) ≤ ρ̃(�k+1)�k ≤ aλρ̃(�k)�k = aλξk.

Thus

(6.8) 1
2ξk ≤ hk =

∑
m≥k

∫ �m

t=�m+1

ρ̃(t) dt ≤ c0ξ
k.

From Lemma 6.1, it follows that for each I = Ik,i we have

(6.9) c1hk ≤ diamρ(I ) ≤ c2hk

for some constants 0 < c1 < c2 < ∞. Let μ be the natural probability measure
on C that satisfies μ(Ik,i) = 2−k . Then

lim
k→∞

log μ(Ik,i)

log(diamρ(Ik,i))
= − log 2

(1 + λ) log a
,
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using (6.8) and (6.9). But this implies dimρ(C) = Dimρ(C) = (− log 2)/((1+
λ) log a), see e.g. [4, Proposition 10.1] and [3, Corollary 3.20]. Thus,

1 < Dimρ(C) = Dimρ(S
1) = − log 2

(1 + λ) log a
<

− log 2

(1 + λ) log b
= Dimd(C)

1 + λ

= sup
β>−1

Dimd({x ∈ ∂ρBd(0, 1) : k−(x) ≤ β}
1 + β

,

recall (6.6).
It remains to prove that ρ is a conformal density. The condition (5.1) is

clearly satisfied so we only have to verify (5.2). We show this for x ∈ C and
0 < r < 1 (the general case x ∈ B2 follows easily from this). Using (5.1) we
may also assume that r = hk for some k ∈ N. For each m ≥ k, we denote

Am = {y ∈ Bd(x, c3�k) : �m ≤ d(y, C) ≤ c3�m}.
Then Bρ(x, hk) ⊂ ∪m≥kAm, for a suitable constant 1 < c3 < ∞, recall (6.9).
Moreover, it follows from (5.1) and (6.7) that c4ξ

m/�m ≤ ρ(y) ≤ c5ξ
m/�m

for all y ∈ Am, where 0 < c4 < c5 < ∞ depend only on a, b, λ, and η. Since
L 2(Am) ≤ c62m−k�2

m, we arrive at

μρ(Am) =
∫

Am

ρ2 dL 2 ≤ c72m−kξ 2m.

As 2ξ 2 < 1 by (6.6), this yields

μρ(Bρ(x, hk)) ≤
∑
m≥k

μρ(Am) ≤ c7

∑
m≥k

2m−kξ 2m ≤ c8ξ
2k ≤ c9h

2
k,

where the last estimate follows from (6.8).

Below, we construct a “multifractal type” example and calculate the Haus-
dorff dimension of the boundary using Theorem 5.1.

Example 6.3. We construct a domain and a conformal density that satisfies
Gehring-Hayman condition (5.3) and compute the Hausdorff dimension of the
boundary.

We define a density ρ on the upper half-plane H ⊂ R2 (actually we define
ρ(z) only for z ∈ [0, 1]×(0, 3] but the definition is easily extended to the whole
of H ). Let −1 < β, λ < 0, β �= λ. We consider the triadic decomposition
of [0, 1]; Let I∅ = [0, 1], I0 = [0, 1/3], I1 = [1/3, 2/3], and I2 = [2/3, 1].
If n ∈ N and, i ∈ {0, 1, 2}n, let Ii0, Ii1, Ii2 denote its triadic subintervals
enumerated from left to right. For each such triadic interval I = Ii, let Qi =
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I × [|I |, 3|I |]. Next we define weights ρi inductively by the rules ρ∅ = 1 and
ρi0 = ρi2 = 3−λρi, ρi1 = 3−βρi.

Let ρ: [0, 1]× (0, 3] → (0, ∞) be a density such that ρ(xi) = ρi if xi is the
centre point of Qi. We also require that the condition (5.1) holds with some
c0 < ∞. This is possible because of the symmetric definition of ρi: If Ii and Ij

are neighbouring intervals of the same length, then 3−|β−λ| ≤ |ρi/ρj| ≤ 3|β−λ|.
We will next show that the Gehring-Hayman condition (5.3) holds for the

density ρ. Let x, y ∈ [0, 1] with y − x = r > 0. Let γ1, γ2, and γ3 be the
line segments joining (x, 0) to (x, r), (x, r) to (y, r), and (y, r) to (y, 0),
respectively. Then a direct calculation using the definitions gives∫

γ1

ρ(z) |dz| ≤ c1

∫ r

t=0
tmin{β,λ} ρ(x, r)

rmin{β,λ} dt ≤ c2rρ(x, r),∫
γ3

ρ(z) |dz| ≤ c1

∫ r

t=0
tmin{β,λ} ρ(y, r)

rmin{β,λ} dt ≤ c2rρ(y, r).

