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A SPECTRAL SEQUENCE FOR THE HOCHSCHILD
COHOMOLOGY OF A COCONNECTIVE DGA

SHOHAM SHAMIR∗

Abstract
A spectral sequence for the computation of the Hochschild cohomology of a coconnective dga
over a field is presented. This spectral sequence has a similar flavour to the spectral sequence
presented in [7] for the computation of the loop homology of a closed orientable manifold. Using
this spectral sequence we identify a class of spaces for which the Hochschild cohomology of their
mod-p cochain algebra is Noetherian. This implies, among other things, that for such a space the
derived category of mod-p chains on its loop-space carries a theory of support varieties.

1. Introduction

Given a differential graded algebra (a dga) A over a field k, the Hochschild
cohomology of A, with coefficients in the differential graded A-bimodule A,
is

HH ∗(A) = Ext∗A⊗kAop(A,A).

For an augmented k-dga A there is a well known map of graded algebras
χ : HH ∗(A) → Ext∗A(k, k), which we shall call the shearing map. Several
equivalent definitions of the shearing map are given in Section 7. The main
result of this paper, Theorem 1.3, describes a multiplicative spectral sequence
for the computation ofHH ∗(A), which also computes the image of the shearing
map. The existence of such a spectral sequence is hardly surprising, and so we
must explain why the consequences are interesting.

The main consequence of this spectral sequence is Theorem 1.5, which
gives conditions under whichHH ∗(A) is Noetherian and Ext∗A(k, k) is finitely
generated over the image of χ . Our interest in this result comes from its applic-
ation to topological spaces. Given a simply connected space X, we consider
its cochains dga C∗(X; k), i.e. the singular cochains on X with coefficients in
k. There is a particular class of spaces for whose cochain dga Theorem 1.5
holds.

Definition 1.1. A space X is called p-finite, for a prime p, ifH∗(X; Z/p)
is finite dimensional. Recall from [14] that a simply connected space X is
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called p-elliptic if it is of finite type and the sequence {dimHn(�X; Z/p)}n
grows at most at a polynomial rate. Compact Lie groups and homogeneous
spaces are noteworthy examples of elliptic spaces.

For simplicity of exposition we shall now fix a prime p and let k = Z/p.
Recall, that for any p-finite simply connected space X there is a well known
isomorphism of graded algebras H∗(�X; k) ∼= Ext−∗C∗(X;k)(k, k). Theorem 1.5
implies the following result:

Corollary 1.2. LetX be a p-finite p-elliptic space. ThenHH ∗(C∗(X; k))
is Noetherian and the shearing map makesH∗(�X; k) into a finitely generated
HH ∗(C∗(X; k))-module.

Note that, in the rational case, it is very easy to construct a Q-finite Q-
elliptic space X where H∗(�X;Q) is not finitely generated over the image of
the shearing map, see [18, Example 8.5].

We are interested in spaces with Noetherian Hochschild cohomology for
two reasons, one coming from commutative algebra and the other coming from
non-commutative algebra. In commutative algebra, the obvious analogue to
p-elliptic spaces are local complete intersection algebras. Among Noetherian
commutative local algebras the complete intersection (ci) local algebras are
characterized as those algebras R for which the sequence {dim ExtnR(k, k)}n
has polynomial growth, where k is the residue field ofR. The analogy between
ci local algebras and cochains on p-finite p-elliptic spaces is strengthened by
the fact that finite dimensional ci local algebras have Noetherian Hochschild
cohomology. As far as the author is aware, it is still an open question whether
having Noetherian Hochschild cohomology characterizes such ci local algeb-
ras.

This analogy between cochains on p-elliptic spaces and ci local algebras
is the main focus of [1]. There, the analogy is explained in detail, and other
properties of ci local algebras are shown to hold for cochains on p-elliptic
spaces. We shall not say more about this except to note that Corollary 1.2 is
central to the arguments in [1].

Recent work in non-commutative algebra motivates the use of Hochschild
cohomology for development of support varieties. Given a non-commutative
algebra �, one would like a notion of support for �-modules, similar to that
of modules over a commutative ring. It has been observed that the Hochschild
cohomology of � can be used for that purpose, see [23] for a survey on this
subject. Such a theory of support is easiest to construct when the Hochschild
cohomology is Noetherian. But it is difficult to determine when this condi-
tion holds; for example, in [24] Xu constructs a 7-dimensional algebra whose
Hochschild cohomology ring is not Noetherian, even modulo nilpotents.
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On the topology side, we consider the dga C∗(�X; k)where�X is the loop-
group of X. The derived category of C∗(�X; k) contains much information
about the space X (see [4] for a recent motivating example). For a p-finite
p-elliptic space we shall see that the Hochschild cohomology of C∗(�X; k) is
Noetherian. Once this has been established, modern technology developed by
Benson, Iyengar and Krause [2], immediately gives the construction of support
varieties for C∗(�X; k)-modules, where the support of a module is a subset
of the prime ideal spectrum of the Hochschild cohomology. For completeness,
the definition and main properties of this theory of support is described in 1.6
below.

We should note that our ultimate goal is to identify cases in which this
notion of support classifies all localizing subcategories of the derived cate-
gory D(C∗(�X; k)). In such cases, one says HH ∗(C∗(X; k)) stratifies
D(C∗(�X; k)); this definition is also due to Benson, Iyengar and Krause [3].
Corollary 1.2 can be viewed as a first step in this direction.

In order to describe the spectral sequence we must first give a few definitions.
A differential graded algebra A over a field k will be called coconnective if
An = 0 for n < 0 and H 0(A) = k. It is of finite type if Hn(A) is a finite
dimensional k-vector space for every n and it is bounded if Hn(A) �= 0
only for a finite number of values of n. We say A is simply connected if A
is coconnective, augmented and Ext0

A(k, k) = k (equivalently TorA0 (k, k) =
k). The dga A ⊗k Aop will be denoted by Ae. Note there is a well known
isomorphism Ext∗A(k, k) ∼= Ext∗Ae(A, k), which will be described in Section 7.

Since we are computing the Hochschild cohomology of a coconnective dga,
we are bound to end up with elements in both positive and negative degrees.
We keep to the convention that subscript grading denotes homological degree,
while superscript grading is cohomological, thus X� = X−� for any graded
object X. See also 1.11 below.

Theorem 1.3. Let A be a simply connected dga over a field k. Then there
exists a conditionally convergent multiplicative spectral sequence

E2
p,q = Ext−qAe (A,H

−p(A)) �⇒ HH−p−q(A).

Under the isomorphism Ext∗A(k, k) ∼= Ext∗Ae(A, k) the infinite cycles in E2
0,∗

can be identified with the image of the shearing mapχ :HH ∗(A)→Ext∗A(k, k).
When A is bounded the spectral sequence has strong convergence. When A is
of finite type then this spectral sequence takes the form

E2
p,q = H−p(A)⊗k Ext−qA (k, k) �⇒ HH−p−q(A),

with the obvious multiplicative structure on H−p(A)⊗k Ext−qA (k, k).
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Several remarks are in order. First, a multiplicative spectral sequence means
there is a multiplication defined on each Er -term for which the differential
dr is a derivation, the multiplication on Er+1 is the one induced from Er

in the obvious way and the resulting multiplication on E∞ agrees with the
multiplication on the associated graded object of HH ∗(A). Note that we use
the convergence conditions for spectral sequences as defined by Boardman in
[5].

Second, we did not specify the multiplicative structure on the E2-term
of this spectral sequence in the case where A is not of finite type. Roughly
speaking, one can consider A as a coalgebra with respect to the derived tensor
product ⊗L

A. On the other side we have an appropriate pairing Hn(A) ⊗L
A

Hm(A) → Hn+m(A), induced by the multiplication on A. Together, these
yield the multiplicative structure on theE2-term. The precise description of this
multiplication is given in Section 6. WhenA is of finite type both multiplicative
structures on theE2-term agree under the appropriate isomorphism, this is done
in Lemma 8.6.

Last, the grading of this spectral sequence is homological. Hence, the dif-
ferential on the Er -term is dr : Erp,q → Erp−r,q+r−1, and the spectral sequence
lies in the second quadrant. This has the unfortunate consequence of yielding
minus signs on the E2-term description. The choice of homological grading
was motivated by topological examples, discussed below in 1.8.

The assumption that a coconnective augmented dga A is simply connected
is satisfied in many cases. As is well known, whenH 1(A) = 0 thenA is simply
connected, and for dgas of finite type this is also a necessary condition. The
spectral sequence exists also when the dga A is not simply connected, but in
that case we can only describe the E1-term of the spectral sequence.

Proposition 1.4. Let A be a coconnective augmented dga over a field k.
Then there exists a conditionally convergent multiplicative spectral sequence

E1
p,q = Ext−qAe (A,A

−p) �⇒ HH−p−q(A).

The main consequence of this spectral sequence is the following result.

