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ON BOUNDED WEAK AND STRONG SOLUTIONS OF
NON LINEAR DIFFERENTIAL EQUATIONS WITH

AND WITHOUT DELAY IN BANACH SPACES

ADEL MAHMOUD GOMAA

Abstract
Assume that E is a Banach space, Br = {x ∈ E : ‖x‖ ≤ r} and C([−d, 0], Br ) is the Banach
space of continuous functions from [−d, 0] into Br . Consider f : R+ × E → E; f d : [0, T ] ×
C([−d, 0], Br ) → E; for each t ∈ [0, T ] the mapping θt ∈ C([−d, 0], Br ) is defined by
θt x(s) = x(t + s), s ∈ [−d, 0] and let A(t) be a linear operator from E into itself. In this paper
we give existence theorems for bounded weak and strong solutions of the nonlinear differential
equation

(P) ẋ(t) = A(t)x + f (t, x), t ∈ R+,

and we prove that, with certain conditions, the differential equation with delay

(Q) ẋ(t) = L(t)x(t) + f d(t, θt x), if t ∈ [0, T ]

has at least one weak solution where L(t) is a linear operator from E into E. Moreover, under
suitable assumptions, the problem (Q) has a solution. Furthermore under a generalization of the
compactness assumptions, we show that (Q) has a solution too.

1. Introduction and preliminaries

In this paper the dual space of an infinite dimensional Banach space E will
be denoted by E∗ and the pairing between E and E∗ is denoted by 〈〉. Denote
by Ew the Banach space E endowed with the weak topology. We denote the
closed unit sphere in E by B1 = {x ∈ E : ‖x‖ ≤ 1}. Further, let L (R+, E) be
the space of measurable functions u : R+ → E, L (E) be the space of linear
operators from E into itself and λ be the Lebesgue measure on I = [0, T ].
Furthermore, let C(I, E) be the space of all continuous functions from I to
E with the usual supremum norm and Cw(I, E) be the space of all weakly
continuous functions from I to E endowed with the topology of weak uniform
convergence. Let C([−d, 0], E) be the Banach space of continuous functions
from the closed interval [−d, 0] (d ≥ 0) into E and B be the family of all
bounded subsets of E.

Let M = M(R+, E) be a Banach space of measurable functions x : R+ →
E with ‖x‖ ∈ M(R+, R), ‖x‖M = ‖‖x‖‖M(R+,R), where
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(1) M(R+, R) ⊂ L (R+, R),

(2) M(R+, R) contains all essentially bounded functions with compact sup-
port,

(3) if x ∈ M(R+, R), y : R+ → R is measurable with |y| ≤ |x|, then
y ∈ M(R+, R) and ‖y‖M(R+,R) ≤ ‖x‖M(R+,R),

(4) if x ∈ M(R+, R), xn ∈ M(R+, R), |xn| ≤ |x| and limn→∞ xn(t) = 0 a.e.
on R+, then limn→∞ ‖xn‖M(R+,R) = 0.

Let M ′ denote the associate space to M [20].

Definition 1.1. The map γ : B → R+ is called a measure of strong
(weak) noncompactness on B if, for U, V ∈ B,

(M1) U ⊂ V −→ γ (U) ≤ γ (V ),

(M2) γ (U ∪ V ) ≤ max(γ (U), γ (V )),

(M3) γ (conv U) = γ (U),

(M4) γ (U + V ) ≤ γ (U) + γ (V ),

(M5) γ (cU) = |c|γ (U), c ∈ R,

(M6) γ (U) = 0 ⇐⇒ U is relatively strongly (weakly) compact in E,

(M7) γ (U ∪ {x}) = γ (U), x ∈ E.

Definition 1.2. A function u : [a, b] → E, (a, b) ∈ R2, is called:

(a) Pettis integrable if for any measurable subset D of [a, b] there is an
element vD in E such that 〈vD, f 〉 = ∫

D
〈u(s), f 〉 ds, for all f ∈ E∗, we

write vD = ∫
D

u(s) ds,

(b) Bochner integrable if there exists a sequence of countable-valued
functions {un} converging almost everywhere on [a, b] such that
limn→∞

∫ b

a
‖un(s) − u(s)‖ ds = 0.

We note that every Bochner integrable function is Pettis integrable (see
[14]).

