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HOW TO RECOGNIZE POLYNOMIALS IN HIGHER
ORDER SOBOLEV SPACES

BOGDAN BOJARSKI, LIZAVETA IHNATSYEVA and JUHA KINNUNEN∗

Abstract
This paper extends characterizations of Sobolev spaces by Bourgain, Brézis, and Mironescu to
the higher order case. As a byproduct, we obtain an integral condition for the Taylor remainder
term, which implies that the function is a polynomial. Similar questions are also considered in the
context of Whitney jets.

1. Introduction

In this paper we study a new characterization of the higher order Sobolev
spaces Wm,p(�) which is based on J. Bourgain, H. Brézis, and P. Mironescu’s
approach [5] (see also [7]). They showed that a function f ∈ Lp(�) belongs
to the first order Sobolev space W 1,p(�), 1 < p < ∞, on a smooth bounded
domain � ⊂ Rn if and only if

(1) lim inf
ε→0

∫
�

∫
�

|f (x) − f (y)|p
|x − y|p ρε(|x − y|) dx dy < ∞,

where ρε, with ε > 0, are radial mollifiers. Moreover,

lim inf
ε→0

∫
�

∫
�

|f (x) − f (y)|p
|x − y|p ρε(|x − y|) dx dy = c

∫
�

|∇f |p dx,

where the constant c depends only on p and n. For p = 1 this gives a char-
acterization of the space of bounded variation BV(�). See also [6], [8], [11],
[16], [17], [18], [19], [22] and [21] for related results.

We extend the results of [5] and [7] to the higher order case. To characterize
the Sobolev spaces Wm,p(�), 1 < p < ∞, we use the condition

(2) lim inf
ε→0

∫
�

∫
�

|Rm−1f (x, y)|p
|x − y|mp

ρε(|x − y|) dx dy < ∞,
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where Rm−1f is a Taylor (m−1)-remainder of f , generalizing (1). For p = 1
condition (2) describes the space BVm(�) of integrable functions whose weak
derivatives of order m are signed Radon measures with finite total variation.

Condition (2) is a priori weaker than the pointwise condition

(3) |Rm−1f (x, y)| ≤ |x − y|m(af (x) + af (y)), af ∈ Lp(Rn),

characterizing Sobolev class Wm,p(Rn) as in [1] (see also (27) below).
Another variant of extension of the results of [5] and [7] to the higher order

case has been introduced in [4], where the characterization of Wm,p(�), 1 <

p < ∞, (BVm(�) for p = 1) is formulated in terms of the m-th differences.
According to this result, a function f ∈ Lp(�) belongs to Wm,p(�) if

(4) lim inf
ε→0

∫
�

∫
�

∣∣∣∣ m∑
j=0

(−1)j
(

m

j

)

f

(
(m − j)

m
x + j

m
y

)∣∣∣∣p ρε(|x − y|)
|x − y|mp

dx dy < ∞.

For smooth functions f ∈ Cm+1 the equivalence of the integrands in (2) and
(4) modulo O(|x − y|m+1) is well known. The results of the present paper and
of [4] essentially show that both integrands are equivalent in their averaged
asymptotic behaviour, for ε → 0, in the ε-neighbourhood of the diagonal
� = {x = y} in the Cartesian product � × �.

In close connection with these characterizations, H. Brézis [7] considered
conditions under which a measurable function f defined on a connected open
set � is a constant. See also [20]. In particular, he showed that if∫

�

∫
�

|f (x) − f (y)|
|x − y|n+1

dx dy < ∞,

then f is a constant function. We extend this result to the higher order case
and show that the condition∫

�

∫
�

|Rm−1f (x, y)|
|x − y|n+m

dx dy < ∞

implies that the function f , with locally integrable weak derivatives up to order
m − 1, is a polynomial of degree at most m − 1.

Condition (2) applies to Whitney jets as well. Recall that H. Whitney in
[24] gave a method to define differentiable functions on closed subsets of Rn.
His approach can be adopted to different kind of smoothness conditions. In
particular, for an (m − 1)-jet F on a subset � ⊂ Rn, defined as a collection of
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functions {fα : |α| ≤ m − 1}, fα ∈ Lp(�), we can study the meaning of (2)
using the formal Taylor remainder of order m − 1 of the jet F . The formalism
of Taylor-Whitney jets identifies in a natural way virtual derivatives, jets, with
Sobolev derivatives.

In Section 4 we show that a jet F on an open set � satisfying (2) for some
special case of mollifiers is locally a jet of a Wm,p-function. The proof uses an
approximation procedure from [1] where the Sobolev spaces are described in
terms of pointwise inequalities (3).

Notice also that a certain version of condition (2) for the jet F on Ahlfors
s-regular subsets S ⊂ Rn, n − 1 < s ≤ n, charaterizes the Lipschitz spaces
Lip(m, p, ∞, S) studied in [13]. If S supports the q-Poncaré inequality, 1 ≤
q < ∞, then the first order space Lip(1, p, ∞, S) coincides with the Hajłasz-
Sobolev space W 1,p(S) for p > q (see e.g. [25]).