Theorem 1.5. Let k be a field of characteristic p > 0. Let A be a simply
connected dga over k such that H ∗(A) is finite dimensional and Ext∗A(k, k) is
finitely generated over a central Noetherian sub-algebra. Then Ext∗A(k, k) is
finitely generated over the image of the shearing map and HH ∗(A) is Noeth-
erian.
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1.6. Support varieties for elliptic spaces

For completeness, we briefly recall here the results of [2] which, by Corol-
lary 1.2, are applicable for p-finite p-elliptic spaces.

Let R be a graded-commutative Noetherian ring. Denote by SpecR the
homogeneous prime ideal spectrum ofR. The specialization closure of a subset
U ⊂ SpecR is the set

cl(U) = {� ∈ SpecR | there exists � ∈ U with � ⊂ �}.
A subset V ⊂ SpecR is specialization closed if cl(V ) = V .

Both the definition and the properties of support are summed up in the
following corollary, which is mainly the application of [2, Theorem 1] to our
setting. There are other useful properties that arise from the existence of a
theory of support which are not listed here, these can be found in [2].

Corollary 1.7. Let X be a p-finite p-elliptic space and let R denote
HH ∗(C∗(X; k)). Then there exists a unique assignment sending each object
M ∈ D(C∗(�X; k)) to a subset suppR M of SpecR satisfying:

(1) For every M ∈ D(C∗(�X; k))
cl(suppR M) = cl(suppR H∗(M)),

where suppR H∗(M) is the usual support of a module over a commutative
ring.

(2) For every M,N ∈ D(C∗(�X; k))
cl(suppR M) ∩ suppR N = ∅ implies Ext∗C∗(�X;k)(M,N) = 0.

(3) For every exact triangle M1 → M2 → M3 we have

suppR M2 ⊆ suppR M1 ∪ suppR M3.

(4) For any specialization closed subset V ⊂ SpecR and for every M ∈
D(C∗(�X; k)) there is a distinguished triangle M ′ → M → M ′′ such
that

suppR M
′ ⊂ V and suppR M

′′ ⊂ SpecR \ V .

In addition we have the following two properties:

• For every M ∈ D(C∗(�X; k)), suppR M = ∅ if and only if M = 0.

• IfM is a compact object of D(C∗(�X; k)) then suppR M is the special-
ization closed subset suppR H∗(M).

We should explain why H∗(M) is an R-module in the corollary above. If
A is a k-dga, and U and V are A-modules, then Ext∗A(U, V ) is known to be
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an HH ∗(A)-module. In particular, H−∗(V ) = Ext∗A(A, V ) is an HH ∗(A)-
module. The proof of Corollary 1.7 relies on the fact that HH ∗(C∗(X; k)) ∼=
HH ∗(C∗(�X; k)), which explains the R-action on H∗(M).

1.8. Relation to other work

As noted in the abstract, the spectral sequence presented here bears some
resemblance the spectral sequence for string homology of Cohen, Jones and
Yan presented in [7], which we now describe. Let M be a closed orientable
manifold, let k be a commutative ring and letA be the dga of singular cochains
with coefficients in k. The E2-term of the spectral sequence of [7] is E2

p,q
∼=

H−p(M,Hq(�M)), where �M is the based loop space of M . Assuming also
that M is simply connected then this E2-term is isomorphic to H−p(A) ⊗k
Ext−qA (k, k).

The spectral sequence of [7] converges to the homology of the free (un-
based) loops onM , properly desuspended, which they call the loop homology.
By results of Cohen and Jones [6], this loop homology is isomorphic to the
Hochschild cohomology ofA, this is an isomorphism of graded algebras when
the loop homology is given the Chas-Sullivan product. Thus, whenM is simply
connected, both the spectral sequence given here and that of [7] have the same
E2 and E∞ terms and both are multiplicative.

In [17], Felix, Thomas and Vigué-Poirrier consider a map I : HH ∗(A)→
Ext∗Ae(A, k), where A is the dga of singular cochains with coefficients in k on
a simply connected closed oriented manifold. They give a model for I , and
using this model get several results concerning the kernel and image of I . In
Lemma 7.4 it is shown that I is equal to the shearing map and using the spectral
sequence presented here we recover one of their results.

1.9. On the choice of setting and method of proof

In [8] and [9], Dugger gives a systematic treatment of the construction of mul-
tiplicative spectral sequences for topological spaces and for spectra. To mimic
Dugger’s work, we have have found it easier to use Quillen model category
machinery. This also highlights the only significant difference between the
construction here and Dugger’s treatment - in this paper we are forced to use
the bar construction, since we cannot assume that our filtration consists of
cofibrant objects.

Roughly speaking, one gets a multiplicative structure on maps from a co-
monoid to a monoid in any monoidal category. In [9], Dugger shows how
an appropriate filtration of the comonoid yields a multiplicative spectral se-
quence. Here we filter the monoid as Dugger does in [8]. Viewed in this way,
the construction of the spectral sequence is a simple translation of classical
constructions from topology.
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1.10. Organization of this paper

We start by presenting and proving the consequences of the spectral sequence
in Section 2. In Sections 3 and 4 we set the necessary model category structure
and the differential graded tools we will use. In Section 5 the spectral sequence
is constructed. Section 6 establishes the multiplicative properties of the spectral
sequence. Section 7 gives various descriptions of the shearing map. Finally, in
Section 8, we identify the E2-term of the spectral sequence.

The proof of Theorem 1.3 is spread throughout this paper. Lemma 5.3
shows the existence of the spectral sequence and its convergence properties.
Proposition 6.16 gives the multiplicative property. Lemma 8.6 identifies the
E2-term of the spectral sequence when A is of finite type. Finally, Lemma 8.7
proves the statement regarding the image of the shearing map.

1.11. Notation and terminology

A chain complexX is described by a pair (X�, dX)whereX� is the underlying
graded abelian group and dX is the differential. Note that we adhere to the
convention that subscript grading is homological degree, while superscript
grading is cohomological. Thus Xn = X−n and the differential lowers the
homological degree (or raises the cohomological degree) d : Xn → Xn−1.
The tensor product of two chain complexes over k will be denoted simply by
⊗.

Throughout k is a field andA is a coconnective augmented dga over kwhose
augmentation map A → k is denoted by �. The opposite dga is denoted by
Aop andAe is the dgaA⊗Aop. The derived category of differential graded left
A-modules will be denoted by D(A). By an equivalence of chain complexes
we mean a quasi isomorphism, as usual such morphisms are denoted by ∼.

We will refer to morphisms of chain complexes and differential graded A-
modules as maps (the relevant categories are described in Section 3). This will
serve to distinguish maps from the morphisms in the corresponding derived
categories.

1.12. Acknowledgments
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2. Consequences of the spectral sequence and proofs of the main
results

2.1. Noetherian property and the shearing map

Three equivalent definitions of the shearing map will be given in Section 7, but
we give a quick review of one here. There is a way to assign to each element



a spectral sequence for hochschild cohomology 189

x in the Hochschild cohomology HH ∗(A) a natural transformation ζ(x) :
1D(A) → �n1D(A), see 7.11 for details. Roughly speaking, given a morphism
x : A→ �nA in D(Ae)we have the natural transformation ζ(x)M = x⊗L

AM .
This assignment preserves addition and turns multiplication to composition of
natural transformations. We can now define the shearing map χ : HH ∗(A)→
Ext∗A(k, k) by χ(x) = ζ(x)k .

From the definition it is immediate that that the image of the shearing map χ
lies in the centre of Ext∗A(k, k). In Lemma 7.4 we show that our definition of the
shearing map agrees with that of the morphism I from [17], thereby recovering
their result that the image of I is central. We also recover the following result
of [17, 4.1 – Theorem 7].

Theorem 2.2. LetA be a simply connected bounded dga over a field k such
thatHn(A) = 0 for n > d. Then the kernel of the shearing map is nilpotent of
nilpotency index less than or equal to d. If, in addition, H 1(A) = 0 then the
nilpotency index is less than or equal to d/2.

Proof. Since A is bounded the spectral sequence has strong convergence.
It also implies that all the elements in Erp,q are nilpotent whenever p �= 0.
Theorem 1.3 implies that ⊕p<0E

∞
p,∗ is isomorphic to the kernel of the shear-

ing map. To be precise, E∞ is isomorphic to the associated graded object of
HH ∗(A) coming from some filtration, and under this isomorphism ⊕p<0E

∞
p,∗

can be identified with the kernel of the shearing map.
Consequently, this means that the kernel of the shearing map is nilpotent

and has nilpotency index which is less than or equal to the nilpotency index of
the ideal ⊕p<0E

∞
p,∗ ⊂ E2∗,∗.

As noted earlier, the main consequence of the spectral sequence is The-
orem 1.5 which we now prove.

Proof of Theorem 1.5. Suppose A is simply connected and bounded.
Denote by B the graded algebra Ext∗A(k, k). We are also assuming B is finitely
generated as a module over a central Noetherian sub-algebra N . We mean
central in the graded commutative sense, thus if n ∈ N and x ∈ B then
nx = (−1)|n||x|xn, but this will play no part in what follows.