Definition 1.3. The Hausdorff measure of weak noncompactness β :
B → R+ and the Kuratowski measure of noncompactness α : B → R+
are defined as follows: for each U ∈ B,

(i) β(U) = inf{ε > 0 : ∃ K = weakly compact subset of E, U ⊆ K +
εB1},

(ii) α(U) = inf{ε > 0 : U admits a finite cover of sets with diameter < ε}.
For more details of β and α we refer the reader to [1], [8].



existence bounded weak and strong solutions 227

Definition 1.4. By a Kamke function we mean a function w : I × R+ →
R+ such that:

(i) w is a Carathéodory function,

(ii) for all t ∈ I ; w(t, 0) = 0,

(iii) for any c ∈ (0, b], u ≡ 0 is the only absolutely continuous function
on [0, c] which satisfies u̇(t) ≤ w(t, u(t)) a.e. on [0, c] and such that
u(0) = 0.

Definition 1.5. A continuous function x : [−d, T ] → Ew is called a
weak solution of problem (P) if, for some ξ ∈ C([−d, 0], E),

x = ξ on [−d, 0]

and

x(t) = G(t, 0)ξ(0) +
∫ t

0
G(t, s)f (s, x(s)) ds for all t ∈ I.

Lemma 1.6. Let F be a continuous mapping from a compact interval I to
L (E) and U be a bounded subset of E, then

γ

(⋃
t∈I

F (t)U

)
≤ sup

t∈I

‖F (t)‖γ (U).

Proof. U is bounded, so ∃ c > 0; ‖U‖ = sup{‖u‖ : u ∈ U} ≤ c.
From the continuity of F , for ε > 0 there exists δ > 0 such that if P =
{x0, x1, x2, . . . , xn} is a partition of I , that is, a = x0 < x1 < x2 < · · · <

xn = b with ‖P ‖ = sup{|xi+1 − xi | : i = 0, 1, 2, . . . , n − 1} < δ, then
‖F (xi+1) − F (xi)‖ < ε

c
. Since B1 is the closed unit ball in E, there exists a

weakly compact subset K of E such that U ⊂ K + (γ (U)+ε)

γ (B1)
B1. But for each

t ∈ Ii = [xi, xi+1], F (t)U ⊂ {F (t)u − F (ti+1)u : u ∈ U} + F (ti+1)U and
‖F (t) − F (ti+1)‖‖U‖ < ε

c
· c = ε. Hence {F (t)u − F (ti+1)u : u ∈ U} ⊂

εB1 and F (t)U ⊆ εB1 + F (ti+1)U. Therefore

⋃
t∈I

F (t)U =
n−1⋃
t=0

⋃
t∈I

F (t)U

⊆ εB1 +
n−1⋃
t=0

⋃
t∈I

F (t)U ⊆ εB1 +
n−1⋃
t=0

(εB1 + F (ti+1)U)
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⊆ 2εB1 +
n−1⋃
t=0

F (ti+1)(K + (γ (U) + ε)

γ (B1)
B1)

⊆ 2εB1 +
n−1⋃
t=0

F (ti+1)K +
n−1⋃
t=0

F (ti+1)
(γ (U) + ε)

γ (B1)
B1

⊆ 2εB1 +
n−1⋃
t=0

F (ti+1)K + sup
t∈I

‖F (t)‖ (γ (U) + ε)

γ (B1)
B1.

Moreover

γ

(⋃
t∈I

F (t)U

)
≤ γ (2εB1 +

n−1⋃
t=0

F (ti+1)K + sup
t∈I

‖F (t)‖ (γ (U) + ε)

γ (B1)
B1)

≤ 2εγ (B1) + γ (sup
t∈I

‖F (t)‖ (γ (U) + ε)

γ (B1)
B1)

≤ 2εγ (B1) + sup
t∈I

‖F (t)‖ (γ (U) + ε)

γ (B1)
γ (B1)

≤ 2εγ (B1) + sup
t∈I

‖F (t)‖(γ (U) + ε)

where
⋃n−1

t=0 F (ti+1)K is weakly compact. Since ε is arbitrary the result fol-
lows.

