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STRUCTURE CONSTANTS OF THE
WEYL CALCULUS

WEN DENG

Abstract
We find some explicit bounds on the L (L2)-norm of pseudo-differential operators with symbols
defined by a metric on the phase space. In particular, we prove that this norm depends only on the
“structure constants” of the metric and a fixed semi-norm of the symbol. Analogous statements
are made for the Fefferman-Phong inequality.

1. Introduction

The class of symbols Sm1,0 consists of smooth functions a defined on the phase
space Rn × Rn such that for all multi-indices α, β,

(1.1) |(∂αξ ∂βx a)(x, ξ)| ≤ Cα,β(1 + |ξ |)m−|α|.

The best constants Cα,β in (1.1) are called the semi-norms of the symbol a in
the Fréchet space Sm1,0. We have

Property 1.1. If a is in S0
1,0, then a(x,D) defines a bounded operator on

L2(Rn).

One might ask some very natural questions: the operator norm
‖a(x,D)‖L (L2(Rn)) is bounded by which constant? Is it a semi-norm of the
symbol a? If yes, then which semi-norm? Questions of the same type might
be asked for the constant C in the following inequality:

Property 1.2 (Fefferman-Phong inequality). If a is a non-negative symbol
belonging to S2

1,0, then there exists C > 0 such that, for all u ∈ S (Rn),

(1.2) Re〈a(x,D)u, u〉L2(Rn) + C‖u‖2
L2(Rn) ≥ 0.

We can pose similar questions in many other examples of classes of symbols,
such as the semi-classical symbols, Shubin’s class, etc. As a particular example,
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the class �m, defined as the set of smooth functions a on Rn × Rn × R+ such
that for all multi-indices α, β,

(1.3) ∀x, ξ ∈ Rn, τ ∈ R+, |(∂αξ ∂βx a)(x, ξ, τ )| ≤ Cα,β(1 + |ξ | + τ)m−|α|,

is useful for Carleman estimates. One would like to check the Property 1.1 and
Property 1.2 independent of the parameter τ .

Several authors like Bony [1], Boulkhemair [3], Lerner-Morimoto [7], have
already considered these questions and they were able to identify the constants.
The constants in Properties 1.1, 1.2 are always a constantCn times a semi-norm
of the symbol, whose order depends only on the dimension n. Although the
problem is well-understood for a single class of pseudo-differential calculus,
including the class S(m, g) developed by Hörmander, we want to address a
more general and useful question, having in mind the class �m depending on
the non-compact parameter τ ≥ 0 which is defined in (1.3) and is useful for
Carleman estimates.

In this paper, we consider the Weyl quantization for pseudo-differential
operators and we choose the framework with a metric g on the phase space.
The metric g is assumed to be admissible, that is slowly varying, satisfying
the uncertainty principle and is temperate (see Definition 2.1, 2.6 below). The
so-called structure constants of g are closely related to these properties. We
can define very general classes of symbols S(m, g) attached to the metric g
and a g-admissible weight m (see Definition 2.3) and we have an effective
symbolic calculus. The following results are classical: (see [5, chapter 18], [6,
chapter 2])

L2-boundedness: a ∈ S(1, g) 	⇒ ‖aw‖L (L2(Rn)) ≤ C,(1.4)

Fefferman-Phong: a ∈ S(λ2
g, g), a ≥ 0 	⇒ aw + C ≥ 0.(1.5)

The question that we would like to address is the following: what happens if
we change the metric g but keep the same structure constants?

We intend to show that the constants involved in (1.4), (1.5) depend only
on the structure constants of the metric g and a fixed semi-norm of a. Since
it may happen that the metric g depends on a non-compact parameter with
uniform structure constants (e.g. the class �m), this fact is useful explicitly or
implicitly in many examples where these metrics are used and it seems useful
to rely on a more stable argument than referring to “inspection of the proofs”.

Remark 1.3. An abstract functional analysis argument does not seem to
work. Our method is to follow the proofs, by carefully computing all the
constants.
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2. Metric on the phase space

In this section, we introduce the definitions of the admissible metric and exhibit
its properties. We use the Weyl quantization which associates to a symbol a
the operator aw defined by

(2.1) (awu)(x) =
∫∫

e2iπ(x−y)·ξ a
(
x + y

2
, ξ

)
u(y) dy dξ.

Consider the symplectic space R2n equipped with the symplectic form σ =∑n
j=1 dξ

j ∧ dxj . Given a positive-definite quadratic form � on R2n, we define

(2.2) �σ (T ) = sup
�(Y )=1

σ(T , Y )2,

which is also a positive-definite quadratic form. Let g be a measurable map
from R2n into the cone of positive-definite quadratic forms on R2n, i.e., for each
X ∈ R2n, gX is a positive definite quadratic form on R2n.