SinceN is Noetherian then by Noether Normalization it contains a polyno-
mial sub-algebra P = k[x1, . . . , xn] such that N is finitely generated over P .
Thus the degree of each xi must be even. By identifying B with E2

0,∗ we shall
now considerP as a sub-algebra ofE2. By the description of the multiplication
on the E2-term when A is of finite type we see that P is central in E2.

We now employ an argument of Quillen. By the Leibnitz rule and the fact
that xi is central and of even degree, we see that xpi is a cycle for d2, for every
i. Continuing in this fashion, we see that xp

r

i is a cycle for the differential dr
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onEr . SinceA is bounded the spectral sequence collapses at some finite stage,

say R. Hence xp
R

1 , . . . , x
pR

n are all infinite cycles and so in the image of the
shearing map. Clearly B is finitely generated as a module over the sub-algebra

P ′ = k[xp
R

1 , . . . , x
pR

n ].
SinceH ∗(A) is finite dimensional, we see that E2 is finitely generated as a

module overP ′. HenceE2 is a NoetherianP ′-module. In addition, because the
elements of P ′ are infinite cycles we see, by the Leibnitz rule, that the differ-
ential d2 is a morphism of P ′-modules. Hence the kernel of d2 is a Noetherian
P ′-module and so is this kernel’s quotient E3. Continuing by induction we
end up showing that ER = E∞ is a Noetherian P ′-module. This shows that
HH ∗(A) is finitely generated as a module over a polynomial sub-algebra and
hence Noetherian.

Proof of Corollary 1.2. The results of Felix, Halperin and Thomas
from [13] and [14] immediately imply that for any p-finite p-elliptic space X
the dga C∗(X; Z/p) satisfies the conditions of Theorem 1.5.

2.3. Constructing support varieties

Proof of Corollary 1.7. It follows from the results of Felix, Menichi and
Thomas [16] that there is an isomorphism

HH ∗(C∗(X; k)) ∼= HH ∗(C∗(�X; k)).
We also note that under this isomorphism the shearing map becomes the ob-
vious morphism

HH−∗(C∗(�X; k))→ H∗(�X; k).
From Corollary 1.2 we see that R = HH ∗(C∗(�X; k)) is Noetherian and
therefore the machinery of Benson, Iyengar and Krause [2] applies.

Only the last property requires additional attention. Let M be a compact
object of D(C∗(�X; k)). SinceX isp-elliptic we see thatH∗(�X; k) is Noeth-
erian. By Theorem 1.5, H∗(�X; k) is finitely generated over R. We conclude
that both Ext∗C∗(�X;k)(M,M) and H∗(M) are finitely generated over R. The
final property now follows from [2, Theorem 5.4].

The next proposition is only a simple observation; it is given in order to
show that the support is well behaved. For a fixed space X recall that the
category of spaces under X has for objects maps f : X→ Y and morphisms
are commuting triangles. We consider the subsets of a given set as a category
with morphisms being inclusions.
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Proposition 2.4. Let X be a p-finite p-elliptic pointed space and let k =
Z/p. Then the support defined in Corollary 1.7 induces a contravariant functor

� :

{
Pointed connected
spaces under X

}op

−→ {
subsets of SpecHH ∗(C∗(X; k))}

where �(f : X → Y ) = suppHH ∗(C∗(X;k)) C∗(�Y ; k) and C∗(�Y ; k) is a
C∗(�X; k)-module via the map C∗(�f ; k).

Note that for spaces Y under X such that C∗(�Y ; k) is compact in
D(C∗(�X; k)) the proposition is obvious, since in this case the support is
simply the support of H∗(�Y ; k).

To prove Proposition 2.4 we must understand a little more about the con-
struction of support. For the rest of this section we fix a prime p, set k = Z/p,
let D denote the derived category of C∗(�X; k) and letR = HH ∗(C∗(�X; k)).

For every prime ideal � ∈ SpecR, Benson, Iyengar and Krause [2] construct
a triangulated functor 	� : D→ D which preserves coproducts. The support
of an object M ∈ D is defined by

suppR M = {� ∈ SpecR | 	�M �= 0}.
Recall that a localizing subcategory of D is a full triangulated subcategory
closed under coproducts. The localizing subcategory generated by an object is
the minimal localizing subcategory containing that object. Since 	� preserves
coproducts then the inverse image under 	� of a localizing subcategory is a
localizing subcategory.

Proof of Proposition 2.4. Let f : X → Y and g : X → Z be pointed
connected spaces underX and let h : Y → Z be a map of spaces underX. We
must show that

suppR C∗(�Z; k) ⊂ suppR C∗(�Y ; k).
It is a simple exercise to show that C∗(�Z; k) lies in the localizing subcat-

egory of D generated by C∗(�Y ; k). It follows that for every prime � ∈ SpecR
the object 	�C∗(�Z; k) is contained in the localizing subcategory generated
by 	�C∗(�Y ; k).
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3. Model category preliminaries

3.1. The category of dg-k-modules

By a k-module we mean a differential graded k-module, in other words a Z-
graded chain complex of k-vector spaces. Following Dwyer [12], a k-module
concentrated in degree 0 will be referred to as a discrete k-module. A map of
k-modules is just a chain map.

The category of k-modules has a cofibrantly generated model category
structure described by Hovey in [19, 2.3]. In this model category structure
the weak equivalences are quasi isomorphisms and the fibrations are degree-
wise surjections. In addition, this is a symmetric monoidal model category
[19, Proposition 4.2.13], with the monoidal structure being the usual tensor
product⊗ of chain complexes over k. A monoid with respect to⊗ is simply a
dga.

Note that we define the suspension of a k-moduleX to be�X = (�k)⊗X.

3.2. The category of A-modules

Fix a dgaA over a field k. SinceA is a monoid with respect to⊗ one can define
the category of left A-modules as in [22]. We shall describe these explicitly.
An A-module a differential graded left A-module. A morphism of A-modules
f : M → N is a morphism of chain complexes of degree zero which commutes
with the action ofA. The resulting category ofA-modules is clearly an abelian
category.

The category of A-modules has a Quillen model category structure where
the weak equivalences are quasi-isomorphisms and fibrations are degreewise
surjections, see [22, Theorem 4.1]. Hence every object is fibrant in this model
category structure. The derived category of A-modules, denoted D(A), is the
homotopy category of this Quillen model category. As is well known, D(A) is
a triangulated category and a short exact sequence of A-modules induces an
exact triangle in D(A), since it is a homotopy fibration sequence. We define
ExtnA(X, Y ) to be homD(A)(�

−nX, Y ).
Since ⊗ is symmetric, given a dga A we can define its opposite Aop, and

Ae = A ⊗ Aop is also a dga. An A-bimodule is simply an Ae-module, and
thus the derived category ofA-bimodules is D(Ae). When consideringA as an
Ae-module we always mean the obvious bimodule structure on A (there can
be other bimodule structures, e.g.A⊗ k ∼= A, but they will play no part in this
paper).

The category of A-bimodules has a tensor product −⊗A−. This tensor
product is not symmetric and its unit A is not cofibrant. Nevertheless there is
a monoidal structure −⊗L

A− on the derived category of bimodules.
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3.3. Cones and cylinders

The cone of a mapX→ Y ofA-modules is theA-module Cf = (�X�⊕Y �, d)
where d = (−dX, f + dY ). The map Y → coker f factors through a natural
map cf : Y → Cf whose cokernel is�X. We write CX for C1X and cX for c1X .
In fact, CX = (Ck)⊗X and the map CX→ �X is simply (Ck→ �k)⊗X.

From [22] and [19, 2.3] we learn that the generating cofibrations for A-
modules are I = {�nA → C�nA} and the generating acyclic cofibrations
are J = {0 → C�nA}. From this one easily sees that for any cofibrant
A-module X, the map X → CX is a cofibration. Since Cf is the pushout

of CX ← X
f−→ Y we see that Y → Cf is a cofibration whenever X is

cofibrant.

Remark 3.4. It is easy to see that an A-module X is in I -cell [19, Defini-
tion 2.1.9] if and only if X is a semi-free A-module [15]. Hence whenever X
is cofibrant then X is a retract of a semi-free A-module.

Given anA-moduleX we define the cylinder ofX to beX∧ I = C(X
(1,1)−→

X⊕X). There are obvious mapsX⊕X→ X∧I → X. It is a simple exercise
to show that wheneverX is cofibrant thenX∧ I is a very good cylinder object
forX [11, Definition 4.2], i.e.X⊕X→ X∧I is a cofibration andX∧I → X

is an acyclic fibration.

4. Differential graded preliminaries

4.1. Realization of simplicial A-modules

The construction we name realization is simply the homotopy colimit of a
simplicial A-module. There are other well known choices for this homotopy
colimit, we have chosen one whose good properties are easy to prove.