Lemma 1.7 ([3]). Let Y and E be two Banach spaces, Pf c(Y ) be the set of all
closed and convex subsets of Y and F : E → Pf c(Y ) be weakly sequentially
upper hemicontinuous. Further let (xn)n∈N ⊂ C(I, E), xn(t) → x0(t) weakly
a.e. on I and (yn)n∈N∪{0} ⊂ L1(I, E), yn → y0 weakly. Suppose that there
exists a ∈ L1(I, R) such that ‖F(x)‖ ≤ a(t) for all x ∈ C(I, E) and yn(t) ∈
F(xn(t)) a.e. on I . Then y0(t) ∈ F(x0(t)) a.e. on I .

Lemma 1.8 ([18], [1]). If γ : B → R+ satisfies conditions (M2), (M4) and
(M6) then, for any nonempty U ∈ B,

γ (U) ≤ γ (B1)α(U) ≤ 2γ (B1)β(U).

Lemma 1.9 ([21], [17]). If γ is a measure of weak (strong) noncompactness
and A ⊂ Cw(I, E) is a family of strongly equicontinuous functions, then

γ (A(I)) = sup{γ (A(t)) : t ∈ I }.
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If for each t ∈ R+, A(t) ∈ L (E) and ẋ(t) denotes the weak derivative of
x at t , then we consider the differential equation

(1) ẋ(t) = A(t)x(t).

Let E be the direct sum of E0 and E1, where

E0 = {x0 ∈ E : ∃ a bounded weak solution x of (1) and x(0) = x0}
is closed and has a closed complement E1.

Let G ∈ C(R+ × R+, E) be the Green function corresponding to (1):

(2) G(t, s) =
{

S(t)PS−1(s) if 0 ≤ s ≤ t

−S(t)(id − P)S−1(s) if 0 ≤ t ≤ s,

where S : R+ → L (E) is a solution of the differential equation

Ṡ(t) = A(t)S(t), S(0) = id,

and P is the projection of E onto E0; hence P(E1) = {0}.

2. Existence results for problem (P)

In this section we shall consider the nonlinear differential equation

(P) ẋ(t) = A(t)x(t) + f (t, x(t)), t ∈ R+.

This problem was studied by many authors (see, for instance, [5], [19],
[6], [16], [10]). The next theorem is a generalization of Theorem 8 in [13].
Moreover we use here a general weak noncompactness measure, in contrast
with the Hausdorff noncompactness measure used in [10]; hence, the result
below is at the same time a generalization of Theorem 5 in [10].

Theorem 2.1. Let A : R+ → L (E) be strongly measurable and Bochner
integrable on every subinterval I of R+. Let γ be a weak measure of noncom-
pactness, for each t ∈ R+, let G(t, .) ∈ M ′ with ‖G(t, .)‖M ≤ c where c > 0.
Let f be a continuous function from R+×Ew to Ew and m : R+ → R+ belongs
to M ′ such that ‖f (t, x)‖ ≤ m(t) for every (t, x) ∈ R+ × Br . Assume that
c‖m‖M < r and for each T , ε > 0 there exists a closed subset Iε of I with
λ(I − Iε) < ε such that for any nonempty bounded subset U of E one has
β(f (J × U)) ≤ supt∈J w(t, β(U)), for any compact subset J of Iε. Then, for
each x0 ∈ E0 such that ‖x0‖ ≤ r−c‖m‖M

‖G(t,0)‖ , there exists a bounded weak solution
of (P).
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Proof. Let

S =
{
x ∈ Cw(R+, E) : ‖x(t) − x(τ)‖

≤ r

∫ τ

t

|A(s)| ds +
∫ τ

t

m(s) ds, 0 ≤ t ≤ τ

}
.

From (2) and by results from [20] there exists a positive number d such that
‖G(t, 0)‖ ≤ d. Let x0 ∈ E0 with ‖x0‖ ≤ r−c‖m‖M

d
. Then G(t, 0)x0 is a solution

of (1) and ‖G(t, 0)x0‖ ≤ d‖x0‖ ≤ r − c‖m‖M . If φ is defined by

φ(x)(t) = G(t, 0)x0 +
∫ ∞

0
G(t, s)f (s, x(s)) ds for t ∈ R+ and x ∈ S,

then ‖φ(x)(t)‖ ≤ d‖x0‖ + c‖m‖M ≤ r.