2. Characterization of Sobolev spaces

Our notation is standard. For a multi-index α = (α1, . . . , αn), αi ≥ 0, and a
point x = (x1, . . . , xn) ∈ Rn, we denote by

xα = x
α1
1 x

α2
2 · · · xαn

n

the monomial of degree

|α| =
n∑

i=1

αi.

In the same way

Dαf = ∂ |α|f
∂x

α1
1 . . . ∂x

αn
n

is a (weak) partial derivative of order |α|. We also use the convention that
D0f = f . Moreover, let ∇mf be a vector with the components Dαf , |α| = m.

Let � be an open set in Rn, 1 ≤ p < ∞, m a positive integer. The Sobolev
space Wm,p(�) consists of all functions u ∈ Lp(�) such that for all multi-
index α with |α| ≤ m the weak derivative Dαu exists and belongs to Lp(�).
We use the convention W 0,p(�) = Lp(�). The Sobolev space Wm,p(�) is
equipped with the norm

‖u‖Wm,p(�) =
( ∑

|α|≤m

∫
�

|Dαu|p dx

)1/p

.

For the properties of Sobolev functions, see [15].
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We write
T m

y f (x) =
∑

|α|≤m

Dαf (y)
(x − y)α

α!

and
Rmf (x, y) = f (x) − T m

y f (x)

for the Taylor polynomial of order m and the Taylor remainder of order m, re-
spectively. If f ∈ Cm(Rn) the Taylor formula can be expressed in the following
form, see [26] p. 126,

(5) f (x) − T m−1
y f (x)

= m
∑

|α|=m

(∫ 1

0
(1 − t)m−1Dαf [(1 − t)y + tx)] dt

)
(x − y)α

α!
.

Note that we use the same notation for formal Taylor polynomials and remain-
ders if we have only weak derivatives.

We define a family of functions ρε ∈ L1
loc(0, ∞), ε > 0, such that ρε ≥ 0,∫ ∞

0
ρε(r)r

n−1 dr = 1

and
lim
ε→0

∫ ∞

δ

ρε(r)r
n−1 dr = 0 for every δ > 0.

These properties are rather standard in the construction of radial mollifiers
related to approximations of unity.

First we prove a useful result for smooth functions.

Lemma 2.1. Let � be an open set in Rn, 1 ≤ p < ∞, m a positive integer
and g ∈ Cm+1

0 (Rn). Then

(6) lim
ε→0

∫
�

∫
�

|Rm−1g(x, y)|p
|x − y|mp

ρε(|x − y|) dx dy

=
∫

�

∫
∂B(0,1)

∣∣∣∣ ∑
|α|=m

Dαg(x)

α!
eα

∣∣∣∣pde dx.

Proof. Since g ∈ Cm+1
0 (Rn) by Taylor’s formula, we have

|Rm−1g(x + h, x)| ≤
∣∣∣∣ ∑
|α|=m

Dαg(x)

α!
hα

∣∣∣∣ + c′|h|m+1
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from which we conclude that

|Rm−1g(x + h, x)|p ≤ (1 + θ)

∣∣∣∣ ∑
|α|=m

Dαg(x)

α!
hα

∣∣∣∣p + c′
θ |h|(m+1)p

for every θ > 0, x ∈ Rn and h ∈ Rn.
We multiply the last inequality by ρε(|h|)/|h|mp and integrate over the set

S = {(x, h) ∈ (supp g ∩ �) × Rn : x + h ∈ �}
∪ {(x, h) ∈ (� \ supp g) × Rn : x + h ∈ (supp g ∩ �)}.

We have

(7)

∫∫
S

|Rm−1g(x + h, x)|p
|h|mp

ρε(|h|) dh dx

≤ (1 + θ)

∫
�

∫
Rn

ρε(|h|)
|h|mp

∣∣∣∣ ∑
|α|=m

Dαg(x)

α!
hα

∣∣∣∣p dh dx

+ 2c′
θ |supp g|

∫
Rn

|h|pρε(|h|) dh.

By the properties of the mollifiers ρε, it follows that

(8) lim
ε→0

∫
Rn

|h|pρε(|h|) dh = 0.

Note also, that∫
Rn

ρε(|h|)
|h|mp

∣∣∣∣ ∑
|α|=m

Dαg(x)

α!
hα

∣∣∣∣pdh

=
∫ ∞

0
rn−1ρε(r) dr

∫
∂B(0,1)

∣∣∣∣ ∑
|α|=m

Dαg(x)

α!
eα

∣∣∣∣pde.

Thus, passing to the limit in (7), first with ε → 0, then with θ → 0, and
changing variables in the integral on the left hand side, we arrive at

(9) lim sup
ε→0

∫
�

∫
�

|Rm−1g(x, y)|p
|x − y|mp

ρε(|x − y|) dx dy

≤
∫

�

∫
∂B(0,1)

∣∣∣∣ ∑
|α|=m

Dαg(x)

α!
eα

∣∣∣∣pde dx.

This concludes the first part of the proof of (6).
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Next we show the inequality to the other direction. If K is a compact subset
of �, then for any x ∈ K and |h| ≤ d, where

d = min{1, dist(K, ∂�)/2},
we have ∣∣∣∣Rm−1g(x + h, x) −

∑
|α|=m

Dαg(x)

α!
hα

∣∣∣∣ ≤ cK |h|m+1.