Definition 2.1 (Slowly varying metric). We say that g is a slowly varying
metric on R2n, if there exists C0 ≥ 1 such that for all X, Y, T ∈ R2n,

(2.3) gX(X − Y ) ≤ C−1
0 	⇒ C−1

0 ≤ gX(T )

gY (T )
≤ C0.

Definition 2.2 (Slowly varying weight). Let g be a slowly varying metric
on R2n. A function m: R2n → (0,+∞) is called a g-slowly varying weight if
there exists μm ≥ 1 such that for all X, Y ∈ R2n,

(2.4) gX(Y −X) ≤ μ−1
m 	⇒ μ−1

m ≤ m(X)

m(Y )
≤ μm.

Definition 2.3 (Class of symbols). Let g be a slowly varying metric on R2n

and m be a g-slowly varying weight. The class of symbols S(m, g) is defined
as the subset of functions a ∈ C∞(R2n) satisfying that for all k ∈ N, there
exists Ck > 0 such that for all X, T1, . . . , Tk ∈ R2n,

|a(k)(X)(T1, . . . , Tk)| ≤ Ckm(X)
∏

1≤j≤k
gX(Tj )

1/2.

For a ∈ S(m, g), l ∈ N, we denote

(2.5) ‖a‖(l)S(m,g) = max
0≤k≤l

sup
X,Tj∈R2n,gX(Tj )=1

|a(k)(X)(T1, . . . , Tk)|m(X)−1.
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The space S(m, g) equipped with the countable family of semi-norms(‖·‖(l)S(m,g))l∈N
is a Fréchet space.

For a slowly varying metric g on the phase space R2n, we can introduce
some partition of unity related to g. Define the g-ball near X ∈ R2n

(2.6) UX,r = {Y, gX(X − Y ) ≤ r2},
we have the following theorem, which is Theorem 2.2.7 in [6].

Theorem 2.4 (Partition of unity). Let g be a slowly varying metric on R2n

and C0 > 0 given in (2.3). Then for all r ∈ (0, C−1/2
0 ], there exists a family

(ϕY )Y∈R2n of smooth functions supported in UY,r such that

(2.7) ∀k ∈ N, sup
Y∈R2n

‖ϕY‖(k)S(1,g) ≤ C(k, r, n, C0),

(2.8) ∀X ∈ R2n,

∫
R2n
ϕY (X)|gY |1/2 dY = 1,

where C(k, r, n, C0) is a positive constant depending only on k, r, n, C0 and
|gY | is the determinant of gY with respect to the standard Euclidean norm.

Proof. As in the proof of Theorem 2.2.7 in [6], let χ0 ∈ C∞
0 (R+; [0, 1])

non-increasing such that χ0(t) = 1 on t ≤ 1/2, χ0(t) = 0 on t ≥ 1. Define
for r ∈ (0, C−1/2

0 ],

ω(X, r) =
∫

R2n
χ0

(
r−2gY (X − Y )

)
︸ ︷︷ ︸

=ωY (X)

|gY |1/2 dY.

Since ωY (X) is supported in UY,r and χ0 is non-increasing, by (2.3) we have

ω(X, r) ≥
∫
R2n
χ0

(
r−2C0gX(X − Y )

)
C−n

0 |gX|1/2 dY

=
∫

R2n
χ0(|Z|2) dZC−2n

0 r2n,

and an estimate from above of the same type, i.e., there exists a positive constant
C1 = C1(r, n, C0) such that

C−1
1 ≤ ω(X, r) ≤ C1.

Now let us check the derivatives of ωY (X). Using the notation 〈,〉Y the inner-
product associated to gY , we have

ω′
Y (X)T = χ ′

0

(
r−2gY (X − Y )

)
r−2〈X − Y, T 〉Y ,
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and by induction, for k ≥ 1, T ∈ R2n, ω(k)Y (X)T
k is a finite sum of terms of

type

(2.9) cp,kχ
(p)

0

(
r−2gY (X − Y )

)
r−2p〈X − Y, T 〉2p−k

Y gY (T )
k−p,

where cp,k is a constant depending only on p, k and p ∈ [k/2, k] ∩ N. Since
the support of χ(p)0 is included in [0, 1] and r2 ≤ C−1

0 , the term (2.9) can be
bounded from above by

cp,k‖χ(p)0 ‖L∞r−2p(r2)(2p−k)/2Ck/20 gX(T )
k/2,

so that for all k ≥ 1, |ω(k)Y (X)T k| ≤ C(k, r, C0)gX(T )
k/2. This implies that

ωY is in S(1, g) and moreover,

(2.10) ∀k ∈ N, sup
Y∈R2n

‖ωY‖(k)S(1,g) ≤ C(k, r, C0).