Sincey = φ(x) is a weak solution of the equation ẏ(t) = A(t)y(t)+f (t, x(t)),
we have

‖φ(x)(t) − φ(x)(τ )‖ ≤
∫ τ

t

‖A(s)φ(x)(s) + f (s, x(s))‖ ds

≤ r

∫ τ

t

|A(s)| ds +
∫ τ

t

m(s) ds.

Therefore φ is a continuous mapping from S into S [4]. Let (xn)n∈N∪{0} be a
sequence such that φ(xn) = xn+1 with x0 is an arbitrary element in S. Thus
D ⊂ S and, from (M4), γ (D) = γ (φ(D)). If G is the set of all limit points of
the sequence (xn), then φ(G) = G. Put R(X) = conv φ(X) for X ⊂ S and
consider the family � of all subsets X of S such that G ⊂ X and R(X) ⊂ X.
Now S ∈ � and so � �= ∅. Let V be the intersection of all sets of the
family �. Then V ∈ �. Moreover the mapping t → γ (φ(V )(t)) is absolutely
continuous. Assume that t ≥ 0 and ε > 0 thus from the assumptions on
the function m we can find T0 ≥ t such that ‖mχ[T0,∞[‖M < ε

2c
. If we put

I0 := [0, T0], then by the Scorza-Dragoni theorem there exists a closed subset
Iε of I0 such that λ(I0 − Iε) < δ and the function w is uniformly continuous
on Iε × [0, 2T0]. From our last assumption, we can find a closed subset Jε of
I0 such that λ(I0 − Jε) < δ and such that for any compact subset C of Jε and
any bounded subset Z of E,

γ (f (C × Z)) ≤ sup
s∈C

w(s, γ (Z)).

Since φ is continuous and w is Carathéodory we can find a closed subset Iε

of I , δ > 0, η > 0 (η < δ) such that if s1, s2 ∈ Iε and r1, r2 ∈ [0, 2T0]
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satisfy |s1 − s2| < δ, |r1 − r2| < δ, then |w(s1, r1) − w(s2, r2)| < ε and
if |s1 − s2| < η, then |γ (V (s1)) − γ (V (s2))| < δ. Let us fix τ such that
0 ≤ t ≤ τ ≤ T and consider the partition, to [t, τ ], t = t0 < t1 < · · · <

tm = τ such that ti − ti−1 < η for i = 1, . . . , n. Let Ti = Jε ∩ [ti−1, ti] ∩ Iε,
P = ∑m

i=1 Ti = [t, τ ]∩Jε ∩Iε and Q = [t, τ ]−P . Since G(t, .) is uniformly
continuous on P , we can find η′ > 0 (η′ < δ) such that if r1, r2 ∈ P and
|r1 − r2| < η′, then ‖G(t, r1) − G(t, r2)‖ < ε

and we can find si in Ti with

sup
s∈Ti

‖G(t, s)‖ = ‖G(t, si)‖.

Let Si = {x(t) : x ∈ S, t ∈ Ti}. In virtue of Lemma 1.6, Lemma 1.9, the mean
value theorem and Lemma 1.8 if ρ(t) := γ (V (t)) we get

ρ(τ) − ρ(t) ≤ γ

∫ τ

t

G(t, s)f (s, V (s)) ds

≤ 2γ (B1)

∫ τ

t

‖G(t, s)‖w(s, ρ(s)) ds.

Therefore ρ̇(t) ≤ cw(t, ρ(t)) a.e. [12] and since ρ(0) = 0, then ρ ≡ 0 and so
V

w
is weakly compact in Cw(R+, E). But V is closed, hence it is a convex and

compact subset in Cw(R+, E). From the Schauder-Tichonov theorem, since φ

is a continuous mapping from V to V , there is a fixed point y of φ such that y

is the desired weak solution of (P) and satisfies supt∈R+ ‖y(t)‖ ≤ r .

In the following theorem we will deal with the differential equation

(P′) ẋ(t) = L(t)x(t) + f ′(t, x(t)), t ∈ I

where f ′ : I × Br → E is a Carathéodory function, L : I → L (E) is
strongly measurable and Bochner integrable operator on I and γ is a measure
of strong noncompactness. We get a generalization of Theorem 2 in [26] and
Theorem 9 in [13].

Theorem 2.2. In the setting of Theorem 2.1 we replace the function f by
f ′ such that for each x ∈ Br , f ′(I × {x}) is separable; the function m by
m′ ∈ L1(I, R+) and the operator A by L. Then problem (P′) has a solution.