Hence∣∣∣∣ ∑
|α|=m

Dαg(x)

α!
hα

∣∣∣∣p ≤ (1 + θ)|Rm−1g(x + h, x)|p + cθ,K |h|(m+1)p

for every θ > 0 and consequently

(10)

∫
K

∫
B(0,d)

ρε(|h|)
|h|mp

∣∣∣∣ ∑
|α|=m

Dαg(x)

α!
hα

∣∣∣∣pdh dx

≤ (1 + θ)

∫
K

∫
B(0,d)

|Rm−1g(x + h, x)|p
|h|mp

ρε(|h|) dh dx

+ cθ,K |K|
∫

B(0,d)

|h|pρε(|h|) dh.

Passing to the limit as ε → 0 in (10), and taking into account (8), we have∫
K

∫
∂B(0,1)

∣∣∣∣ ∑
|α|=m

Dαg(x)

α!
eα

∣∣∣∣pde dx

≤ (1 + θ) lim inf
ε→0

∫
K

∫
B(0,d)

|Rm−1g(x + h, x)|p
|h|mp

ρε(|h|) dh dx

≤ (1 + θ) lim inf
ε→0

∫
�

∫
�

|Rm−1g(x, y)|p
|x − y|mp

ρε(|x − y|) dx dy.

Since the last estimate holds for every θ > 0 and every compact set K ⊂ �,
we have

(11)

∫
�

∫
∂B(0,1)

∣∣∣∣ ∑
|α|=m

Dαg(x)

α!
eα

∣∣∣∣pde dx

≤ lim inf
ε→0

∫
�

∫
�

|Rm−1g(x, y)|p
|x − y|mp

ρε(|x − y|) dx dy.
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Combining this with (9) we arrive at (6).

The following theorem is an analog of Theorem 2 in [7] (see also [5]) for
higher order Sobolev spaces.

Theorem 2.2. Let � be an open set in Rn, 1 < p < ∞ and m be a positive
integer. If f ∈ Wm−1,p(�) satisfies

(12) cf = lim inf
ε→0

∫
�

∫
�

|Rm−1f (x, y)|p
|x − y|mp

ρε(|x − y|) dx dy < ∞,

then f ∈ Wm,p(�).

Proof. Assume that �′ � � and δ < dist(�′, ∂�). Let η ∈ C∞
0 (Rn) be a

nonnegative radial function such that∫
Rn

η(x) dx = 1

and supp η ⊂ B(0, 1). Consider the regularization fδ = f ∗ ηδ of f , ηδ(x) =
δ−nη(x/δ). For every f ∈ L1

loc(�) (extended by zero to Rn \ �) the function
fδ is smooth in �, and if f has a weak derivative Dαf in �′, then

Dα(fδ) = Dαf ∗ ηδ

(see e.g. [15]). Thus, for every x, y ∈ �′ we have

Rm−1fδ(x, y) = fδ(x) −
∑

|α|≤m−1

Dα(fδ)(y)
(x − y)α

α!

=
∫

B(0,δ)

(
f (x − z) −

∑
|α|≤m−1

Dαf (y − z)
(x − y)α

α!

)
ηδ(z) dz

=
∫

B(0,δ)

Rm−1f (x − z, y − z)ηδ(z) dz.

By Jensen’s inequality, it is easy to see that (12) implies

(13) lim inf
ε→0

∫
�′

∫
�′

|Rm−1fδ(x, y)|p
|x − y|mp

ρε(|x − y|) dx dy ≤ cf .

Next by applying (11) to g = fδ we get

(14)

∫
�′

∫
∂B(0,1)

∣∣∣∣ ∑
|α|=m

Dαfδ(x)

α!
eα

∣∣∣∣pde dx ≤ cf .
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Now let e ∈ ∂B(0, 1) and denote by E the vector with the components
Eα = (1/α!)eα1

1 · · · eαn
n , |α| = m. It is easy to see that

‖v‖ =
(∫

∂B(0,1)

|v · E|p de

)1/p

, 1 ≤ p < ∞,

is a norm on a linear space of all vectors v = (vα)|α|=m. Obviously, it is
nonnegative and ‖v‖ = 0 if and only if v = 0. The triangle inequality follows
from the Minkowski inequality. Since ‖·‖ is equivalent to the Euclidean norm,
for any vector ∇mg(x) we have

(15) |∇mg(x)|p ≈
∫

∂B(0,1)

|∇mg(x) · E|p de

and (14) implies that

(16)

∫
�′

|∇mfδ(x)|p dx ≤ c

for every �′ � � and δ < dist(�′, ∂�), with the constant c depending only
on cf , n, m and p.

Since p > 1 the weak compactness and a diagonal argument show that
f ∈ Wm,p(�).

The following statement follows immediately from Theorem 2.2.

Corollary 2.3. Let � be an open set in Rn, 1 < p < ∞, m a positive
integer. If f ∈ Lp(�) satisfies

(17) lim inf
ε→0

∫
�

∫
�

|Ri−1f (x, y)|p
|x − y|ip ρε(|x − y|) dx dy < ∞,

for every i = 1, . . . , m, then f ∈ Wm,p(�).