Combining these estimates with (5.1), we obtain

(6.10) c3�ρ(γi) ≤ �ρ(γ2) ≤ c4�ρ(γi)

for i = 1, 3. The condition (5.3) is satisfied if we can show that �ρ(γ ) ≥
c�ρ(γ2) for any curve joining x and y in H . Denote h = h(γ ) =
max0<t<�(γ ) d(γ (t)). If h ≤ r , it follows that �ρ(γ ) ≥ c�ρ(γ2) since ρ is
essentially decreasing on each vertical line segment. More precisely using
(5.3) and the definitions of the weights ρi, we get

(6.11) ρ(a, tb) ≥ c5ρ(a, b)

if (a, b) ∈ [0, 1] × (0, 3] and 0 < t < 1. Now suppose that h > r and
let z = γ (t0) where t0 = min{t > 0 : d(γ (t)) = r}. If d(z, γ2) < r ,
it follows easily from (5.1) that �ρ(γ ) ≥ c�ρ(γ2). If d(z, γ2) ≥ r , let η

be the line segment joining z to the closest point of γ2. Then (6.11) implies
�ρ(γ ) ≥ c5�ρ(η) ≥ c�ρ(γ2) where the last estimate follows using (5.1). This
settles the proof of (5.3).

We will next compute the Hausdorff dimension of the boundary. Let 0 ≤
t ≤ 1 and denote At = {x ∈ [0, 1] : k−(x) = k+(x) = tβ + (1 − t)λ}. Then

At =
{
x =

∑
i∈N

xi3
−i : xi ∈ {0, 1, 2}

and lim
n→∞ #{1 ≤ i ≤ n : xi = 1}/n = t

}
.



298 riku klén and ville suomala

Using this expression, we get

(6.12) dimd(At ) = Dimd(At ) = −t log t + (t − 1) log((1 − t)/2)

log 3
.

Indeed, if μt is the unique Borel probability measure on [0, 1] that satisfies
μt(Ii1) = tμt (Ii) and μt(Ii0) = μt(Ii2) for all triadic intervals Ii, then we have

lim
r↓0

log μt((Bd(x, r))

log r
= −t log t + (t − 1) log((1 − t)/2))

log 3

and this implies (6.12). For instance, see [4, Proposition 10.4].
Thus, from Theorem 5.1 and (6.12), we get

(6.13) dimρ(At ) = Dimρ(At ) = −t log t + (t − 1) log((1 − t)/2)

(1 + tβ + (1 − t)λ) log 3
.

If f (β, λ) is the maximum of (6.13) over all 0 ≤ t ≤ 1, then we conclude that

Dimρ(∂ρH) ≥ dimρ(∂ρH) ≥ f (β, λ).

To finish this example, we show that for the Hausdorff dimension, there is
an equality in the above estimate. We give the proof in the case β < λ, the
case λ < β can be handled with similar arguments. First, we observe using
Theorem 5.1 (2) that

dimρ({k−(x) ≥ β/3 + 2λ/3}) ≤ 1/(1 + β/3 + 2λ/3) < f (β, λ),

where the strict inequality is obtained via differentiating (6.13) at t = 1/3. On
the other hand, if t > 1/3, and A−

t = {x ∈ [0, 1] : k−(x) ≤ tβ + (1 − t)λ},
then

A−
t =

{
x =

∑
i∈N

xi3
−i : lim sup

n→∞
#{1 ≤ i ≤ n : xi = 1}/n ≥ t

}
and thus dimd(A

−
t ) ≤ (−t log t + (t − 1) log((1 − t)/2))/ log 3. To see this,

observe that

lim inf
r↓0

log μt(Bd(x, r))

log r
≤ −t log t + (t − 1) log((1 − t)/2))

log 3

for all x ∈ A−
t and use [4, Proposition 10.1]. Now, using the analogue of

(4.6) for k− implies dimρ(∂ρH) ≤ f (β, λ), and consequently dimρ(∂ρH) =
f (β, λ).
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Remarks 6.4. a) One can estimate the numbers f (β, λ) numerically. For
instance, if β = −1/2 and λ = −1/3, then f (β, λ) ≈ 1.65.

b) Inspecting (6.13), it is easy to see that

max{1/(1+β/3+2λ/3), log 2/((1+λ) log 3)} < f (β, λ) < 1/(1+min{β, λ})
for all choices of β and λ.

c) If above β, λ > −1/2, then it is not hard to see that ρ satisfies (5.2) and
thus is a conformal density.