Proof. Let

S =
{
x ∈ C(I, E) : ‖x(t) − x(τ)‖

≤ r

∫ τ

t

|A(s)| ds +
∫ τ

t

m′(s) ds, 0 ≤ t ≤ τ

}
.
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Suppose that the mapping φ : S → S is defined by

φ(x)(t) = G(t, 0)x0 +
∫ t

0
G(t, s)f (s, x(s)) ds for t ∈ I and x ∈ S.

As in Theorem 2.1 we let (xn)n∈N∪{0} be a sequence such that φ(xn) = xn+1

where x0 is an arbitrary element in S, V = {xn : n = 0, 1, 2, . . .}, V ⊂ S,
γ (V ) = γ (φ(V )) and ρ(t) = γ (V (t)). Then by the same argument we get

ρ(τ) − ρ(t) ≤ γ

(∫ τ

t

G(t, s)f (s, V (s)) ds

)

≤ γ (B1)

∫ τ

t

‖G(t, s)‖w(s, ρ(s)) ds,

ρ is differentiable a.e. on I and ρ ≡ 0. Thus the closure of V is compact in
C(I, E) and so we can find a subsequence (xnk

) of (xn) which converges to a
limit x in C(I, E). Since ‖xn − φ(xn)‖ → 0 as n → ∞ and φ is continuous,
then x = φ(x) so as x is the desired solution of (P′) and ‖x‖ ≤ r .

In the following theorem we let h : I × R+ → R+ be a Carathéodory
function, such that for each bounded subset Z of I ×R+ there exists a function
ϕ : I → R+ such that h(t, s) ≤ ϕ(t), (t, s) ∈ Z and ϕ is integrable function
on [c, T ] for each c, 0 < c ≤ T . Moreover we assume that the identically zero
function is the only absolutely continuous function on [0, c] which satisfies
u̇(t) = h(t, u(t)) a.e. on [0, c] such that the right derivative D+u(0) of u(t) at
t = 0 exists and D+u(0) = u(0) = 0.

We note that the assumptions on h are weaker than that on a Kamke function
w.

Theorem 2.3. If we replace in the setting of Theorem 2.2 a Kamke function
w by a function h and we suppose that f ′ is bounded and continuous, then
problem (P′) has a solution.

Proof. By the same argument as in Theorem 2.2 we get

(3)

ρ(τ ) − ρ(t) ≤ γ

∫ τ

t

G(t, s)f (s, V (s)) ds

≤ γ (B1)

∫ τ

t

‖G(t, s)‖h(s, ρ(s)) ds

where ρ(t) = γ (V (t)). Since f ′ is a bounded function, we can find a constant
M > 0 such that ‖f ′(t, x)‖ ≤ M for each (t, x) ∈ I × Br . Let N : I → R
be defined by N (t) = sup‖x‖,‖y‖≤Mt ‖f ′(t, x) − f ′(t, y)‖. We see that N is
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lower semicontinuous on ]0, T ] and continuous at 0 [22]. Let ε > 0 and t0 be
fixed in I . Then, there exist x1, y1 ∈ Br; ‖x1‖, ‖y1‖ ≤ Mt such that

(4) N (t0) − ε

2
≤ ‖f ′(t0, x1) − f ′(t0, y1)‖.

Moreover, f ′ is continuous. Thus ∃ δ > 0 such that if |t−t0| < δ, ‖x1−x‖ < δ,
‖y1 − y‖ < δ, we have

(5) ‖f ′(t0, x1) − f ′(t, x)‖ <
ε

4
and ‖f ′(t0, y1) − f ′(t, y)‖ <

ε

4
.

From relations (4) and (5), we get

N (t0) − ε

2
≤ ‖f ′(t0, x1) − f ′(t0, y1)‖
≤ ‖f ′(t0, x1) − f ′(t, x)‖

+ ‖f ′(t, x) − f ′(t, y)‖ + ‖f ′(t, y) − f ′(t0, y1)‖
≤ ‖f ′(t, x) − f ′(t, y)‖ + ε

2
,

and so,
N (t0) − ε ≤ ‖f ′(t, x) − f ′(t, y)‖.