Here the remainders Ri−1f are defined recursively starting from i = 1.
Thus, if (17) holds for i = 1 by Theorem 2.2 the weak derivatives Dαf ,
|α| = 1, exist and Ri−1f are defined for i = 2 and this procedure can be
continued recursively. The recursion may seem somewhat awckward. A more
direct interpretation is possible in terms of Whitney jets, see Section 4.

Remark 2.4. Note that if � is a Wm,p-extension domain, i.e. there is a
bounded linear operator

E : Wm,p(�) → Wm,p(Rn)
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such that E f |� = f for every f ∈ Wm,p(�), then also the converse statement
in Theorem 2.2 is true. Indeed, if f ∈ Wm,p(Rn), then

(18)

∫
Rn

|Rm−1f (x + h, x)|p dx ≤ c|h|mp

∫
Rn

|∇mf (x)|p dx

for every h ∈ Rn. For smooth functions inequality (18) follows from Taylor’s
formula (5), thus we have

Rm−1f (x + h, x) = m
∑

|α|=m

hα

α!

∫ 1

0
(1 − t)m−1Dαf (x + th) dt.

And an integration over the whole space gives∫
Rn

|Rm−1f (x + h, x)|p dx

≤ c|h|mp

∫
Rn

∫ 1

0
(1 − t)(m−1)p|∇mf (x + th)|pdt dx

≤ c|h|mp

∫ 1

0

∫
Rn

|∇mf (x + th)|pdx dt

≤ c|h|mp

∫
Rn

|∇mf (x)|p dx.

Since smooth functions are dense in the Sobolev space inequality (18) holds
for every f ∈ Wm,p(Rn).

Now let f ∈ Wm,p(�) and denote by f̃ its extension to Rn. Since∫
Rn

ρε(|h|) dh = ωn−1

∫ ∞

0
ρε(r)r

n−1 dr = ωn−1,

where ωn−1 is the (n − 1)-dimensional surface measure of the unit ball in Rn,
by (18) we have

(19)

∫
�

∫
�

|Rm−1f (x, y)|p
|x − y|mp

ρε(|x − y|) dy dx

≤
∫

Rn

∫
Rn

|Rm−1f̃ (x, y)|p
|x − y|mp

ρε(|x − y|) dy dx

≤ c

∫
Rn

|∇mf̃ (x)|p dx

≤ c‖f̃ ‖Wm,p(Rn) ≤ c‖f ‖Wm,p(�).
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More precisely, the following result is true.

Theorem 2.5. Assume that � is a Wm,p-extension domain, let m be a
positive integer, 1 < p < ∞ and let f ∈ Wm,p(�). Then

(20) lim
ε→0

∫
�

∫
�

|Rm−1f (x, y)|p
|x − y|mp

ρε(|x − y|) dx dy

=
∫

�

∫
∂B(0,1)

∣∣∣∣ ∑
|α|=m

Dαf (x)

α!
eα

∣∣∣∣pde dx.

Proof. Since � is an extension domain, any function f ∈ Wm,p(�) can
be approximated by functions fn ∈ Cm+1

0 (Rn) in Wm,p(�)-norm. Hence,
Lemma 2.1 implies the validity of (6) for every f ∈ Wm,p(�). Indeed, by
(15) for the right hand side of (6) we have∣∣∣∣(∫

∂B(0,1)

∣∣∣∣ ∑
|α|=m

Dαf (x)

α!
eα

∣∣∣∣pde

)1/p

−
(∫

∂B(0,1)

∣∣∣∣ ∑
|α|=m

Dαfn(x)

α!
eα

∣∣∣∣pde

)1/p∣∣∣∣
= | ‖∇mf (x)‖ − ‖∇mfn(x)‖ | ≤ ‖∇m(f − fn)(x)‖ ≤ c|∇m(f − fn)(x)|.

To justify the limit of the left hand side of (6) we can apply (19). Thus, equality
(6) is true for any f ∈ Wm,p(�).

Remark 2.6. If � = Rn and

(21) ρε(r) =
⎧⎨⎩

(n + mp)rmp

εn+mp
, r < ε,

0, r ≥ ε,

then (12) can be written as

(22) lim inf
ε→0

1

εmp

∫
Rn

∫
B(y,ε)

|f (x) − T m−1
y f (x)|p dx dy < ∞.

Here the integral sign with a bar denotes the integral average.
We point out that condition (22) is closely related to Calderón’s character-

ization of Sobolev spaces in [9] (see also [12]). To this end, let 1 < p < ∞
and m be a positive integer. For f ∈ Lp(�) we define a maximal function as

(23) N (f, y) = sup
ε>0

1

εm

(∫
B(y,ε)

|f (x) − P(x, y)|p dx

)1/p

,

if there exists a polynomial P(x, y) in x, of degree at most m−1, such that the
expression on the right hand side of (23) is finite. If no such polynomial exists,
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we set N (f, y) = ∞. Then a function f ∈ Lp(Rn) belongs to Wm,p(Rn) if
and only if N (f, ·) ∈ Lp(Rn).