Now we choose a non-negative functionχ1 ∈ C∞
0 (R+; [0, 1]) such thatχ1(t) =

1 on t ≤ 1, then

∣∣ω(k)(X, r)T k∣∣ =
∣∣∣∣
∫

R2n
ω
(k)
Y (X)T

kχ1
(
r−2gY (X − Y )

)|gY |1/2 dY
∣∣∣∣

≤ sup
Y∈R2n

‖ωY‖(k)S(1,g)gX(T )k/2
∫

R2n
χ1

(
r−2gY (X − Y )

)|gY |1/2 dY
≤ C(k, r, n, C0)gX(T )

k/2,

which implies that ω(·, r) is a symbol in S(1, g) with ‖ω(·, r)‖(k)S(1,g) ≤
C ′(k, r, n, C0). Since ω is bounded from below by C−1

1 , the function ω(·, r)−1

is also in S(1, g) and

(2.11) ‖ω(·, r)−1‖(k)S(1,g) ≤ C ′′(k, r, n, C0).

We define
ϕY (X) = ωY (X)ω(X, r)

−1,

then the estimate (2.7) follows from (2.10), (2.11) and moreover, the family
(ϕY )Y∈R2n satisfies the requirements of Theorem 2.4.

A direct consequence of Theorem 2.4 is the following.

Proposition 2.5. Let g be a slowly varying metric on R2n and m be a g-
slowly varying weight. Let C0, μm be given in (2.3), (2.4) respectively. Let a
be a symbol in S(m, g). Then for all 0 < r ≤ min(C−1/2

0 , μ
−1/2
m ),

a(X) =
∫

R2n
aY (X)|gY |1/2 dY,
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where aY has support included in UY,r and

(2.12) ∀k ∈ N, sup
Y∈R2n

‖aY‖(k)S(m(Y ),gY ) ≤ C(k, r, C0, n, μm)‖a‖(k)S(m,g).

Proof. Define aY (X) = a(X)ϕY (X). Since ϕY is supported in UY,r , we
have, for k ≥ 0, X ∈ UY,r , T ∈ R2n,

|a(k)Y (X)T k| =
∣∣∣∣ ∑
0≤l≤k

(
k

l

)
a(l)(X)T l · ϕ(k−l)Y (X)T k−l

∣∣∣∣
≤

∑
0≤l≤k

ck,l‖a‖(l)S(m,g)m(X)gX(T )l/2‖ϕY‖(k−l)S(1,g)gX(T )
(k−l)/2

≤ C(k)‖a‖(k)S(m,g)‖ϕY‖(k)S(1,g)m(X)gX(T )k/2

≤ C(k)μmC
k/2
0 ‖a‖(k)S(m,g)‖ϕY‖(k)S(1,g)m(Y )gY (T )k/2,

which completes the proof.

For two positive-definite quadratic forms�1, �2 on R2n, the harmonic mean
�1 ∧ �2 is defined by

(2.13) �1 ∧ �2 = 2(�−1
1 + �−1

2 )−1,

which is also a positive-definite quadratic form on R2n.

Definition 2.6 (Admissible metric). We say that g is an admissible metric
on R2n if g is slowly varying (see Definition 2.1) and there exist C ′

0 > 0,
N0 ∈ N such that for all X, Y, T ∈ R2n,

(2.14) uncertainty principle gX(T ) ≤ gσX(T ),

(2.15) temperance gX(T ) ≤ C ′
0gY (T )

(
1 + (gσX ∧ gσY )(X − Y )

)N0
,

where gσ is given by (2.2) and ∧ given by (2.13).
We may supposeC ′

0 = C0 in the sequel, whereC0 is given in (2.3). Then the
constants (C0, N0) appearing in (2.3), (2.15) are called the structure constants
of the metric g.

Definition 2.7 (Admissible weight). Suppose that g is an admissible met-
ric on R2n. A function m: R2n → (0,+∞) is called a g-admissible weight if
m is a g-slowly varying weight (see Definition 2.2) and there exist μm > 0,
νm ∈ N such that for all X, Y ∈ R2n,

(2.16) m(X) ≤ μmm(Y )
(
1 + (gσX ∧ gσY )(X − Y )

)νm
.
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The constants (μm, νm) appearing in (2.4), (2.16) are called the structure con-
stants of the g-admissible weight m.

Let g be an admissible metric on R2n. We define for X ∈ R2n,

(2.17) λg(X) = inf
T �=0

(
gσX(T )

gX(T )

)1/2

.

Then the uncertainty principle (2.14) can be expressed by

gX ≤ λg(X)
−2gσX, λg(X) ≥ 1.

Lemma 2.8 ([6, Remark 2.2.17]). For any s ∈ R, λsg is an admissible weight,
with structure constants (μλsg , νλsg ) in (2.4), (2.16) depending only on the struc-
ture constants of the metric g (C0, N0).