Thus, for each t with |t − t0| < δ, there exist x1, y1 with ‖x1‖, ‖y1‖ ≤ Mt

such that N (t0)− ε ≤ ‖f ′(t, x1)−f ′(t, y1)‖ ≤ N (t). We conclude that N is
lower semicontinuous. Moreover from the continuity of f ′, N is continuous
at 0. Consequently we can say that ‖ ∫ τ

t
f ′(s, x(s)) − ∫ τ

t
f ′(s, y(s)) ds‖ ≤∫ τ

t
N (s) ds for each x, y ∈ V . Then from relation (3) we have

ρ(τ) − ρ(t)

≤ min

(∫ τ

t

‖G(t, s)‖N (s) ds, γ (B1)

∫ τ

t

‖G(t, s)‖h(s, ρ(s)) ds

)
,

where 0 < t ≤ τ ≤ T . Therefore ρ is an absolutely continuous function on I

and so

ρ̇(t) ≤ min
(‖G(t, s)‖N (t), ‖G(t, s)‖h(t, ρ(t))

)
, a.e. on I.

Thus ρ ≡ 0 on I , see Lemma 1 in [22]. We can complete the proof as in the
proof of Theorem 2.2.
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3. Existence results for problem (Q)

We consider the problem

(Q) ẋ(t) = L(t)x(t) + f d(t, θtx), t ∈ I.

Let Br = {x ∈ E : ‖x‖ ≤ r}, L(t) ∈ L (E) and for t ∈ I we define
θtx(s) = x(t + s) for all s ∈ [−d, 0]. We assume that C([−d, 0], Br) is
the Banach space of continuous functions from [−d, 0] into Br and f d :
I × C([−d, 0], Br) → E.

In the following theorem we deal with problem (Q) and we have a general-
ization of Theorem 2.1.

Theorem 3.1. If we replace in the setting of Theorem 2.1 the function f by
f d ; the function m by m′ ∈ L1(I, R+) and the operator A by L, then problem
(Q) has a weak solution.

Proof. We apply some methods for functional equations similar to those
of [10]. For any arbitrary n ∈ N, we define γ1 :

[−d, T
n

] × E → E by

γ1(t, x) =
{

ξ(t) if t ∈ [−d, 0]

ξ(0) + nt (x − ξ(0)) if t ∈ [
0, T

n

]
and also we define f1 :

[
0, T

n

] × E → E by f1(t, x) = f d(t, θ T
n
(γ1(., x))).

Arguing as in the proof of Theorem 2.1, there is a continuous function y1 such
that y1 = ξ on [−d, 0] and for each t ∈ [

0, T
n

]

y1(t) = G(t, 0)ξ(0) +
∫ t

0
G(t, s)f1(s, y1(s)) ds.

Moreover supt∈[0, T
n ] ‖y1(t)‖ ≤ r . Set k′ = k − 1. By induction, for each

k ∈ {2, 3, . . . , n}, there exists a bounded function yk′ such that yk′ = ξ on
[−d, 0] and for each t ∈ [

0, k′T
n

]

yk′(t) = G(t, 0)ξ(0) +
∫ t

0
G(t, s)fk′(s, yk′(s)) ds,

where fk′(t, x) = f d
(
t, θ k′T

n

γk′(., x)
)
. Assume that γk :

[−d, kT
n

] × E → E

is such that

γk(t, x) =
{

yk′(t) if t ∈ [−d, k′T
n

]
yk′

(
k′T
n

) + n
(
t − k′T

n

)(
x − yk′

(
k′T
n

))
if t ∈ [

k′T
n

, kT
n

]
.
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Thus if fk :
[

k′T
n

, kT
n

]×E → E is defined by fk(t, x) = f d
(
t, θ kT

n
(γk(., x))

)
,

then we have a continuous function yk defined on
[

k′T
n

, kT
n

]
by

yk(t) = G
(
t, k′T

n

)
yk′

(
k′T
n

) +
∫ t

k′T
n

G(t, s)fk (s, yk(s)) ds.

Further, for 0 ≤ s ≤ r ≤ t , G(t, s)G(s, r) = G(t, r) and for each t ∈[
k′T
n

, kT
n

]
we have

yk′
(

k′T
n

) = G
(

k′T
n

, 0
)
ξ(0) +

∫ k′T
n

0
G

(
k′T
n

, s
)
fk ′(s, yk′(s)) ds.