Now consider the analog of Theorem 2.2 for p = 1. Recall that the space
BV(�) is defined as the space of functions in L1(�), whose weak deriv-
atives are Radon measures with finite total variation. Denote by BVm(�),
m = 2, 3, . . ., the set of functions in L1(�), whose derivatives of order m are
finite Radon measures.

Observe, that by the Riesz representation theorem, a function f ∈ L1(�)

belongs to BVm(�) if and only if there exists c > 0 such that∣∣∣∣∫
�

f Dαϕ dx

∣∣∣∣ ≤ c‖ϕ‖∞

for every ϕ ∈ C∞
0 (�) and every multi-index α with |α| = m.

Theorem 2.7. Let � be an open set in Rn and m be a positive integer. If
f ∈ Wm−1,1(�) satisfies

(24) lim inf
ε→0

∫
�

∫
�

|Rm−1f (x, y)|
|x − y|m ρε(|x − y|) dx dy < ∞,

then f ∈ BVm(�).

Proof. The proof is the same as for Theorem 2.2, except for the fact that
(16) implies that all the derivatives of order m of function f are measures with
finite total variation.

Remark 2.8. As observed in [4], if � is a smooth bounded domain, then
BVm(�) can be characterized as the set of functions f ∈ Wm−1,1(�) such that
Dαf ∈ BV(�) for every multi-index α with |α| = m − 1. The equivalence
follows from the Sobolev embedding theorem, see e.g. [15].

Using this characterization it is not difficult to see that Theorem 2.7 gives
a necessary and sufficient condition for a function to be in BVm(�), when �

is a bounded smooth domain in Rn. This can be seen as in Remark 2.4.

3. A criterion for a function to be a polynomial

The next result is a higher order version of Theorem 1 in [7].

Theorem 3.1. Let � be a connected open set in Rn, 1 ≤ p < ∞ and m

a positive integer. Assume that f ∈ L1
loc(�) has weak derivatives Dαf with

|α| ≤ m − 1 in � and

lim inf
ε→0

∫
�

∫
�

|Rm−1f (x, y)|p
|x − y|mp

ρε(|x − y|) dx dy = 0.

Then f is a polynomial of degree at most m − 1 a.e. on �.
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Proof. Suppose first that p > 1. Note that if � is a bounded smooth
domain in Theorem 2.2 it is enough to assume that f ∈ L1

loc(�) has weak
derivatives Dαf with |α| ≤ m − 1 in �. Thus, applying Theorem 2.2 (see
also Theorem 2.5) to a ball B ⊂ � we can conclude that f ∈ Wm,p(B) and
‖∇mf ‖Lp(B) = 0. This implies that f is a polynomial of degree at most m− 1
a.e. in B (see e.g. generalized Poincaré inequality in [15]) and the claim follows
from the assumption that � is connected.

Let then p = 1. In this case we apply Theorem 2.7 to a ball B ⊂ � and
conclude that f ∈ BVm(B) and the total variation |∇mf |(B) of the vector
valued measure ∇mf equal to zero. This implies that there is a polynomial P

of degree at most m − 1 such that f = P a.e. in B (see e.g. Lemma 12 in
[4] for more details). Again the claim follows from the assumption that � is
connected.

The next result is a higher order generalization of Proposition 1 in [7].

Corollary 3.2. Let � be a connected open set in Rn, 1 ≤ p < ∞ and m

a positive integer. Suppose that f ∈ L1
loc(�) has weak derivatives Dαf with

|α| ≤ m − 1 in � and

(25)

∫
�

∫
�

|Rm−1f (x, y)|p
|x − y|mp+n

dx dy < ∞.

Then f is a polynomial of degree at most m − 1 a.e. on �.

Proof. By choosing

ρε(r) =
{

εr−n+ε, r < 1,

0, r ≥ 1,

we have

(26) lim inf
ε→0

ε

∫
�

∫
�

|Rm−1f (x, y)|p
|x − y|mp+n−ε

dx dy

≤ lim inf
ε→0

ε

∫
�

∫
�

|Rm−1f (x, y)|p
|x − y|mp+n

dx dy = 0.

The claim follows from Theorem 3.1.

Again there is an interpretation of the previous result in terms of Whit-
ney jets. Indeed, it is possible to state the corollary for Whitney jets without
referring to lower order derivatives, see Remark 4.2.
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4. Whitney jets

In this section we show that a jet of functions, whose formal Taylor remainder
satisfies (22), or its counterpart on a subdomain, can be identified with the jet
of weak derivatives of a Sobolev function.