Proof. We first verify that λsg is a g-slowly varying weight. For gX(X −
Y ) ≤ C−1

0 , T ∈ R2n, we have

C−1
0 gX(T ) ≤ gY (T ) ≤ C0gX(T ), C−1

0 gσX(T ) ≤ gσY (T ) ≤ C0g
σ
X(T ),

which implies
C−2

0

gσX(T )

gX(T )
≤ gσY (T )

gY (T )
≤ C2

0
gσX(T )

gX(T )
.

Taking the infimum with respect to T , we get

C−2
0 λg(X)

2 ≤ λg(Y )
2 ≤ C2

0λg(X)
2,

so that λg is g-slowly varying with μλg = C0 and so is λsg with μλsg = C
|s|
0 .

Next we check that λsg is temperate. We have for all X, Y, T ∈ R2n,

gX(T ) ≥ C−1
0 gY (T )

(
1 + (gσX ∧ gσY )(X − Y )

)−N0
,

gσX(T ) ≤ C0g
σ
Y (T )

(
1 + (gσX ∧ gσY )(X − Y )

)N0
,

which gives

λg(X)
2 ≤ C2

0λg(Y )
2
(
1 + (gσX ∧ gσY )(X − Y )

)2N0
.

Thus λg is temperate with νλg = N0 and so is λsg with νλsg = |s|N0. This
completes the proof of Lemma 2.8.

The composition a�b of two symbols is defined by awbw = (a�b)w and we
have, with the notations [X, Y ] = σ(X, Y ), D = (2iπ)−1∂ ,

(2.18) (a�b)(X) = 22n
∫∫

R2n×R2n
a(Y )b(Z)e−4iπ[X−Y,X−Z] dY dZ,
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(2.19) (a�b)(X) = exp(iπ [DY ,DZ])(a(Y )b(Z))|Y=Z=X.

For a ∈ S(m1, g), b ∈ S(m2, g), we have the asymptotic expansion

(2.20) a�b(x, ξ) =
∑

0≤k<p
wk(a, b)(x, ξ)+ rp(a, b)(x, ξ),

with

(2.21) wk(a, b) = 2−k ∑
|α|+|β|=k

(−1)|β|

α!β!
Dα
ξ ∂

β
x a D

β

ξ ∂
α
x b ∈ S(m1m2λ

−k
g , g),

(2.22) rp(a, b)(X) = Rp
(
a(X)⊗ b(Y )

)
|Y=X ∈ S(m1m2λ

−p
g , g),

(2.23) Rp =
∫ 1

0

(1 − θ)p−1

(p − 1)!
exp

θ

4iπ
[∂X, ∂Y ] dθ

(
1

4iπ
[∂X, ∂Y ]

)p
.

Notice w1(a, b) = 1
4iπ {a, b}, where {, } denotes the Poisson bracket, so that

the asymptotic (2.20) at p = 2 is

(2.24) a�b = ab + 1

4iπ
{a, b} + r2(a, b).

Definition 2.9 (The main distance function). Let g be an admissible
metric on R2n. Define the main distance function, for r > 0, X, Y ∈ R2n,

(2.25) δr(X, Y ) = 1 + (gσX ∧ gσY )(UX,r − UY,r ),

where UX,r is given in (2.6) and

g(U − V ) = inf
X∈U,Y∈V g(X − Y ).

Lemma 2.10 ([6, Lemma 2.2.24], Integrability of δr ). Let g be an admissible
metric with structure constants (C0, N0). Then there exist positive constants
N1 = N1(n, C0, N0), C = C(n,C0, N0) such that for all r ∈ (0, C−1/2

0 ],

(2.26) sup
X∈R2n

∫
R2n
δr (X, Y )

−N1 |gY |1/2dY ≤ C < +∞.
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Proof. Suppose r ≤ C
−1/2
0 . Using the slowness and temperance of g, for

X′ ∈ UX,r , Y ′ ∈ UY,r , T ∈ R2n, we have

(gσX ∧ gσY )(T ) ≥ C−1
0 (gσX′ ∧ gσY ′)(T )

≥ C−2
0 gσX′(T )

(
1 + (gσX′ ∧ gσY ′)(X

′ − Y ′)
)−N0

≥ C−3
0 gσX(T )

(
1 + C0(g

σ
X ∧ gσY )(X′ − Y ′)

)−N0

≥ C
−3−N0
0 gσX(T )

(
1 + (gσX ∧ gσY )(X′ − Y ′)

)−N0
.

Taking the infimum in X′ ∈ UX,r , Y ′ ∈ UY,r , we get

(2.27) gσX(T ) ≤ C
3+N0
0 δr(X, Y )

N0(gσX ∧ gσY )(T ).

We have also

gX(T )

gY (T )
≤ C2

0
gX′(T )

gY ′(T )
≤ C3

0

(
1 + (gσX′ ∧ gσY ′)(X

′ − Y ′)
)N0

≤ C3
0

(
1 + C0(g

σ
X ∧ gσY )(X′ − Y ′)

)N0

≤ C
3+N0
0

(
1 + (gσX ∧ gσY )(X′ − Y ′)

)N0
.