Hence

yk(t) = G
(
t, k′T

n

)
G

(
k′T
n

, 0
)
ξ(0) +

∫ k′T
n

0
G

(
t, k′T

n

)
G

(
k′T
n

, s
)
fk′(s, yk′(s)) ds

+
∫ t

k′T
n

G(t, s)fk(s, x(s)) ds

= G(t, 0)ξ(0) +
∫ k′T

n

0
G(t, s)fk′(s, yk′(s)) ds

+
∫ t

k′T
n

G(t, s)fk (s, yk(s)) ds

= G(t, 0)ξ(0) +
∫ t

0
G(t, s)gk(s, yk(s)) ds,

where

gk(t, yk(t)) =
⎧⎨
⎩

fk′(t, yk′(t)) if t ∈ [
0, k′T

n

]
fk(t, yk(t)) if t ∈ [

k′T
n

, kT
n

]
.

Consequently, for all n ∈ N, we have a continuous bounded function vn such
that vn = ξ on [−d, 0] and for each t ∈ I , k′T

n
≤ t ≤ kT

n
for some k ∈

{1, 2, 3, . . . , n}, we have

vn(t) = G(t, 0)ξ(0) +
∫ t

0
G(t, s)hn(s) ds
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where hn(t) = f d
(
t, θ kT

n
γk(., vn(t))

)
. Let t1, t2 ∈ I and t1 < t2. Then

‖vn(t1) − vn(t2)‖
≤ ‖G(t1,0) − G(t2, 0)‖‖ξ(0)‖ +

∫ t1

0
‖G(t1, s) − G(t2, s)‖‖hn(s, vn(s))‖ ds

+
∫ t2

t1

‖G(t2, s)‖‖hn(s, vn(s))‖ ds

≤ ‖G(t1, 0) − G(t2, 0)‖‖ξ(0)‖ +
∫ t1

0
‖G(t1, s) − G(t2, s)‖‖m′(s)‖ ds

+ c

∫ t2

t1

‖m′(s)‖ ds,

since vn = ξ on [−d, 0] and for all s ∈ I G(., s) is uniformly continuous,
then A is equicontinuous in C([−d, T ], E). γ (A(t)) = γ ({vn(t) : n ∈ N})
is such that γ (A(0)) = 0 and, as in the proof of Theorem 2.1, γ (A(t)) = 0
for all t ∈ I . Thus by Ascoli’s theorem, the sequence {vn : n ∈ N} converges
uniformly to a function v which belongs to C([−d, T ], E) such that y = ξ

on [−d, 0]. But γ ({hn(t) : n ∈ N}) = 0 and so {hn(t) : n ∈ N} is relatively
compact. Let F (t) = conv{hn(t) : n ∈ N}. Thus F (t) is nonempty convex
and compact. Moreover δ1

F = {l ∈ L1(I, E) : l(t) ∈ F (t)} is nonempty
convex and weakly compact. Therefore, there exists a subsequence (hnk

) of
(hn) such that hnk

→ l weakly, l ∈ δ1
F . Thus {vn : n ∈ N} tends weakly

to v(t) := G(t, 0)ξ(0) + ∫ t

0 G(t, s)l(s) ds. Now v is uniformly continuous
on [−d, 0] and for each t ∈ I , there exists n > T

d
with t ∈ [

k′T
n

, kT
n

]
for

k ∈ {1, 2, . . . , n − 1}. Hence∥∥θ kT
n
γk(., vn(t)) − θtv

∥∥
≤ sup

s∈[−d,− T
n ]

[∥∥γk

(
kT
n

+ s, vn(t)
) − v

(
kT
n

+ s
)∥∥ + ∥∥v

(
kT
n

+ s
) − v(t + s)

∥∥]

+ sup
s∈[− T

n
,0]

[∥∥vn

(
k′T
n

) + n
(

kT
n

+ s − k′T
n

)(
vn(t) − vn

(
k′T
n

)) − v
(

kT
n

+ s
)∥∥

+ ∥∥v
(

kT
n

+ s
) − v(t + s)

∥∥]
≤ sup

s∈[−d,− T
n ]

[∥∥vn

(
kT
n

+ s
) − v

(
kT
n

+ s
)∥∥ + ∥∥v

(
kT
n

+ s
) − v(t + s)

∥∥]

+ sup
s∈[− T

n
,0]

[
T

∥∥(
vn(t) − vn

(
k′T
n

))∥∥ + ∥∥vn

(
k′T
n

) − v
(

kT
n

+ s
)∥∥

+ ∥∥v
(

kT
n

+ s
) − v(t + s)

∥∥]
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as n → ∞. So from Lemma 1.7, problem (Q) has a weak solution v.

