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STRUCTURE CONSTANTS OF THE
WEYL CALCULUS

WEN DENG

Abstract

We find some explicit bounds on the .# (L?)-norm of pseudo-differential operators with symbols
defined by a metric on the phase space. In particular, we prove that this norm depends only on the
“structure constants” of the metric and a fixed semi-norm of the symbol. Analogous statements
are made for the Fefferman-Phong inequality.

1. Introduction

The class of symbols S}’ consists of smooth functions a defined on the phase
space R" x R" such that for all multi-indices «, 8,

.1 (F0fa)(x, £)] < Cap(l+[E])" .

The best constants Cy g in (1.1) are called the semi-norms of the symbol a in
the Fréchet space S7". We have

PrOPERTY 1.1. If g isin S(l),O’ then a(x, D) defines a bounded operator on
L*(R™).

One might ask some very natural questions: the operator norm
la(x, D)l #2&m) is bounded by which constant? Is it a semi-norm of the
symbol a? If yes, then which semi-norm? Questions of the same type might
be asked for the constant C in the following inequality:

PropERrTY 1.2 (Fefferman-Phong inequality). If a is a non-negative symbol
belonging to 512’0, then there exists C > 0 such that, for all u € & (R"),

(1.2) Re(a(x, D)u, u)2@ny + Cllull72 gy > 0.

We can pose similar questions in many other examples of classes of symbols,
such as the semi-classical symbols, Shubin’s class, etc. As a particular example,
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the class ™, defined as the set of smooth functions @ on R” x R" x RT such
that for all multi-indices «, S,

(1.3) Vx,& €R", T €R", [(BF8fa)(x,& )| < Cap(l + 1§ +1)" ",

is useful for Carleman estimates. One would like to check the Property 1.1 and
Property 1.2 independent of the parameter 7.

Several authors like Bony [1], Boulkhemair [3], Lerner-Morimoto [7], have
already considered these questions and they were able to identify the constants.
The constants in Properties 1.1, 1.2 are always a constant C,, times a semi-norm
of the symbol, whose order depends only on the dimension #n. Although the
problem is well-understood for a single class of pseudo-differential calculus,
including the class S(m, g) developed by Hormander, we want to address a
more general and useful question, having in mind the class X" depending on
the non-compact parameter T > 0 which is defined in (1.3) and is useful for
Carleman estimates.

In this paper, we consider the Weyl quantization for pseudo-differential
operators and we choose the framework with a metric g on the phase space.
The metric g is assumed to be admissible, that is slowly varying, satisfying
the uncertainty principle and is temperate (see Definition 2.1, 2.6 below). The
so-called structure constants of g are closely related to these properties. We
can define very general classes of symbols S(m, g) attached to the metric g
and a g-admissible weight m (see Definition 2.3) and we have an effective
symbolic calculus. The following results are classical: (see [5, chapter 18], [6,
chapter 2])

(1.4) L*-boundedness: a € S(1, g) = lla” | 2@y < C,
(1.5)  Fefferman-Phong: a € S(}2,g), a>0=a"+C > 0.

The question that we would like to address is the following: what happens if
we change the metric g but keep the same structure constants?

We intend to show that the constants involved in (1.4), (1.5) depend only
on the structure constants of the metric g and a fixed semi-norm of a. Since
it may happen that the metric g depends on a non-compact parameter with
uniform structure constants (e.g. the class X™), this fact is useful explicitly or
implicitly in many examples where these metrics are used and it seems useful
to rely on a more stable argument than referring to “inspection of the proofs”.

REMARK 1.3. An abstract functional analysis argument does not seem to
work. Our method is to follow the proofs, by carefully computing all the
constants.
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2. Metric on the phase space

In this section, we introduce the definitions of the admissible metric and exhibit
its properties. We use the Weyl quantization which associates to a symbol a
the operator a* defined by

(2.1 (@u)(x) = // ezl‘”(*‘—”fa(#, S)u(y)dy dg.

Consider the symplectic space R equipped with the symplectic form o =
Y71 d&7 ndx/. Given a positive-definite quadratic form I' on R*", we define

(2.2) [°(T) = sup o(T,Y),
r(y)=1
which is also a positive-definite quadratic form. Let g be a measurable map

from R2" into the cone of positive-definite quadratic forms on R?" i.e., foreach
X € R?, gy is a positive definite quadratic form on R*".

DEFINITION 2.1 (Slowly varying metric). We say that g is a slowly varying
metric on R?", if there exists Cop > 1suchthatforall X,Y, T e R,

gx(T) -

2.3 X-Y)<Cl'l=cCl< <
(2.3) gx( ) 0 0 o ()

Co.

DErFINITION 2.2 (Slowly varying weight). Let g be a slowly varying metric
on R?". A function m:R*" — (0, +00) is called a g-slowly varying weight if
there exists jt,, > 1 such that for all X, Y € R**,

2.4) oV = X) < pt =t < MO
my)

DEFINITION 2.3 (Class of symbols). Let g be a slowly varying metric on R*”
and m be a g-slowly varying weight. The class of symbols S(m, g) is defined
as the subset of functions @ € C*°(R?") satisfying that for all k € N, there
exists C; > 0 such that forall X, 71, ..., Ty € R,

a® X)(T1, ..., Tl < Cem(X) [ ex(@)'.
1<j<k

Fora € S(m, g),1 € N, we denote

1 _
25)  lal ey =max  sup  [a®COT, ..., Tolm() ™
0<k<l X,TjeR?gx(T)=1
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The space S(m,g) equipped with the countable family of semi-norms
(II-II(SI()ng))ZeN is a Fréchet space.