Definition 4.2. Let X(•) be a simplicial A-module, thus each X(n) is an
A-module with the face maps di : X(n)→ X(n−1), 0 ≤ i ≤ n being A-module
morphisms (we will only concern ourselves with the face maps). Define the
realization of X(•) to be the A-module |X(•)| whose underlying graded A�-
module is ⊕

p

(�pX(p))
�

with differential ∂ given by

∂|
�pX

�

(p)
= (−1)p∂X(p) +

p∑
i=0

(−1)idi .

It is not difficult to see that |X(•)| is anA-module. Thus, realization is a functor
from simplicial A-modules to A-modules.



194 shoham shamir

This realization is none other than the total complex of the double complex
generated fromX(•), where the additional differential is simply

∑p

i=0(−1)idi .

Definition 4.3. Given an A-module M the constant simplicial A-module
M(•) is given by M(n) = M for all n and all maps are the identity map. It is
easy to see that the realization of the constant simplicial A-moduleM(•) has a

natural equivalence |M(•)| �−→ M .

4.4. The bar construction

The (unnormalized two-sided) bar construction provides a model for the de-
rived tensor product of a right A-module with a left A-module. We recall this
construction next.

Definition 4.5. LetM be a right A-module and letN be a left A-module.
The simplicial A-module B(•)(M,A,N) is

B(t)(M,A,N) = M ⊗k A⊗t ⊗k N
where A⊗t = A⊗k · · · ⊗k A︸ ︷︷ ︸

t times

. The face maps are

di =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ηM ⊗ 1t−1
A ⊗ 1N i = 0

1M ⊗ 1i−1
A ⊗ μ⊗ 1t−i−1

A ⊗ 1N 0 < i < t

1M ⊗ 1t−1
A ⊗ ηN i = t

whereμ : A⊗A→ A is the multiplication map and ηM and ηN are the module
structure maps ηM : M ⊗A→ A and ηN : A⊗N → N . We have no use for
the degeneracy maps and so we forgo their description. The bar construction
is the realization |B(•)(M,A,N)| which we shall denote by M �N .

WhenM andN areA-bimodules thenM�N is again anA-bimodule, with
the left A-action coming from the left A-action on M and the right A-action
coming from the right A-action on N . The following is well known.

Lemma 4.6. LetM be a right A-module and let N be a left A-module, then
M � N is a model for the derived tensor product M ⊗L

A N and there exists a
natural map M �N → M ⊗A N .

Proof. We shall only specify the natural map mentioned in the lemma.
Note that M ⊗A N is the coequalizer of d0, d1 : M ⊗A⊗N →→ M ⊗N . It is
now obvious how to define a natural map of simplicial modules

B(•)(M,A,N)→ (M ⊗A N)(•).
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The natural map we are after is then the composition

|B(•)(M,A,N)| → |(M ⊗A N)(•)| ∼−→ M ⊗A N.

Remark 4.7. A generic element of M � N is denoted by m[a]n, where
m ∈ M , [a] = [a1| · · · |ap] ∈ A⊗p and n ∈ N . The natural map M � N →
M ⊗A N is then

m[a]n �→
{
m⊗ n p = 0,

0 otherwise.

4.8. Properties of the bar construction

We show that the bar construction is associative and has maps which can play
the role of unit maps, although they are not isomorphisms.

Definition 4.9. Let L, M and N be Ae-modules. There is a natural iso-
morphism of Ae-modules α : (L � M) � N → L � (M � N) which we
now describe. A generic element of (L�M)� N is denoted by (l[a]m)[b]n
where l ∈ L, m ∈ M , n ∈ N and [a] = [a1| · · · |ap] ∈ A⊗p and [b] =
[b1| · · · |bq] ∈ A⊗q . Note that the degree of [a] is deg a1 + · · · + deg ap while
the degree of l[a]m is deg l+deg[a]+degm+p and the degree of (l[a]m)[b]n
is deg l + deg[a] + degm + p + deg[b] + deg n + q. The isomorphism α is
given by

(l[a]m)[b]n �→ (−1)(deg l+deg[a]+p)q l[a](m[b]n).

Roughly speaking, the sign comes from interchanging the order in which we
realize the bisimplicial Ae-module B(•)(B(•)(L,A,M),A,N).

Proof of the following lemma is a simple calculation of signs and degrees
and is therefore omitted.

Lemma 4.10. The bar construction � together with the associativity iso-
morphism α satisfy the associativity diagram (5) in [20, VII.1].

Definition 4.11. Define the left unit map elM : A �M → M to be the

compositionA�M ∼−→ A⊗AM ∼=−→ M . Clearly this map is an equivalence.
We define the right unit map erM : M�A→ A similarly. It is easy to see that
elA = erA : A� A→ A. We will usually denote both units by e. We caution
the reader that these unit maps do not satisfy diagram (7) from [20, VII.1].

The following properties are clear.

Lemma 4.12. The bar construction preserves equivalences and short exact
sequences in either variable. The bar construction is bilinear in the following
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sense: let f, g : M → N and h : X → Y be maps of A-bimodules then
(f + g)� h = (f � h)+ (g � h) and h� (f + g) = (h� f )+ (h� g).

4.13. Signs

For k-modulesX andY there are natural isomorphisms�(X⊗Y ) ∼= (�X)⊗Y
and �(X ⊗ Y ) ∼= X ⊗ (�Y). The first isomorphism is simply �(x ⊗ y) �→
(�x)⊗ywhile the second isomorphism is�(x⊗y) �→ (−1)|x|x⊗(�y). These
standard isomorphisms induce in an obvious way isomorphisms ofAe-modules
�(X� Y ) ∼= (�X)� Y and �(X� Y ) ∼= X� (�Y). From now on these are
the isomorphisms we shall use (at times implicitly) whenever we consider a
map ofAe-modulesX⊗(�Y)→ M as an element of Ext0

Ae(�(X�Y ),M) =
Ext−1

Ae (X � Y,M).
Similarly there are standard natural isomorphisms (CX)⊗Y ∼= C(X⊗Y ) ∼=

X ⊗ (CY ) which give a commutative diagram

C(X)⊗ Y ∼=←−−−→ C(X ⊗ Y ) ∼=←−−−→ X ⊗ (CY )

�(X)⊗ Y ∼=←−−−→ �(X ⊗ Y ) ∼=←−−−→ X ⊗ (�Y).
Now consider the pushout Q = CX

∐
X CX. Clearly Q is equivalent to

�X. Indeed there are two natural equivalences l : Q → CX
∐
X 0 = �X

and r : Q→ 0
∐
X CX = �X coming from maps of the appropriate pushout

diagrams. It is also easy to see there is a natural map ξ : �X → Q such that
lξ = −1 while rξ = 1.

Now letP = (CX)⊗Y ∐
X⊗Y X⊗(CY ), then similarly there are two natural

equivalences l : P → (�X)⊗ Y and r : P → X⊗ (�Y) coming from maps
of the appropriate pushout diagrams. Combining the map ξ mentioned above
with the various standard isomorphisms yields maps

�(X⊗Y ) −→ C(X⊗Y )
∐
X⊗Y

C(X⊗Y ) ∼=−→ (CX)⊗Y
∐
X⊗Y

X⊗ (CY ) = P,

we denote this composition by ζ . Clearly, rζ is the standard isomorphism
while lζ is -1 times the standard isomorphism. Moreover, there is the following
natural short exact sequence

�(X ⊗ Y ) C�(X ⊗ Y ) �2(X ⊗ Y )
ζ ∼=

P −−−−−−→ CX ⊗ CY −−−−→�X ⊗�Y
where the rightmost vertical isomorphism is the standard one.
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These properties extend to the bar construction � in an obvious manner,
and so we give the following lemma without proof.

Lemma 4.14. Let X and Y be Ae-modules. Then there exists a natural
morphism of short exact sequences of Ae-modules

�(X � Y )−−−−−−−−−→ C�(X � Y ) �2(X � Y )

ζ ∼=

(CX)� Y
∐
X�Y X � (CY ) CX � CY �X ��Y

where the rightmost vertical map is the standard isomorphism. In addition, the

composition �(X� Y ) ζ−→ (CX)� Y
∐
X�Y X� (CY )→ X� (�Y) is the

standard isomorphism, while �(X� Y )
ζ−→ (CX)� Y

∐
X�Y X� (CY )→

(�X)� Y is −1 times the standard isomorphism.

Remark 4.15. The signs here are analogous to the topological choice of
orientation on the boundary of a manifold, compare [8, Remark 2.2].

5. Construction of the spectral sequence

5.1. Filtering the dga

Let J (n) to be the sub-complex

0 −→ · · · −→ 0 −→ An −→ An+1 −→ An+1 −→ · · ·
of A. Clearly J (n) is an A-bimodule and we have a filtration of A by A-
bimodules

(1) · · · −→ J (n)
ι−→ J (n− 1)

ι−→ · · · −→ J (0) = A.
There are also short exact sequences of A-bimodules

(2) 0 −→ J (n+ 1)
ι−→ J (n)

θ−→ �−nAn −→ 0.