First we recall terminology related to the Whitney jet theory. Assume that
� is an open set in Rn and let m be a positive integer. An m-jet F ∈ Jm(�) is
a collection

{fα : |α| ≤ m}
of functions. The m-jets define the formal Taylor polynomials in x ∈ Rn

(centered at y ∈ �)

T k
y F (x) =

∑
|α|≤k

fα(y)
(x − y)α

α!
,

with k ≤ m, and

T
k−|j |
y,j F (x) =

∑
|j+α|≤k

fj+α(y)
(x − y)α

α!
,

with |j | ≤ k ≤ m. The formal Taylor remainders are defined to be

RkF(x, y) = f0(x) − T k
y F (x)

and
R

k−|j |
j F (x, y) = fj (x) − T

k−|j |
y,j F (x),

where x, y ∈ K and |j | ≤ k ≤ m.
Let Q be a fixed cube in Rn, an (m − 1)-jet F ∈ Jm−1(Q),

F = {fj : |j | ≤ m − 1},
where fj ∈ Lp(Q), is said to be an (m − 1)-jet in Q with variable Lipchitz
coefficients, denoted by F ∈ VLC(m, p, Q), if the pointwise inequality

(27) |Rm−1F(x, y)| ≤ |x − y|m(aQ(x) + aQ(y)),

where x, y ∈ Q, holds for some function aQ = aQ(F ) ∈ Lp(Q).
The (m − 1)-jet spaces VLC(m, p, Q) have been studied in [1] and it has

been shown that VLC(m, p, Q) regarded as a Banach space and equipped with
the norm

‖F‖ = max{‖fj‖Lp(Q) : |j | ≤ m − 1} + inf ‖aQ‖Lp(Q),
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can be identified with the classical Sobolev space Wm,p(Q). The fact that
inequality (27) holds for a function f ∈ Wm,p(Q) has been proved before in
[3].

Let us consider an (m−1)-jet F ∈ Jm−1(�) of locally integrable functions
on an open set � in Rn with the property that its formal Taylor remainder of
order m − 1 satisfies the condition

(28) aF = lim
ε→0

1

εn+mp

∫∫
{(x,y)∈�:|x−y|<ε}

|Rm−1F(x, y)|p dx dy < ∞.

This is a special case of condition (12) with mollifiers (21).
Note that pointwise estimate (27) for x, y ∈ � implies (28). Indeed,∫

�

∫
�

|Rm−1F(x, y)|pχ{|x−y|<ε} dx dy

≤
∫

�

∫
�

|x − y|mpχ{|x−y|<ε}(a�(x) + a�(y))p dx dy

≤ c

∫
�

∫
�

|x − y|mpχ{|x−y|<ε}a
p

�(x) dx dy

and we have

1

εn+mp

∫∫
{(x,y)∈�:|x−y|<ε}

|Rm−1F(x, y)|p dx dy

≤ c

∫
�

a
p

�(x)

∫
�

|x − y|mp

εn+mp
χ{|x−y|<ε} dy dx

≤ c
ωn−1

n
‖a�‖p

Lp(�).

At the same time (28) is a sufficient condition for a jet to be identified with
a Sobolev function. More precisely, the following theorem holds true.

Theorem 4.1. Let � be an open set in Rn, 1 < p < ∞ and m be a positive
integer. Assume that an (m − 1)-jet

F = {fα : |α| ≤ m − 1},
where fα ∈ Lp(�), satisfies condition (28). Then for every �′ � � there is a
function f ∈ Wm,p(�′) such that

fα|�′ = Dαf |�′ , |α| ≤ m − 1,

and ‖∇mf ‖Lp(�′) ≤ c aF .
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Remark 4.2. Corollary 3.2 reads for Whitney jets as follows. Let � be a
connected open set in Rn. Suppose that∫

�

∫
�

|Rm−1F(x, y)|p
|x − y|mp+n

dx dy < ∞.

Then f is a polynomial of degree at most m − 1 a.e. on �.

To prove the theorem we use the sketch of the proof of Theorem 9.1 from
[1]. First we show that the next statement is true.

Lemma 4.3. Let � be an open set in Rn, 1 < p < ∞ and m be a positive
integer. Suppose that (m − 1)-jet F satisfies condition (28). Then for every
�′ � � we have

(29) lim
ε→0

1

ε(m−|j |)p

∫
�′

∫
B(x,ε)

|Rm−1−|j |
j F (x, y)|p dy dx ≤ c aF ,

whenever |j | ≤ m − 1.

Proof. Let �′ � � and 0 < ε < dist(�′, ∂�). Fix x, y ∈ �′, |x −y| < ε.
Using Taylor algebra arguments, we have

(30)
R

m−1−|j |
j F (x, y) = Dj

z [Rm−1F(z, x) − Rm−1F(z, y)]z=x

= Dj
z P (z; x, y)z=x,

where P(z; x, y) is a polynomial in z of order at most m − 1.
Since ε < dist(�′, ∂�) the set S = B(x, ε) ∩ B(y, ε) ⊂ �. It is easy to

see that
c|S| ≥ |B(x, ε)| = |B(y, ε)|

for some constant c which is independent of ε. By Markov’s inequality [10]
applied to the subset S of the ball B(x, ε), we obtain

|Dj
z P (z; x, y)|z=x ≤ c(n)

ε|j |

(∫
S

|P(x ′; x, y)|p dx ′
)1/p

.