By taking the infimum in X′, Y ′, we get the following inequality

(2.28)
gX(T )

gY (T )
≤ C

3+N0
0 δr(X, Y )

N0 .

Then

1 + gX(X − Y ) ≤ 1 + 3gX(X −X′)+ 3gX(X
′ − Y ′)+ 3gX(Y

′ − Y )

by (2.28)≤ 3C3+N0
0 δr(X, Y )

N0
(
1 + gX(X −X′)+ gX(X

′ − Y ′)+ gY (Y
′ − Y )

)
≤ 3C3+N0

0 δr(X, Y )
N0

(
1 + 2r2 + gσX(X

′ − Y ′)
)

by (2.27)≤ 9C6+2N0
0 δr(X, Y )

2N0
(
1 + (gσX ∧ gσY )(X′ − Y ′)

)
,

so that 1 + gX(X − Y ) ≤ 9C6+2N0
0 δr(X, Y )

2N0+1. In the other hand, we have

|gY |1/2
|gX|1/2 ≤ C

n(3+N0)
0 δr(X, Y )

nN0 ,
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so that for N1 = nN0 + (n+ 1)(2N0 + 1) > 0,∫
R2n
δr (X, Y )

−N1 |gY |1/2 dY

≤ C(n,C0, N0)

∫
R2n
δr (X, Y )

−N1+nN0 |gX|1/2 dY

≤ C ′(n, C0, N0)

∫
R2n

(
1 + gX(X − Y )

)−(n+1)|gX|1/2 dY

= C ′(n, C0, N0)

∫
R2n
(1 + |Z|2)−(n+1) dZ < +∞.

The proof of the lemma is complete.

3. L2-boundedness

In this section, we prove the L2-boundedness of pseudo-differential operators
with symbol in S(1, g) and make precise the operator norms.

3.1. The constant metric case

Proposition 3.1. Suppose that g is a positive-definite quadratic form (constant
metric) on R2n with g ≤ gσ . Then there exists a constant C(n) > 0 depending
only on the dimension n such that for all a ∈ S(1, g),

‖aw‖L (L2(Rn)) ≤ C(n)‖a‖(2n+1)
S(1,g) .

Proof. Since g is a constant metric, according to Lemma 4.4.25 in [6],
there exist symplectic coordinates (x, ξ) such that

g =
∑

1≤j≤n
λ−1
j (|dxj |2 + |dξj |2), gσ =

∑
1≤j≤n

λj (|dxj |2 + |dξj |2),

with λj > 0. g ≤ gσ is expressed as

min
1≤j≤n λj ≥ 1.

As a result, we have g ≤ |dx|2 + |dξ |2 := �0, which implies S(1, g) ⊂
S(1, �0) and for all a ∈ S(1, g),
(3.1) ∀l ∈ N, ‖a‖(l)S(1,�0)

≤ ‖a‖(l)S(1,g).
By Theorem 1.1.4 in [6] and aw = (J 1/2a)(x,D), where J t is introduced in
Lemma 4.1.2 in [6], we obtain that

‖aw‖L (L2(Rn)) ≤ C(n)‖a‖(2n+1)
S(1,�0)

,
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where C(n) depends only on n. Together with (3.1), we complete the proof of
the proposition.

3.2. The general case

Theorem 3.2. Let g be an admissible metric on R2n with structure constants
(C0, N0) (see Definition 2.6). Then there exist C = C(n,C0, N0) > 0 and
l = l(n, C0, N0) ∈ N such that for all a ∈ S(1, g) (see Definition 2.3),

‖aw‖L (L2(Rn)) ≤ C‖a‖(l)S(1,g).

Proof. Using the partition in Proposition 2.5, we write

aw =
∫

R2n
awY |gY |1/2 dY,

where aY is supported inUY,r and satisfies (2.12). By Proposition 3.1, we have
supY ‖awY ‖L (L2(Rn)) ≤ C(r, n, C0, N0)‖a‖(2n+1)

S(1,g) < +∞. The following lemma
is useful.

Lemma 3.3 (Cotlar). Let H be a Hilbert space and (�,A , ν) a measured
space such that ν is a σ -finite positive measure. Let (Ay)y∈� be a measurable
family of bounded operators on H such that

sup
y∈�

∫
�

‖A∗
yAz‖1/2

L (H)
dν(z) ≤ M, sup

y∈�

∫
�

‖AyA∗
z‖1/2

L (H)
dν(z) ≤ M.

Then for all u ∈ H , we have∫∫
�×�

|〈Ayu,Azu〉H | dν(y) dν(z) ≤ M2‖u‖2
H ,

which implies the strong convergence ofA = ∫
�
Ay dν(y) and ‖A‖L (H) ≤ M .