The tower (1) induces morphisms
(3)
· · · −→ Ext∗Ae(A, J (n))

ι−→ Ext∗Ae(A, J (n− 1)) −→ · · · −→ Ext∗Ae(A,A)

and the short exact sequences (2) induce long exact sequences sequences:

(4) · · · −→ ExttAe (A, J (n+ 1))
ι−→ ExttAe (A, J (n))

θ−→ ExttAe (A,�
−nAn) κ−→ Extt+1

Ae (A, J (n+ 1)) −→ · · ·
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The indeterminacy of the connecting homomorphism can cause us trouble
when trying to work out signs. Therefore we define κ : �−nAn→ �J(n+ 1)
to be the morphism in D(Ae) represented by the obvious maps �−nAn →
Cθ

∼←− �J(n+ 1).

5.2. The spectral sequence

The spectral sequence we build shall be homologically graded, hence we set:

D1
p,q = Ext−p−qAe (A, J (−p))
E1
p,q = Ext−p−qAe (A,�pA−p) = Ext−qAe (A,A

−p).

The morphisms κ , ι and θ now become

E1
p,q

κ−→ D1
p−1,q

D1
p,q

ι−→ D1
p+1,q−1

D1
p,q

θ−→ E1
p,q .

Together these yield an exact couple which gives rise to the desired spectral
sequence (Er, dr).

Lemma 5.3. Let A be a coconnective augmented k-dga. Then the spectral
sequence constructed above conditionally converges (see [5, Definition 5.10])
to Ext−p−qAe (A,A).

Proof. To prove the lemma we need to extend our filtration ofA by setting
J (−p) = A for all p > 0. Now we have a similar spectral sequence, only
D1
p,q = Ext−p−qAe (A,A) for p > 0 (this leaves the E1-term unchanged).
Fix an index q and consider the tower of graded abelian groups M(p) =

Hq(J (p)). This tower satisfies the trivial Mittag-Leffler condition and there-
fore limp M(p) = lim1M(p) = 0. From this we conclude that the homotopy
limit holimp J (p) is equivalent to zero. Since

holimp BHomAe(A, J (p)) � BHomAe(A, holimp J (p)) � 0,

then by a Milnor type short exact sequence (see for example [5, Theorem 4.9])
we see that limp→−∞D1

p,∗ = lim1
p→−∞D1

p,∗ = 0. Thus our spectral sequence

converges conditionally to colimp→∞D1
p,∗ = Ext−p−qAe (A,A).
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6. The multiplicative structure

6.1. The pairing on the filtration

The multiplication map A⊗k A→ A yields an associative pairing

J (n)⊗k J (m) φn,m
J (n+m).

Note that the maps φn,m are maps of A-bimodules, where the bimodule struc-
ture on J (n) ⊗k J (m) comes from the left A-module structure on J (n) and
the right A-module structure on J (m). This is not sufficient, however, since
we need to construct a pairing of A-bimodules:

J (n)� J (m)
ψn,m

J (n+m).
Let J (n + m)(•) be the constant simplicial bimodule J (n + m). Consider

the map of simplicial of A-bimodules

ψ(•),n,m : B(•)(J (n), A, J (m)) −→ J (n+m)(•)
which is given by the obvious multiplication map

ψ(t),n,m : J (n)⊗k A⊗t ⊗k J (m) −→ J (n+m).
This results in a map of simplicialA-bimodules because the morphismsψ(t),m,n
commute with the face (and degeneracy) maps of B(•)(J (n), A, J (m)).

Upon taking realization of both simplicial bimodules we get a map
|ψ(•),n,m| : J (n) � J (M) → |J (n + m)(•)|. Composing this map with the

natural weak equivalence |J (n+m)(•)| �−→ J (n+m) yields

ψn,m : J (n)� J (M)→ J (n+m),
which is the pairing we need. We will omit the subscripts n and m whenever
they are clear from the context. Note that ψ0,0 is the unit map e.

Lemma 6.2.
ψ(ι� 1) = ιψ = ψ(1 � ι).

Proof. We will only showψ(ι�1) = ιψ , the proof of the second equality
being similar. Clearly, the diagram below commutes

B(p)(J (s), A, J (t))
ι⊗1−−−−−−→ B(p)(J (s − 1), A, J (t))

J (s + t) ι−−−−−−−−−−−−−−→ J (s + t − 1),
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which implies the following diagram of A-modules commutes

J (s)� J (t) ι�1−−−−−−→ J (s − 1)� J (t)

ψs,t ψs−1,t

|J (s + t)(•)| |ι|−−−−−−→ |J (s + t − 1)(•)|
� �

J (s + t) ι−−−−−−−−−→ J (s + t − 1).

6.3. The pairing on D1

We now construct a pairing on the D1 term of the exact couple. Define maps

ψ̄n,m : Ext∗Ae(A, J (n))⊗ Ext∗Ae(A, J (m)) −→ Ext∗Ae(A, J (n+m))
in the following way: given f ∈ Ext−sAe (A, J (n)) and g ∈ Ext−tAe (A, J (m)) let
ψ̄n,m(f ⊗ g) be the composition

�s+tA
∼=−→ �sA��tA

f�g
J (n)� J (m)

ψn,m
J (n+m)

in D(Ae), where the leftmost isomorphism is e−1. Bilinearity of the bar con-
struction � allows us to extend this to a pairing on Ext∗Ae(A, J (n)) ⊗k
Ext∗Ae(A, J (m)).

For what follows we shall need a concrete representation of this pairing on
the category of Ae-modules. First, we must fix a cofibrant replacement of A
as an Ae-module. Since A � A is cofibrant we define e : A � A → A to be
our cofibrant replacement. We will usually denote A � A by Ã. An element
f ∈ Ext−sAe (A, J (n)) is now represented by the following maps ofAe-modules:

�sA
e←− �sÃ

f̃−→ J (n), where f̃ represents f e−1. We shall usually omit e
from the description, simply saying f̃ represents f .

Given another element g ∈ Ext−tAe (A, J (m)) we choose a map of Ae-
modules g̃ : �tÃ→ J (m) representing g. Now we have the following maps
of Ae-modules

�s+tA e←−−∼ �sA��tA e�e←−−−∼ �sÃ��tÃ

f̃�g̃
J (n)� J (m)

ψn,m
J (n+m).

It is easy to see that ψ̄n,m(f ⊗ g) is equal to the composition ψn,m(f̃ � g̃)(e�
e)−1e−1 in D(Ae).
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From now on when we say that a map f : Ã�Ã→ X represents an element

of Ext∗Ae(A,X)we implicitly refer to the diagramA
e←− Ã e�e←− Ã�Ã f−→ X.

Thus, we have just shown that ψn,m(f̃ � g̃) represents ψ̄n,m(f ⊗ g).
Lemma 6.4. The pairing ψ is associative and so is the induced pairing ψ̄ .

Proof. To show that ψ is associative we must show the following diagram
commutes:

J (l)� (J (m)� J (n))
J (l)�ψm,n−−−−−−−−−→ J (l)� J (m+ n)

∼=α

(J (l)� J (m))� J (n)

ψl,m�J (n)

ψn,m

J (l +m)� J (n)
ψl,m+n−−−−−−−−−−−−→ J (l +m+ n).

Let [a] = [a1| · · · |ap] ∈ A⊗p, [b] = [b1| · · · |bp] ∈ A⊗q and let j1[a](j2[b]j3)

be a generic element in J (l) � (J (m) � J (n)). A simple calculation shows
that

ψ(1 � ψ)(j1[a](j2[b]j3)) =
{
j1j2j3 p = q = 0

0 otherwise

= ψ(ψ � 1)α(j1[a](j2[b]j3))

To show that ψ̄ is also associative, we must show that our choice of iso-
morphismA ∼= A�A in D(Ae) is coassociative. This reduces to showing that
A � A

e−→ A is associative. Since e = ψ0,0, it is indeed associative by the
first part of the proof.

Lemma 6.5. The pairing ψ̄0,0 is the standard multiplication on HH ∗(A).

Proof. This is well known and so we shall only sketch the proof, which uses
the Eckmann-Hilton argument. The standard multiplication on Ext∗Ae(A,A) is
done by composition of arrows, denoted f ◦ g. It is easy to show that the
identity morphism 1A is a unit also for ψ̄ . Thus, for any f ∈ HH ∗(A)

f ◦ 1 = 1 ◦ f = f = ψ̄(1⊗ f ) = ψ̄(f ⊗ 1).

It is also a simple exercise to show that for any f1, f2, g1, g2 ∈ HH ∗(A)
ψ̄((f1 ◦ f2)⊗ (g1 ◦ g2)) = ψ̄(f1 ⊗ g1) ◦ ψ̄(f2 ⊗ g2).

Thus, by the Eckmann-Hilton argument both multiplications are the same and
are associative and graded-commutative.
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6.6. The multiplication on E1

The multiplication on theE1 term arises from the pairingψ in a standard way,
which we will now follow (compare [8]). For convenience we shall denote the
A-bimodule �−nAn by A n.