In the following theorem we use a measure of strong noncompactness γ so
we have a generalization of Theorem 3.1 and an improvement to Theorem 2
in [26] and Theorem 9 in [13].

Theorem 3.2. In the setting of Theorem 2.2 if we replace the function f ′
by f d such that for all ϕ ∈ C([−d, 0], Br) f d(I × {ϕ}) is separable, then
problem (Q) has a solution.

Proof. For n ∈ N we define γ1 :
[−d, T

n

] × E → E, as in the proof of
Theorem 3.1, by

γ1(t, x) =
{

ξ(t) if t ∈ [−d, 0]

ξ(0) + nt (x − ξ(0)) if t ∈ [
0, T

n

]
and f1 :

[
0, T

n

] × E → E by f1(t, x) = f d(t, θ T
n
(γ1(., x))). By Theorem 2.2

there exists a continuous function y1 such that y1 = ξ on [−d, 0] and for each
t ∈ [

0, T
n

]

y1(t) = G(t, 0)ξ(0) +
∫ t

0
G(t, s)f1(s, y1(s)) ds.

Then we can construct, for each n ∈ N, a continuous bounded function vn such
that vn = ξ on [−d, 0] and for each t ∈ I vn is defined by

vn(t) = G(t, 0)ξ(0) +
∫ t

0
G(t, s)hn(s) ds,

where hn(t) = f d(t, θ kT
n
γk(., vn(t))) with k ∈ {1, 2, 3, . . . , n} and (k−1)T

n
≤

t ≤ kT
n

. We can complete the proof as in the proof of Theorem 3.1.

In the next theorem we let h : I × R+ → R+ be a Carathéodory function.
Also for each bounded subset Z of I × R+ we suppose that there exists a
function m : I → R+ such that h(t, s) ≤ m(t), (t, s) ∈ Z and m is integrable
on [c, T ] for each c, 0 < c ≤ T . Moreover, assume that the identically zero
function is the only absolutely continuous function on [0, c] which satisfies
u̇(t) = h(t, u(t)) a.e. on [0, c] and for which the right derivative D+u(0) of
u(t) at t = 0 exists and is 0.

Theorem 3.3. If we replace in the setting of Theorem 3.2 a Kamke function
w by a function h and we suppose that f d is bounded and continuous, then
problem (Q) has a solution.
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We omit the proof since it runs as in the proof of Theorem 3.2 except that
we replace the use of Theorem 2.2 by that of Theorem 2.3 to find a continuous
function y1 such that y1 = ξ on [−d, 0] and for each t ∈ [

0, T
n

]
y1(t) = G(t, 0)ξ(0) +

∫ t

0
G(t, s)f1(s, y1(s)) ds.

In fact, if L(t) �= 0 our results generalize that of Gomaa [10] and Cichon [4],
since we have a generalization of the compactness assumptions and in [4] the
results are stated without delay. For the important case L(t) = 0 we have,
as a special case, a generalization of the existence theorems of Gomaa [13],
Ibrahim-Gomaa [15], Papageorgiou [23], Cramer-Lakshmikantham-Mitchell
[7], Szep [25] and Boundourides [2] in all of which the results are stated
without delay. Szep in [25] studied the special case of problem (P) in a reflex-
ive Banach space, Boundourides [2] and Cramer-Lakshmikantham-Mitchell
[7] studied the special case of problem (P) in a nonreflexive Banach space,
Papageorgiou [23] found weak solutions for the special case of problem (P)
on a finite interval I with 0 < T < ∞, Ibrahim-Gomaa [15] found weak solu-
tions for the special case of problem (P) on a finite interval I and in [13] we
give a generalization to recent results on the Cauchy problem by using weak
and strong measures of noncompactness. Moreover in [11], [12] we study the
nonlinear differential equations with and without delay while in [9] we study
the differential inclusions with moving constraints.

Acknowledgment The author is very grateful to the editor and the referee
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