In order to apply Cotlar’s lemma, we should estimate ‖āwY awZ‖L (L2(Rn)), i.e.,
a semi-norm of āY �aZ in S(1, gY + gZ). Indeed, the following estimate holds.

Lemma 3.4. Let g, aY be as above. For any k,N ∈ N, there exist C =
C(k,N, n) > 0, l = l(k,N, n) ∈ N such that

(3.2) ‖āY �aZ‖(k)S(1,gY+gZ) ≤ C‖āY‖(l)S(1,gY )‖aZ‖(l)S(1,gZ)δr (Y, Z)−N.

We use some biconfinement estimates, which can be found in [6, section
2.3], to prove Lemma 3.4.
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Definition 3.5 (Confined symbols). Let g be a positive-definite quadratic
form on R2n such that g ≤ gσ . Let a be a smooth function on R2n andU ⊂ R2n.
We say that a is g-confined inU , if for all k,N ∈ N, there exits Ck,N > 0 such
that for all X, T ∈ R2n,

|a(k)(X)T k| ≤ Ck,Ng(T )
k/2

(
1 + gσ (X − U)

)−N/2
.

We denote

(3.3) ‖a‖(k,N)g,U = sup
X,T ∈R2n,g(T )=1

|a(k)(X)T k|(1 + gσ (X − U)
)N/2

,

and

(3.4) |||a|||(l)g,U = max
k≤l ‖a‖(k,l)g,U .

Theorem 3.6 ([6, Theorem 2.3.2], biconfinement estimate). Let g1, g2 be
two positive-definite quadratic forms on R2n such that gj ≤ gσj . Let aj , j = 1, 2
be gj -confined in Uj , a gj -ball of radius ≤ 1. Then for all k,N ∈ N, for all
X, T ∈ R2n,

(3.5) |(a1�a2)
(k)(X)T k|

≤ Ak,N(g1 + g2)(T )
k/2

(
1 + (gσ1 ∧ gσ2 )(X−U1)+ (gσ1 ∧ gσ2 )(X−U2)

)−N/2
,

with Ak,N = γ (k,N, n)|||a1|||(l)g1,U1
|||a2|||(l)g2,U2

, l = 2n+ 1 + k +N .

Now we begin the proof of Lemma 3.4.

Proof of Lemma 3.4. The symbol aY is gY -confined in UY,r , since aY is
supported in the gY -ball UY,r . Moreover, we have

∀k,N ∈ N, ‖aY‖(k,N)gY ,UY,r
= sup

X∈UY,r ,T ∈R2n,gY (T )=1
|a(k)(X)T k|,

∀l ∈ N, |||aY |||(l)gY ,UY,r = max
k≤l ‖aY‖(k,l)gY ,UY,r

= ‖aY‖(l)S(1,gY ).

Applying (3.5) to āY �aZ and using the triangular inequality

(gσY ∧ gσZ)(X − UY,r )+ (gσY ∧ gσZ)(X − UZ,r) ≥ 1

2
(gσY ∧ gσZ)(UY,r − UZ,r),

we get

|(āY �aZ)(k)(X)T k| ≤ γ (k,N, n)‖āY‖(l)S(1,gY )‖aZ‖(l)S(1,gZ)(gY + gZ)(T )
k/2

× (
1 + 1

2 (g
σ
Y ∧ gσZ)(UY,r − UZ,r)

)−N/2
.
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Using the definition of the distance δr , we complete the proof of Lemma 3.4.

End of the proof of Theorem 3.2. Now by Proposition 3.1, Lemma 3.4
and the estimate (2.12), we obtain that for any N > 0, there exists l =
l(N, n) ∈ N such that

‖āwY awZ‖L (L2(Rn)) ≤ C(n)‖āwY awZ‖(2n+1)
S(1,gY+gZ)

≤ C(N, n)‖āY‖(l)S(1,gY )‖aZ‖(l)S(1,gZ)δr (Y, Z)−N

≤ C(N, n,C0)
(‖a‖(l)S(1,g))2

δr(Y, Z)
−N

The same inequality holds for aY �āZ . Choose N = 2N1, where N1 is given in
(2.26), so that

max
{‖āwY awZ‖1/2

L (L2(Rn)), ‖awY āwZ‖1/2
L (L2(Rn))

} ≤ C‖a‖(l)S(1,g)δr (Y, Z)−N1 ,

where C = C(n,C0, N1) > 0, l = l(n,N1) ∈ N. Then together with
Lemma 2.10, the assumptions of Cotlar’s lemma are fulfilled with M =
C‖a‖(l)S(1,g), and this completes the proof of Theorem 3.2.

4. Fefferman-Phong inequality

In this section, we prove that the constant in the Fefferman-Phong inequality
depends only on the structure constants of the metric and a fixed semi-norm
of the symbol.