Thus, from (30), we have

(31)

|Rm−1−|j |
j F (x, y)| ≤ c(n)

ε|j |

[(∫
S

|Rm−1F(x ′, x)|p dx ′
)1/p

+
(∫

S

|Rm−1F(x ′, y)|p dx ′
)1/p]

= c(n)

ε|i|
[
I (x)1/p + I (y)1/p

]
.
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It is easy to see that∫
�′

∫
B(x,ε)

I (x) dy dx ≤ c

∫
�′

∫
B(x,ε)

∫
B(x,ε)

|Rm−1F(x ′, x)|p dx ′ dy dx

≤ c

∫∫
{(x,x ′)∈�:|x−x ′|<ε}

|Rm−1F(x ′, x)|p dx ′ dx.

On the other hand, we obtain a similar estimate for∫
�′

∫
B(x,ε)

I (y) dy dx,

which together with (31) proves the claim.

Remark 4.4. Since (29) implies

1

εn+(m−|j |)p

∫∫
{(x,y)∈�′:|x−y|<ε}

|Rm−1−|j |
j F (x, y)|p dx dy ≤ c aF ,

as ε → 0, |j | ≤ m − 1, using the terminology of Jonsson and Wallin (see
e.g. [13]) we can formulate Lemma 4.3 in the following way: If (m − 1)-jet F

satisfies condition (28) then for every �′ � � we have F ∈ Lip(m, p, ∞, �′).

Proof of Theorem 4.1. Let �′ be an open set such that �′ � �. Decom-
pose �′ into dyadic cubes. More precisely, let Mk denote a net with mesh 2−k

in Rn i.e. Mk is a division of Rn into equally large closed cubes with side lenghts
2−k , obtained by slicing Rn with hyperplanes orthogonal to the coordinate axis.

Set
�′

k = {
x ∈ �′ : dist(x, �′c) >

√
n 2−k+1

}
and

�′
l = {

x ∈ �′ :
√

n2−l+1 < dist(x, �′c) ≤ √
n 2−l+2

}
,

for l = k + 1, . . . . Define

F 0
k =

∞⋃
l=k

{Q ∈ Ml : Q ∩ �′
l �= ∅}

and denote by Fk the collection of maximal cubes of F 0
k (see e.g. [23] for

details on the Whitney decomposition).
Then, for each k the collection of cubes Fk = {Qk

i }i∈Ik
satisfies the condi-

tions:

(i) �′ = ⋃
i∈Ik

Qk
i ;
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(ii) diam Qk
i ≤ 2−k

√
n for all i ∈ Ik , moreover,

diam Qk
i ≤ dist(Qk

i , �
′c) ≤ 4 diam Qk

i ,

if diam Qk
i ≤ 2−k−1√n;

(iii) the interiors of the cubes Qk
i are pairwise disjoint.

It is easy to see that theses properties imply the next statements as well:

(iv)
∑

i∈Ik
χ 9

8 Qk
i
≤ c, where constant c depends only on n;

(v) if Q, K ∈ Fk and 9
8Q ∩ 9

8K �= ∅, then diam Q ≤ diam K ≤ 4 diam Q.

Let now {ϕk
i : i ∈ Ik} be a smooth partition of unity subordinated to the

decomposition Fk . It’s standard properties (see [23]) are:

(i) supp ϕk
i ⊂ Qi

k = 9
8Qk

i ,

(ii)
∑

i∈Ik
ϕk

i ≡ 1 on �′ and

(iii) |Dαϕk
i | ≤ cα(diam Qk

i )
−α in Rn.

Define the approximating family

(32) wk(x) =
∑
i∈Ik

ϕk
i (x)T m−1

Qk
i

F (x),

where x ∈ �′ and

T m−1
Q F(x) =

∫
Q

T m−1
y F (x) dy.

Let x be in �′, denote by Bk
x the ball B(x, rk),

rk = √
n max{diam Qk

i : x ∈ Qk
i }.

By property (v) of cubes Qk
i the radius rk ≈ diam Qk

i whenever x ∈ Qk
i and,

evidently, Qk
i ⊂ Bk

x for every i such that x ∈ Qk
i . Consider

|f0(x) − wk(x)| =
∣∣∣∣∑
i∈Ik

ϕk
i (x)

∫
Qk

i

[f0(x) − T m−1
y F (x)] dy

∣∣∣∣
≤

∑
i∈Ik

ϕk
i (x)

∫
Qk

i

|Rm−1F(x, y)| dy χQk
i
(x)

≤ c
∑
i∈Ik

ϕk
i (x)

∫
Bk

x

|Rm−1F(x, y)| dy

= c

∫
Bk

x

|Rm−1F(x, y)| dy.
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Thus,

‖f0 − wk‖Lp(�′) ≤ c

(∫
�′

∫
Bk

x

|Rm−1F(x, y)|p dy dx

)1/p

≤ c2−km,

as k → ∞, which shows that the sequence of functions wk converges in
Lp(�′) to f0.

Now let |α| = m and consider

Dαwk(x) =
∑

i

Dα
(
ϕk

i (x)T m−1
Qk

i

F (x)
)

=
∑

i

∑
β≤α

α!

β!(α − β)!
Dβϕk

i (x)Dα−β
(
T m−1

Qk
i

F
)
(x)

=
∑

β+γ=α
|γ |≤m−1

α!