We do not know if also Dimρ(∂ρH) ≤ f (β, λ):

Question 6.5. In Example 6.3, is it true that Dimρ(∂ρH) = f (β, λ)?

We cannot use Theorem 5.1 to solve this question since it can be shown that
Dimd({x : k−(x) = min{β, λ}) = 1.

It is true that dimρ(∂ρBn) ≥ n − 1 for all conformal densities ρ defined
on Bn. This deep fact was proved in [1]. A straightforward estimate using
Theorem 5.1 and (5.1) only implies that dimρ(∂ρBn) ≥ c(n, c0) > 0, where
c0 is the constant in (5.1). See also [2, Proposition 7.1]. Next we provide an
example of a density ρ on the upper half-plane H such that Dimρ(∂ρH) = 0
and dimd(R \ ∂ρH) = 0.

Example 6.6. We construct a density with Dimρ(∂ρH) = 0 and dimd(R \
∂ρH) = 0.

Given an interval I ⊂ R, let TI and UI be the isosceles triangles with base
I and heights |I | and |I |/2 respectively. Denote SI = TI \ UI .

To begin with, let I1, I2, . . . be disjoint intervals so that C = R\∪Ii forms a
Cantor set (a nowhere dense closed set without isolated points). Moreover, we
assume that

∑
i diamd(Ii) ≤ 1. Let ρ(x) = exp(−1/d(x)) if x ∈ H \ ∪iTIi

.
We define ρ on each strip SIi

so that

(6.14) �ρ(γ ) ≥ 1

for any curve joining UIi
to H \TIi

. We also require that ρ extends continuously
to the lower boundary �Ii

of SIi
(excluding the two endpoints of Ii) and that

(6.15) �ρ(γ ) = ∞
if γ is a curve on SIi

whose one endpoint is an endpoint of Ii . We remark that
the condition (6.15) as well as the condition (6.17) below, are only used to
ensure that the assumption (A2) is satisfied.

Now for each x, y ∈ C with d(x, y) = d > 0, we have

dρ(x, y) ≤ 2
∫ d

t=0
exp(−1/t) dt + d exp(−1/d) ≤ 3 exp(−1/d).
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Thus, for each n ∈ N, there is δ > 0 such that dρ(x, y) ≤ d(x, y)n if x, y ∈ C

and d(x, y) < δ. By Lemma 3.1, this implies Dimρ(C) = 0.
We continue the construction inside the triangles UIi

. We choose intervals
Ii,j ⊂ Ii so that Ci = Ii \ ∪j Ii,j is a Cantor set and

(6.16)
∑
i,j

diamd(Ii,j )
1/2 ≤ 1.

We define ρ(x) = fi(x) exp(−1/d(x)) on Ui \ ∪j TIi,j
where fi(x) is a con-

tinuous weight that is bounded if x is bounded away from the endpoints of Ii .
Close to the endpoints of Ii , we make fi so large that

(6.17) �ρ(γ ) = ∞
if γ is a curve on UIi

whose one endpoint is an endpoint of Ii . Also, we define
ρ on the strips SIi

so that analogues of (6.14) and (6.15) hold. As above, we
see that Dimρ(Ci) = 0 for all i.

We continue the construction inductively inside the triangles UIi,j
. At the

step n, we obtain Cantor sets Cn,i with Dimρ(Cn,i) = 0. At the end, ∂ρH will
be the union of all these Cantor sets. Replacing the exponent 1/2 in (6.16) by
1/n at the step n implies that dimd(R \ ∂ρH) = 0.

It would be interesting to know, if the analogy of (5.5) for the packing
dimension holds.

Question 6.7. If ρ is a conformal density on Bn, does there exist a set
A ⊂ Sn−1 with Dimd(A) = 0 such that Dimρ(S

n−1 \ A) ≤ n?
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