Theorem 4.1 (Fefferman-Phong inequality). Let g be an admissible metric
on R2n with structure constants (C0, N0) (see Definition 2.6). Let a be a non-
negative symbol in S(λ2

g, g) (see Definition 2.3 and (2.17)). Then the operator
aw on L2(Rn) is semi-bounded from below. More precisely, there exist l =
l(n, C0, N0) ∈ N, C = C(n,C0, N0) > 0 such that

(4.1) aw + C‖a‖(l)
S(λ2

g,g)
≥ 0.

4.1. The constant metric case

For the constant metric case, we use the results of Sjöstrand and refer the
readers to [6, page 116] for the detailed proof.

Let 1 = ∑
j∈Z2n χ0(X − j) be a partition of unity, χ0 ∈ C∞

c (R
2n). Denote

χj (X) = χ0(X − j).

Proposition 4.2 ([6, Proposition 2.5.6]). Suppose a ∈ S (R2n). We say that
a belongs to the class A ifωa ∈ L1(R2n), withωa(�) = supj∈Z2n |F (χja)(�)|,
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where F is the Fourier transform. We have

S0
0,0 ⊂ S0,0;2n+1 ⊂ A ⊂ C0(R2n) ∩ L∞(R2n),

where S0
0,0 = C∞

b (R
2n) is the space ofC∞ functions on R2n which are bounded

as well as all their derivatives, S0,0;2n+1 is the set of functions defined on R2n

such that |(∂αξ ∂βx a)(x, ξ)| ≤ Cαβ for |α|+|β| ≤ 2n+1. A is a Banach algebra
for the multiplication with the norm ‖a‖A = ‖ωa‖L1(R2n).

Theorem 4.3 ([6, Theorem 2.5.10]). For all non-negative function a defined
on R2n satisfying a(4) ∈ A , then the operator aw is semi-bounded from below.
More precisely,

aw + Cn‖a(4)‖A ≥ 0,

where Cn depends only on the dimension n.

4.2. Proof of Theorem 4.1

We shall use the partition of unity (ϕY )Y∈R2n given in Theorem 2.4. Let
(ψY )Y∈R2n be a family of real-valued functions supported in UY,2r , equal to
1 on UY,r and

(4.2) sup
Y∈R2n

‖ψY‖(k)S(1,g) ≤ C(k, r, C0).

Indeed, with the same notations as in the proof of Theorem 2.4, the function
ψY (X) = χ0

(
1
2 r

−2gY (X−Y )) satisfies the requirements. Then withaY = ϕY a,
we write

(4.3) ψY �aY �ψY = aY + rY .

Lemma 4.4 (Estimate for rY ). For all k,N ∈ N, there exist C = C(k,N,

C0) > 0, l = l(k,N,C0) ∈ N such that for all X ∈ R2n, T ∈ R2n with
gY (T ) ≤ 1,

(4.4) |r(k)Y (X)T k| ≤ C‖aY‖(l)S(λg(Y )2,gY )
(
1 + gσY (X − UY,2r )

)−N
.

Moreover, there exist C1 = C1(n, C0, N0) > 0, l1 = l1(n, C0, N0) ∈ N such
that

(4.5)

∥∥∥∥
∫

R2n
rwY |gY |1/2dY

∥∥∥∥
L (L2(Rn))

≤ C1‖a‖(l1)S(λ2
g,g)
,

To prove Lemma 4.4, we use the biconfinement estimate for the remainders,
the proof of which can be found in [6, section 2.3].
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Theorem 4.5 ([6, Theorem 2.3.4], biconfinement estimate). Let g1, g2 be
two positive-definite quadratic forms on R2n with gj ≤ gσj . Let aj , j = 1, 2 be
gj -confined in Uj , a gj -ball of radius ≤ 1. Recall (2.20)

rp(a1, a2)(X)

= (a1�a2)(X)−
∑

0≤k<p

1

j !

(
iπ [DX1 ,DX2 ]

)j (
a1(X1)a2(X2)

)
|X1=X2=X.

Then for all k, l, p ∈ N, for all X, T ∈ R2n, we have

(4.6)
∣∣(rp(a1, a2)

)(k)
(X)T k

∣∣ ≤ Ak,N,p(g1 + g2)(T )
k/2�

−p
1,2

× (
1 + (gσ1 ∧ gσ2 )(X − U1)+ (gσ1 ∧ gσ2 )(X − U2)

)−N/2

withAk,N,p = C(k,N, p, n)|||a1|||(l)g1,U1
|||a2|||(l)g2,U2

, l = 2n+1+k+p+N and

(4.7) �1,2 = inf
T ∈R2n,T �=0

(
gσ1 (T )

g2(T )

)1/2

= inf
T ∈R2n,T �=0

(
gσ2 (T )

g1(T )

)1/2

.