Lemma 6.7. There is a short exact sequence of A-bimodules

0 −→
(
J (n)� J (m+ 1)+
J (n+ 1)� J (m)

)
−→ J (n)� J (m) −→ A n � Am −→ 0

where J (n) � J (m + 1) + J (n + 1) � J (m) is the sum as subcomplexes of
J (n)� J (m).

Proof. There are short exact sequences:

0 −→
(
B(t)(J (n), A, J (m+ 1))+
B(t)(J (n+ 1), A, J (m))

)

−→ B(t)(J (n), A, J (m)) −→ B(t)(A
n, A,Am) −→ 0

which yield the desired short exact sequence after taking realization.

It is a simple observation that J (n) � J (m + 1) + J (n + 1) � J (m) is in
fact the pushout

J (n+ 1)� J (m)
∐

J (n+1)�J (m+1)

J (n)� J (m+ 1).

The following lemma is an immediate consequence of this observation and the
fact that ψ commutes with ι.

Lemma 6.8. The following diagram of A-bimodules commutes
(
J (n)� J (m+ 1)+
J (n+ 1)� J (m)

)
J (n)� J (m)

ψ ′n,m
ψn,m

J (n+m+ 1) ι−−−−−−−→ J (n+m)
where ψ ′ is the obvious map of subcomplexes.

Definition 6.9. Define a pairing μn,m : A n � Am → A n+m of A-
bimodules to be the pairing induced from the following diagram where both
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rows are short exact sequences of complexes:(
J (n)� J (m+ 1)+
J (n+ 1)� J (m)

)
J (n)� J (m) A n � Am

ψ ′n,m
ψn,m μn,m

J (n+m+ 1) −−−−−−−→ J (n+m) −−−−−−−→ A n+m.

The multiplication on theE1 term follows easily from the pairing above. Define

μ̄n,m : Ext∗Ae(A,A n)⊗k Ext∗Ae(A,Am)→ Ext∗Ae(A,A n+m)

as the composition μn,m(−�−)e−1.

Lemma 6.10. The pairing μ is associative and so is the multiplication μ̄.

Proof. That μ is associative can be deduced from Lemma 6.4, but a direct
calculation is much easier and makes the associativity obvious. As is the proof
of Lemma 6.4, associativity of μ̄ is a consequence of the associativity of μ
and of e.

6.11. Representing multiplication on E1

We first show how to represent certain elements in E1. The following lemma
is well known in many settings, see for example [8, Lemma 3.3].

Lemma 6.12. Let x ∈ ExtsAe (A,Ap) and a ∈ Exts+1
Ae (A, J (p + n + 1))

such that κx = ιna. Then there exists a commutative diagram of short exact
sequences of Ae-modules

�−s−1Ã C�−s−1Ã �−sÃ

w f x̃

J (p + 1) ι−−−−→ J (p) θ−−−−−→ Ap

and a map of Ae-modules ã : �−s−1Ã→ J (p + n+ 1) such that

(1) ã represents a,

(2) w = ιnã and so w represents κx,

(3) x̃ represents x.

Proof. The case for n = 0 is well known and therefore omitted. As in
the proof of [8, Lemma 3.3], the case for n > 0 is done using the homotopy
extension property and we shall only sketch the argument. Recall that for an
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Ae-module M we denote by M ∧ I the mapping cone of M
(1,−1)

M ⊕M .
Let the two obvious maps M → M ∧ I be denoted by io and i1. Since Ã and
CÃ are cofibrant, Ã∧ I and CÃ∧ I are very good cylinder objects for Ã and
CÃ respectively (see 3.3).

So suppose we have foundw : �−s−1Ã→ J (p+1) and f : C�−s−1Ã→
J (p) as for the case n = 0. Choose a map ã : �−s−1Ã→ J (p+n+1)which
represents a. Since ιã and w need not be equal, we need to replace f by an
equivalent map f ′ which will make the following diagram commute

�−s−1Ã C�−s−1Ã

ιã f ′

J (p + 1) ι−−−−→ J (p).

Equivalence of ιã andw implies there is a map h : �−s−1Ã∧I → J (p+1)
which is a homotopy between these two maps, thus hi1 = ιa and hi0 = w.
Let Y be the pushout of the diagram

�−s−1Ã ∧ I i0←−−− �−s−1Ã C�−s−1Ã

(one can liken Y to Ã× [0, 1]∪Ã×{0}CÃ×{0}). Clearly there is a natural map

h′ : Y → J (p). Since Y → C�−s−1Ã ∧ I is a cofibration, we can extend h′
to a homotopy h′′ : C�−s−1Ã ∧ I → J (p). Now h′′i1 : C�−s−1Ã→ J (p)

is the map f ′ we need.

Lemma 6.13. Suppose x ∈ Ext−s−1
Ae (A,Ap) and y ∈ Ext−t−1

Ae (A,A u) are
represented by diagrams

�sÃ C�sÃ �s+1Ã

w f x̃

J (p + 1) ι−−→ J (p) θ−−−−→ Ap

�tÃ C�tÃ �t+1Ã

z g ỹ

J (u+ 1) ι−−→ J (u) θ−−−−→ A u.

Then κ(xy) is represented by

ψ ′p,u

(
f � z

∐
w�z

w � g

)
.
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Proof. The proof is simply given by the following commutative diagram

C�sÃ��tÃ
∐

�sÃ��t Ã

�sÃ� C�tÃ −−→ C�sÃ� C�tÃ→ �s+1Ã��t+1Ã

f�z
∐
w�z w�g f�g x̃�ỹ

J (p)� J (u+1)
∐

J (p+1)�J (u+1)
J (p+1)� J (u)−−→ J (p)� J (u) −−−−→ Ap � A u

ψ ′
ψ μ

J (p+u+1) −−−−−−−−−−−−→ J (p+u) −−−−−−−→ Ap+u.

Note that we are implicitly using here the natural isomorphisms described in
Lemma 4.14.

6.14. The multiplicative property of the spectral sequence

We shall employ a criterion of Massey from [21] to show that the spectral se-
quence is multiplicative. Note that translating the proof of [8, Proposition 5.1]
to our setting would work equally well. Translated to our setting, Massey’s
criterion is:

Theorem 6.15 (Massey [21]). Suppose the following conditions hold for
the spectral sequence in Section 5.

(1) E1 is a graded algebra.

(2) For every x, y ∈ E1 and a, b ∈ D1 such that κ(x) = ιn(a) and κ(y) =
ιn(b) there exists c ∈ D1 such that κ(xy) = ιn(c) and θ(c) = θ(a)y +
(−1)|x|xθ(b).

Then the spectral sequence is multiplicative.

Proposition 6.16. The pairings μ and ψ defined above make the spectral
sequenceEr∗,∗ into a multiplicative spectral sequence. Namely for every r ,Er∗,∗
has an induced multiplication for which dr is a derivation.

Proof. In light of Lemma 6.10 the first condition of Massey’s criterion
reduces to verifying that our grading choice is correct, which is easily checked.

For the second condition we represent x and y by diagrams as in Lem-
ma 6.12:

�sÃ C�sÃ �s+1Ã

w f x̃

J (p + 1) ι−−→ J (p) θ−−−−→ Ap

�tÃ C�tÃ �t+1Ã

z g ỹ

J (u+ 1) ι−−→ J (u) θ−−−−→ A u
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where x̃ represents x and ỹ represents y. In addition, by the same lemma, there
are maps ã : �sÃ→ J (p+n+1) and b̃ : �tÃ→ J (u+n+1) representing
a and b such that w = ιnã and z = ιnb.

Denote by P the pushout

J (p)� J (u+ n+ 1)
∐

J (p+n+1)�J (u+n+1)

J (p + n+ 1)� J (u)

and by B the pushout

C�sÃ��tÃ
∐

�sÃ��t Ã

�sÃ� C�tÃ.

Let ψ ′′ be the map

ψp,u+n+1

∐
ψp+n+1,u+n+1

ψp+n+1,u : P → J (p + u+ n+ 1).

We can now define a map c̃ : B → J (p + u+ n+ 1) by

c̃ = ψ ′′
(
f � b̃

∐
ã�b̃

ã � g

)
.

We shall show that the morphism c ∈ Ext−s−t−1
Ae (A, J (p+ u+ n+ 1)) which

is represented by c̃ is the desired element in D1. As before, we are implicitly
using the isomorphism B ∼= �s+t+1(Ã� Ã) of Lemma 4.14.

It is easy to verify that the following diagram commutes

B

f�b̃
∐
ã�b̃ ã�g

(f�z
∐
w�z w�g)

P ιn−−−−−−→ J (p)� J (u+ 1)
∐

J (p+1)�J (u+1)
J (p + 1)� J (u)

ψ ′′
ψ ′

J (p + u+ n+ 1) ιn−−−−−−−−−−−−−→ J (p + u+ 1).