β!(α − β)!
Sβ,γ (x),

where
Sβ,γ (x) =

∑
i

Dβϕk
i (x)T

m−1−|γ |
Qk

i

Dγ F (x).

Since
∑

i D
βϕi(x) ≡ 0 if |β| ≥ 1,

Sβ,γ (x) = S ′
β,γ (x)

≡
∑

i

Dβϕk
i (x)

[
fγ (x) − T

m−1−|γ |
Qk

i

Dγ F (x)
]

=
∑

i

Dβϕk
i (x)

∫
Qk

i

Rm−1−|γ |
γ F (x, y) dy

and

|S ′
β,γ (x)| ≤

∑
i

|Dβϕk
i (x)|

∫
Bk

x

|Rm−1−|γ |
γ F (x, y)| dy χQk

i
(x).

By smoothness properties of the partition of unity

|Dβϕk
i (x)| ≤ c(diam Qk

i )
−|β| ≤ c2k|β|,

for every x ∈ Qk
i . Hence, the Lp-norm of S ′

β,γ can be estimated in the following
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way

‖S ′
β,γ ‖p

Lp(�′) =
∫

�′

(∑
i

|Dβϕk
i (x)|

∫
Bk

x

|Rm−1−|γ |
γ F (x, y)| dy χQk

i
(x)

)p

dx

≤ c2kp|β|
∫

�′

(∫
Bk

x

|Rm−1−|γ |
γ F (x, y)| dy

)p

dx

≤ c2kp|β|
∫

�′

∫
Bk

x

|Rm−1−|γ |
γ F (x, y)|p dy dx.

Thus, by Lemma 4.3 for |α| = m and large k we have

(33) ‖Dαwk‖Lp(�′) ≤ c aF 2(|β|+|γ |−m)k ≤ c aF

(one could set ε = 2−k in (29)).
We show that for |α| ≤ m − 1 the derivatives Dαwk converge in Lp(�′) to

the elements fα of the jet F . A computation shows that

fα(x) − Dαwk(x) =
∑

i

ϕk
i (x)fα(x) −

∑
i

Dα
(
ϕk

i (x)T m−1
Qk

i

F (x)
)

=
∑

i

ϕk
i (x)

(
fα(x) − T

m−1−|α|
Qk

i

DαF (x)
)

+
∑

β+γ=α
|β|>0

α!

β!(α − β)!

∑
i

Dβϕk
i (x)T

m−1−|γ |
Qk

i

Dγ F (x)

=
∑

β+γ=α

α!

β!(α − β)!
S ′

β,γ (x).

Using the above estimate for ‖S ′
β,γ ‖p

Lp(�′), we arrive at

(34) ‖fα − Dαwk‖Lp(�′) ≤ c2(|β|+|γ |−m)k = c2(|α|−m)k → 0,

as k → ∞.
Thus, we have shown that the sequence of smooth functions wk converges

to function f0 in Lp(�′) and for any α, |α| ≤ m, the sequence of derivatives
Dαwk is bounded in Lp(�′). Since p > 1, by weak compactness argument it
follows that f0 ∈ Wm,p(�′).

Let f ≡ f0, then by (34) Dαf |�′ = fα|�′ , |α| ≤ m − 1, and by (33) we
have estimate ‖∇f m‖Lp(�′) ≤ c aF .

Remark 4.5. We can also consider the meaning of the condition (28) for
the Whitney jet on an s-set in Rn. Recall that a subset S ⊂ Rn is called an s-set
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(or Ahlfors s-regular) if there are constants c1, c2 > 0 such that for every ball
B = B(x, r) with center at S and r ≤ diam S

c1r
s ≤ Hs(B(x, r) ∩ S) ≤ c2r

s,

where Hs denote the s-dimensional Hausdorff measure on Rn.
Let S be an s-set with n − 1 < s ≤ n. Consider a (m − 1)-jet

F = {fα : |α| ≤ m − 1},
fα ∈ Lp(S, Hs), such that it’s formal Taylor remainder of order m−1 satisfies
the condition

(35)
1

εs+mp

∫∫
{(x,y)∈S:|x−y|<ε}

|Rm−1F(x, y)|p dHs dHs ≤ aF

as ε → 0. Then the functions fα are uniquely determined by f0. The proof uses
slightly modified Lemma 4.3 and arguments as in Theorem 2 in [13], p. 126.
Thus, if f0 is identically zero then fα are zero as well and we can identify the
jet F with the single function f0.

In particular, if � is a Wm,p-extension domain then � is an n-set (see [14])
and the statement “a jet F satisfies (35) on �” is equivalent to the fact that
f0 ∈ Wm,p(�). If S is an arbitrary s-set with n−1 < s ≤ n then condition (35)
characterizes the Lipschitz space Lip(m, p, ∞, S) introduced by A. Jonsson
and H. Wallin [13].

The first order spaces Lip(1, p, ∞, S) and their relations to Sobolev spaces
on metric measure spaces were studied in [25]. For instance, from the results
in [25] it follows that if S supports the q-Poncaré inequality, 1 ≤ q < ∞,
then Lip(1, p, ∞, S) coincides with the Hajłasz-Sobolev space W 1,p(S) for
p > q.
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