Now we use Theorem 4.5 to prove Lemma 4.4.

Proof of Lemma 4.4. By the asymptotic formula (2.24), we have

ψY�aY = aY + 1

4iπ
{ψY , aY }︸ ︷︷ ︸

=0

+r2(ψY , aY ),

since ψY = 1 on the support of aY . The symbol ψY is gY -confined in UY,2r
and aY is gY -confined in UY,r , and moreover, we have

∀l ∈ N, |||ψY |||(l)gY ,UY,2r = ‖ψY‖(l)S(1,gY ),
|||aY |||(l)gY ,UY,r = λg(Y )

2‖aY‖(l)S(λg(Y )2,gY ).
Applying (4.6) to r2(ψY , aY ), we have for all k,N ∈ N, there exist C(k,N,
n) > 0, l(k,N, n) ∈ N such that for all X, T ∈ R2n,

(4.8)
∣∣(r2(ψY , aY ))(k)(X)T k∣∣

≤ C(k,N, n)|||ψY |||(l)gY ,UY,2r |||aY |||(l)gY ,UY,r gY (T )k/2�−2
1,2

(
1 + gσY (X−UY,2r )

)−N

≤ C(k,N, n)‖ψY‖(l)S(1,gY )‖aY‖(l)S(λg(Y )2,gY )gY (T )k/2
(
1 + gσY (X − UY,2r )

)−N
,

noticing here�1,2 defined in (4.7) is equal to λg(Y ). An analogous estimate as
(4.8) holds for r2(aY , ψY ). In our case, we write rY , which is defined in (4.3),

rY = (ψY �aY − aY )�ψY + (aY �ψY − aY ) = r2(ψY , aY )�ψY + r2(aY , ψY ).
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Then the estimate (4.4) follows from (4.8) and (3.5). Furthermore, for any
k,N ∈ N, there exist C = C(k,N, n, C0) > 0, l = l(k,N, n, C0) ∈ N such
that

‖r̄Y �rZ‖(k)S(1,gY+gZ) ≤ C‖aY‖(l)S(λg(Y )2,gY )‖aZ‖(l)
S(λg(Z)2,gZ)

δ2r (Y, Z)
−N.

Thus we can apply Cotlar’s lemma and get the estimate (4.5).

Lemma 4.6 (Estimate for ψY ). For all k,N ∈ N, there exist C = C(k,N,

C0) > 0, l = l(k,N,C0) ∈ N such that for all X ∈ R2n, T ∈ R2n with
gY (T ) ≤ 1,

(4.9) |(ψY �ψY )(k)(X)T k| ≤ C
(‖ψY‖(l)S(1,gY ))2(

1 + gσY (X − UY,2r )
)−N

.

Moreover, there exists C2 = C2(n, C0, N0) > 0 such that

(4.10)

∥∥∥∥
∫
ψw
Y ψ

w
Y |gY |1/2 dY

∥∥∥∥
L (L2(Rn))

≤ C2.

Proof. The inequality (4.9) follows immediately from (3.5). And it follows
from (3.5), (4.2) and (4.9) that for all k,N ∈ N,

‖(ψY �ψY )�(ψZ�ψZ)‖(k)S(1,gY+gZ) ≤ Cδ2r (Y, Z)
−N,

for some C = C(k,N, n, C0) > 0. Then by choosing N = 2N1 and using
Cotlar’s lemma, we get the estimate (4.10).

End of the proof of Theorem 4.1. The symbol aY is non-negative
and uniformly in S(λg(Y )2, gY ), so that we can apply the Fefferman-Phong
inequality (Theorem 4.3) for the constant metric gY to get

awY + C(n)‖aY‖(l(n))S(λg(Y )2,gY )
≥ 0.

By Proposition 2.5 and Lemma 2.8, we have

‖aY‖(l(n))S(λg(Y )2,gY )
≤ C(n,C0, N0)‖a‖(l(n))S(λ2

g,g)
,

so that

(4.11) awY + C3‖a‖(l(n))S(λ2
g,g)

≥ 0.
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where C3 = C3(n, C0, N0) > 0, l(n) ∈ N are constants. Combining (4.3),
(4.5), (4.10) and (4.11), we obtain

aw =
∫

R2n
awY |gY |1/2 dY

=
∫

R2n
ψw
Y a

w
Y ψ

w
Y |gY |1/2 dY −

∫
R2n
rwY |gY |1/2 dY

≥ −C3‖a‖(l(n))S(λ2
g,g)

∫
R2n
ψw
Y ψ

w
Y |gY |1/2 dY − C1‖a‖(l1)S(λ2

g,g)

≥ −C‖a‖(l)
S(λ2

g,g)
,

for some C = C(n,C0, N0) > 0 and l = l(n, C0, N0) ∈ N. The proof of
Theorem 4.1 is complete.
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