Hence, by Lemma 6.13, we see that κ(xy) = ιnc.
It remains to show that θ(c) = θ(a)y+(−1)|x|xθ(b). There is the following

commutative diagram

J (p)� J (u+n+1) ιn+1⊗1←−−−− J (p+n+1)� J (u+n+1) 1⊗ιn+1−−−→ J (p+n+1)� J (u)

Ap � J (u+n+1)←−−−−−−−−−−−−− 0 −−−−−−−−−−−−−→ J (p+n+1)� A u.
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Taking the pushout of each row yields a map τ : P → Ap � J (u + n +
1)⊕ J (p+ n+ 1)� A u. We leave it to the reader to check that the following
diagram commutes

B
f�b̃

∐
ã�b̃ ã�g−−−−−−−−−→ P τ−−−−−−→

(
Ap � J (u+ n+ 1)⊕
J (p + n+ 1)� A u

)

1�θ⊕θ�1

(
Ap � A u+n+1 ⊕
Ap+n+1 � A u

)
c̃

ψ ′′

μ+μ

J (s + t + n+ 1) θ−−−−−−−→ As+t+n+1.

From this diagram one sees that θ c̃ is equal toμ(θã�ỹ)+μ(x̃�θb̃). Using the
sign convention from Lemma 4.14 we see that θ(c) = θ(a)y + (−1)|x|xθ(b).

7. The Hochschild cohomology shearing map

In this section we give three equivalent definitions for the Hochschild cohomo-
logy shearing mapping

χ : HH ∗(A) −→ Ext∗Ae(A, k).

This morphism is well known and there is no claim to originality here. How-
ever, this is only one possible variant of the shearing map; a more thorough
discussion can be found in [1].

7.1. Two descriptions of the shearing map

Let Al denote the dga A ⊗ k and let λ : Ae → Al be the obvious map
of dgas. Clearly Al is isomorphic to A. The map λ induces an adjunction
F : Ae-mod →← Al-mod : G where the left adjoint is F(M) = M ⊗A k and
the right adjoint is G(N) = N ∼= N ⊗ k with the left action of A on N and
the right action of A on k.

Since G preserves fibrations and weak equivalences, F and G constitute
a Quillen pair and thereby yield a pair of adjoint functors on the derived
categories

F : D(Ae)→← D(Al) : G .

It is easy to see that F (A) is isomorphic in D(Al) to k.

Definition 7.2. Choose an isomorphism F (A)
ϕ−→ k in D(Al). Define

the shearing map for A to be the morphism χ : Ext∗Ae(A,A) → Ext∗Al (k, k)
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given by the composition

Ext∗Ae(A,A)
F−→ Ext∗Al (F (A),F (A))

p−→ Ext∗Al (k, k),

wherep(f ) = ϕf ϕ−1. We note two immediate properties of the shearing map.
First, it is clear that the shearing map is a map of graded rings. Second, when
A is simply connected the definition is independent of the choice of ϕ because,
in this case, the automorphism group of k in D(Al) is the commutative group
k∗, which is also central in Ext∗Al (k, k).

Let ηA : A → GF (A) be the unit map of this adjunction. We can now
define another map α : Ext∗Ae(A,A)→ Ext∗Al (k, k), as the composition

Ext∗Ae(A,A)
ηA−→ Ext∗Ae(A,GF (A)) ∼= Ext∗Al (F (A),F (A)) ∼= Ext∗Al (k, k),

where the left isomorphism comes from the adjunction. As above, when A is
simply connected the map α does not depend on our choice of isomorphism
F (A) ∼= k. From classical category theory we learn that the map Ext∗Ae(A,A)

F−→ Ext∗
Al
(F (A),F (A)) is equal to the composition Ext∗Ae(A,A)

ηA−→
Ext∗Ae(A,GF (A))

∼=−→ Ext∗
Al
(F (A),F (A)). Hence we conclude that α and

χ are equal (for the same isomorphism ϕ).

7.3. The unit map

For what follows we need to identify the unit map ηA. First we define a map
μ : k � k → k to be the composition of the natural map k � k → k ⊗A k
from Lemma 4.6 with the isomorphism k ⊗A k ∼= k. One can think of μ as
extending the pairing μp,q of Definition 6.9.

Next we choose a model for the derived functor of F , set

LF(M) = F(M � A) ∼= M � k,

we leave it to the reader to ascertain this indeed yields the derived functor of
F . Now LF(A) = F(A � A) and GF(A � A) = A � k and the unit map
A�A→ GF(A�A) is clearly 1��. Commutation of the following diagram

A� A
1��

A� k

ψ μ(��1)

a ι−−−−−−→ k

shows that χ is equal to the composition

Ext∗Ae(A,A)
�−→ Ext∗Ae(A, k) ∼= Ext∗Al (k, k).
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Since the map I : Ext∗Ae(A,A) → Ext∗Al (k, k) defined by [17] is induced by
Ext∗Ae(A, �) we have proven

Lemma 7.4. The shearing map χ : Ext∗Ae(A,A)→ Ext∗Al (k, k) is equal to
the morphism I defined in [17].

In addition we can now identify the morphism adjoint to a given element
g ∈ Ext∗Al (k, k). The map μ(� � 1) : A � k → k, is clearly a cofibrant
replacement of k. We represent g by the map g̃ : A� k→ �nk. By classical
category theory the adjoint map to g̃ is g(1 � �) : A� A→ �nk.

7.5. The adjunction

To specify the adjunction we need to identify the counit map εk : FG(k)→ k

as well.

Lemma 7.6. The counit εk : FG(k)→ k map is represented byμ : k�k→
k.

Proof. The counit map is the composition LF(G(k))
lG(k)−→ FG(k)

εk−→ k

where l is the natural map LF → F and ε is the counit for the adjunction of
F and G. Now εk is simply the isomorphism k ⊗ k ∼= k. From the definition
it is easy to see that lG(k) is μ.

Corollary 7.7.
(1) Let f ∈ Ext∗Ae(A, k) be represented by f̃ : Ã→ �nk, then the adjoint

is represented by μ(f̃ � k).

(2) Let g ∈ Ext∗Al (k, k) be represented by g̃ : A�k→ �nk, then the adjoint
is represented by g(1 � �).

7.8. The induced pairing

Since Ext∗Ae(A, k) is isomorphic to Ext∗Al (k, k), there is a graded algebra struc-
ture on Ext∗Ae(A, k). We detail this structure.

Definition 7.9. Define a pairing m : ExtiAe (A, k) ⊗ ExtjAe (A, k) →
Exti+jAe (A, k) in the following way. Let f̃ : Ã → �ik represent an element
f ∈ ExtiAe (A, k) and let g̃ : Ã→ �jk represent an element g ∈ ExtjAe (A, k).
Let m(f ⊗ g) be the morphism represented by the composition

Ã
∼

Ã� Ã
f̃�g̃

�ik ��jk
μ

�i+j k.

Lemma 7.10. Under the isomorphism Ext∗Ae(A, k) ∼= Ext∗Al (k, k) given by
the adjunction, the pairingm corresponds to the multiplication on Ext∗Al (k, k).



210 shoham shamir

Proof. By Corollary 7.7 we need first to represent the composition of
μ(f � k) with μ(g � k). One easily sees that this composition is represented
by

(∗) Ã� Ã� k
1�g̃�1

Ã��jk � k

1�μ
Ã��jk

f̃�1
�ik ��jk

μ
�i+j k.

This composition is equal to μ(1 � μ)(f̃ � g̃ � 1̃k). It is easy to see that μ
satisfies the associativity relationμ(1�μ) = μ(μ�1). This, together with the
associativity of �, shows that the composition (∗) is equal toμ(μ(f̃�g̃)�1k),
whose adjoint is μ(f̃ � g̃) by Corollary 7.7.

7.11. The third description of the shearing map

Every element x ∈ HHn(A) induces a natural transformation of functors
ζ(x) : 1D(A) → �n1D(A) which we now describe. For an A-module M the
morphism ζ(x)M is represented by

M
u←− Ã�M

x̃�M
�nÃ�M

u−→ M

where x̃ : Ã → �nÃ represents x and u = e(e � 1M). Addition and multi-
plication of elements in HH ∗(A) become addition and composition of such
natural transformations. In this way we get a map ζ of graded commutative
rings fromHH ∗(A) to the graded commutative ring of natural transformations
{1D(A) → �n1D(A)}n. This is a well known map whose target is called the
centre of D(A).

We can now define a third map HH ∗(A) → Ext∗A(k, k) by x �→ ζ(x)k . It
is easy to see this map is the shearing map as defined in Definition 7.2. From
this description it is also clear that the image of the shearing map lies in the
graded commutative centre of Ext∗A(k, k).

8. Identifying the E2-term

To identify the E2-term of the spectral sequence we must assume A is simply
connected. As we shall see, this assumption gives the differential on the E1-
term a recognizable form.

8.1. Simple connectedness

The augmentation Ae → k induces adjoint functors

F : D(Ae)←→ D(k) : G.
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By a result of Dwyer, Greenlees and Iyengar [10, Proposition 3.9] the bimodule
An is isomorphic in D(Ae) to G(V ) for some k-vector space V . But this
isomorphism is not natural. Worse still the morphisms δ = δn : An → An+1

given by the composition θκ might not be induced by morphisms in D(k).
However, whenA is simply connected we can show that the morphisms δn are
in the image of G. We start with the following well known property.

Lemma 8.2. If A is simply connected then so is Ae.

Proof. Let F be a cofibrant Ae-module and let M be a left A-module and
N be a right A-module. Hence N ⊗k M is a right Ae-module. It is easy to see
there is an isomorphism

(N ⊗k M)⊗Ae F ∼= N ⊗A F ⊗A M.

Now let P be a cofibrant replacement of k as a left A-module and let Q be a
cofibrant replacement of k as a right A-module. Then P ⊗k Q is a cofibrant
replacement of k as an Ae-module and

k ⊗Ae P ⊗k Q ∼= (k ⊗k k)⊗Ae P ⊗k Q ∼= (k ⊗A P )⊗k (Q⊗A k).

We conclude that TorA
e

∗ (k, k) ∼= TorA∗ (k, k)⊗kTorA∗ (k, k) (the tensor product of
graded vector spaces). In particular TorA

e

0 (k, k) = k if and only if TorA0 (k, k) =
k. For any coconnective augmented dgaB there is an isomorphism Ext∗B(k, k)∼=
homk(TorB−∗(k, k), k), which completes the proof.

Lemma 8.3. For every n the morphism δn : An → An+1 is isomorphic to
G(εn) for some morphism εn in D(k). The morphism εn is itself isomorphic to
the n’th differential of A.

Proof. The left adjoint F : D(Ae)→ D(k) is given by k⊗L
Ae −. Since An

is isomorphic to a direct sum of copies of k in D(Ae) we see that

H 0(F (An)) ∼= TorA
e

0 (k, A
n) ∼= An.

Note that this is only an isomorphism of k-vector spaces. To avoid confusion
let V n be a k-vector space isomorphic to H 0(F (An)). Then V n is a direct
summand of F(An). Moreover, it is easy to see that the composition An →
GF(An)→ G(V n) is an isomorphism in D(Ae).

The morphism δn induces F(δn) : F(An) → F(An+1). Utilizing the fact
that every object in D(k) is isomorphic to a direct sum of its homology groups
one gets a morphism εn : V n→ V n+1 which commutes with F(δn). Applying
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the functor G yields a commutative diagram

An −−−−→ GF(An) −−−−→ G(V n)

δn GFδn Gεn

An+1 GF(An+1) G(V n+1)

which completes the proof.

8.4. The E2-term of the spectral sequence

We start with the general case.

Lemma 8.5. LetA be a simply connected k-dga. TheE2-term of the spectral
sequence is

E2
p,q
∼= Ext−qAe (A,H

−p(A)).

IfA has bounded homology then the spectral sequence has strong convergence.

Proof. From Lemma 8.3 we see that the morphism δn : An → An+1 is
equal toG(εn) for some morphism εn : V n→ V n+1 in D(k), where V i is iso-
morphic toAi as vector spaces. One can therefore decompose V 0 asH 0(A)⊕
ε(V 0) and continuing inductively write V n as ε(V n−1)⊕Hn(A)⊕ε(V n). Ap-
plying the functorG one sees that An is isomorphic toGε(V n−1)⊕Hn(A)⊕
Gε(V n) and that these isomorphisms are compatible with the morphisms δn.

Recall that the E1-term of the spectral sequence is the cochain-complex
of graded groups E1

p,∗ = Ext−qAe (A,A−p) with the differential induced by δ.
The decompositions of An imply that the homology of this cochain-complex
is isomorphic to

Ext−qAe (A,H
−p(A)),

which is therefore the E2-term.
Assuming that H ∗(A) is bounded implies that the E2

p,q = 0 whenever
p > 0 or p < n for some fixed n. Hence the spectral sequence collapses at
some finite stage r . By the remark following [5, Theorem 7.1] we see that the
spectral sequence has strong convergence

Lemma 8.6. Suppose A is simply connected of finite type, then there is an
isomorphism of graded algebras

E2
p,q
∼= H−p(A)⊗k Ext−qA (k, k).

Proof. Let B be the differential bigraded algebra given by

Bp,q = A−p ⊗k Ext−qA (k, k) and dB(a ⊗ f ) = dA(a)⊗ f
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where dA is the given differential on A. We will show there exists a morphism
of differential bigraded algebras φ : B → E1 which induces an isomorphism
H∗(φ) : H∗(B)→ H∗(E1) = E2.

Composition of morphisms yields natural morphisms

Ext0
Ae(k, A

n)⊗k ExtiAe (A, k) −→ ExtiAe (A,A
n).

There is an obvious monomorphism An → Ext0
k(k, A

n) → Ext0
Ae(k, A

n).
Note that since Ae is simply connected, the morphism Ext0

k(k, A
n) →

Ext0
Ae(k, A

n) is in fact an isomorphism, because:

Ext0
Ae(k, A

n) ∼= Ext0
Ae(k,G(V

n)) ∼= Ext0
k(k � k, V n) ∼= Ext0

k(k, V
n).

In this way we get morphisms

λp,q : A−p ⊗k Ext−qAe (A, k) −→ Ext−qAe (A,A
−p).

Recall that there is an isomorphism ExtiA(k, k) ∼= ExtiAe (A, k). Thus we have
a morphism of graded vector spaces:

φp,q : A−p ⊗k Ext−qA (k, k) −→ E1
p,q = Ext−qAe (A,A

−p).

Since the differential on E1 is simply Ext∗Ae(A, dA) we see that φ yields a
morphism of differential bigraded vector spaces φ : B → E1.

Next we show that φ is a quasi-isomorphism. From Lemma 8.5 we see that
Hφ is the morphism

Hn(A)⊗ ExtmA(k, k) −→ ExtmAe(A,H
n(A)).

Since Hn(A) is isomorphic in D(Ae) to a finite coproduct of copies of k, this
morphism is an isomorphism.

It remains to show that φ is a morphism of graded algebras. Let k̃ be a
cofibrant replacement of k over A. Suppose given elements x ∈ A−t , u ∈ A−s
and maps y : k̃→ �nk and v : k̃→ �mk. We shall now compute the product
φ(x ⊗ y) · φ(u⊗ v).

Choose maps x : k → A−t and u : k → A−s representing the elements x
and y. Recall that Ã is a cofibrant replacement forA overAe and let a : Ã→ k̃

be a map equivalent to the augmentation map � : A→ k. From the definition
φ and Corollary 7.7 one sees that φ(x ⊗ y) is represented by the composition
xya. The product φ(x ⊗ y) · φ(u⊗ v) is then represented by the composition

(∗) Ã
∼

Ã� Ã
ay�av

�nk ��mk

x�u
�nA−t ��mA−s

μs,t
�n+mA−s−t .
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Let w : k → A−s−t be a map representing the element xu ∈ A−s−t , i.e.
w(1) = xu. We leave it to the reader to ascertain that the composition (∗)
above is equal to the composition

Ã
∼

Ã� Ã
ay�av−−−−→ �nk ��mk

μ
�n+mk w

�n+mA−s−t .

From Lemma 7.10 we see that, under the isomorphism Ext∗Ae(A, k) ∼=
Ext∗A(k, k), the composition

Ã
∼

Ã� Ã
ay�av−−−−→ �nk ��mk

μ
�n+mk

corresponds to the composition y ◦ v ∈ Ext∗A(k, k). We conclude that

φ−1(φ(x ⊗ y) · φ(u⊗ v)) = xu⊗ (y ◦ v).

Lemma 8.7. Suppose A is simply connected. Then under the isomorphism
E2

0,∗ ∼= Ext∗A(k, k), the infinite cycles in E2
0,∗ can be identified with the image

of the shearing map χ : HH ∗(A)→ Ext∗A(k, k).

Proof. Consider the trivial filtration on k given by I (0) = k and I (p) = 0
for p > 0. As the filtration of A gave a spectral sequence for ExtAe(A,A)
in Section 5, so does this filtration of k yield a spectral sequence E′rp,q for
Ext∗Ae(A, k), one which collapses at the E′1 stage. Indeed E′10,∗ = Ext∗Ae(A, k)
and is zero otherwise.

The augmentation map � : A→ k is then a map of filtered A-bimodules,
and so induces a map of the aforementioned spectral sequences. This map is
easily described on the E2-term: it is the identity map E2

0,∗ → E′20,∗ and zero
elsewhere. It follows that the infinite cycles in E2

0,∗ are the image of the map
Ext∗Ae(A,A)→ Ext∗Ae(A, k) induced by the augmentation � : A→ k. As we
saw in 7.1 this indeed gives the image of the shearing map after composing
with the adjunction isomorphism Ext∗Ae(A, k) ∼= Ext∗A(k, k).
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