For a slowly varying metric g on the phase space R*", we can introduce
some partition of unity related to g. Define the g-ball near X € R*"

(2.6) Ux, =1{Y, gx(X —Y) <r?},

we have the following theorem, which is Theorem 2.2.7 in [6].

THEOREM 2.4 (Partition of unity). Let g be a slow§y varying metric on R*
and Cy > 0 given in (2.3). Then for all r € (0, C(;l 2], there exists a family
(¢y)yer Of smooth functions supported in Uy, such that

2.7) Vk e N, sup llgyllg,, < C(k.r.n, Co),
Y eR?

2.8) VX € R, / o Xlgy Py = 1,
R n

where C(k, r,n, Cy) is a positive constant depending only on k, r,n, Cy and
|gy| is the determinant of gy with respect to the standard Euclidean norm.

PROOF. As in the proof of Theorem 2.2.7 in [6], let xo € C3°(Ry; [0, 1])
non-increasing such that xo(¢) = lont < 1/2, xo(t) = 0ont > 1. Define
for r € (0, Cy /1,

o(X, r) = / ro(r e (X =) ey ay.
R”

=wy (X)

Since wy (X) is supported in Uy, and xo is non-increasing, by (2.3) we have

o(X,r) > f ol Cogx (X = )Gy x| Y
R n

_ /R (2P dzcg e,

and an estimate from above of the same type, i.e., there exists a positive constant
C; = Cy(r, n, Cy) such that

Ci'<oX,r)<C.

Now let us check the derivatives of wy (X). Using the notation (,)y the inner-
product associated to gy, we have

Wy (XOT = x5 (r*gy(X = V))r (X — Y, T)y,
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and by induction, fork > 1, T € R, a);k) (X)T* is a finite sum of terms of
type

2.9  cpux (r ey (X = V) (X — Y, T)Y T an (TP,

where ¢, 1 is a constant depending only on p, k and p € [k/2, k] N N. Since

the support of X(p ) is included in [0, 1] and r2 < Coy ! the term (2.9) can be
bounded from above by

_ — k/2
Cpallx” =2 (r2) @R C P gy (T)2,
so that for all k > 1, [0 (X)T*| < C(k, r, Co)gx(T)*2. This implies that
wy isin S(1, g) and moreover,

(2.10) VkeN, sup lloyl§),, < Ck, 1 Co).
Y eR2

Now we choose a non-negative function x; € C5°(Ry; [0, 1]) suchthat x;(¢) =
lont <1, then

|a)(k)(X, r)Tk| =

/ oy COT xa(r gy (X = 1) lgy |2 dY
R n

A

sup lloy | &) o gx (T f (e X = 1)lgy |
Rn

YERZ"
E C(k9 r,n, CO)gX(T)k/zy

which implies that w(-,r) is a symbol in S(1, g) with ||w(-,r)||(sk()1,g) <

C’'(k, r,n, Cp). Since w is bounded from below by Cl_l, the function w (-, r) ™!
is alsoin S(1, g) and

(2.11) lo (1), < C (k.. n, Co).

We define i
py(X) = wy(Xo(X,r)",

then the estimate (2.7) follows from (2.10), (2.11) and moreover, the family
(¢y)yere satisfies the requirements of Theorem 2.4.

A direct consequence of Theorem 2.4 is the following.

PROPOSITION 2.5. Let g be a slowly varying metric on R and m be a g-
slowly varying weight. Let Cy, (,, be given in (2.3), (2 4) respectively. Let a
be a symbol in S(m, g). Then for all 0 < r < min(C,, m1/2),

a(X) = / ay (X)lgr' av,

R2n
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where ay has support included in Uy, and

k k
(2.12)  VkeN, sup llayll§o, e < Ck. . Con, i) @l -
Y eR2

Proor. Define ay(X) = a(X)py(X). Since ¢y is supported in Uy ,, we
have, fork > 0, X € Uy,, T € R™,

k
f k1 _
lay) (X)TX| = Z <l>a(1)(X)Tl.(p<Y )(X)Tr!
0<l<k
! k-1 _
< Z Ck,l”a||fg()m’g)m(X)gX(T)l/2”¢Y||g(l’;)gX(T)(k n/2
0<i<k

k k
< CIR)all§g o lor IS, mX)gx(T)/?

k/2 k k
< COOunCo 2 llally, o lovll§h. o m¥)gy (T2,

which completes the proof.

For two positive-definite quadratic forms I';, T'; on R?", the harmonic mean
['1 ATy is defined by

(2.13) LA, =207+ H71,

which is also a positive-definite quadratic form on R*".

DEFINITION 2.6 (Admissible metric). We say that g is an admissible metric
on R? if g is slowly varying (see Definition 2.1) and there exist C; > 0,
Np € N such that for all X, Y, T € R*,

(2.14) uncertainty principle gx(7T) < g%(T),
(2.15) temperance gx(T) < Cigy(T)(1 + (g% A g7)(X — Y))N°,

where g is given by (2.2) and A given by (2.13).

We may suppose C{, = Cy in the sequel, where C is given in (2.3). Then the
constants (Co, No) appearing in (2.3), (2.15) are called the structure constants
of the metric g.

DEFINITION 2.7 (Admissible weight). Suppose that g is an admissible met-
ric on R, A function m:R* — (0, +00) is called a g-admissible weight if
m is a g-slowly varying weight (see Definition 2.2) and there exist u,, > 0,
v € N such that for all X, Y € R*",

(2.16) m(X) < wam¥)(1+ (g% A gP(X —1))™.
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The constants (., v;;) appearing in (2.4), (2.16) are called the structure con-
stants of the g-admissible weight m.

Let g be an admissible metric on R**. We define for X € R*",

(M2
(2.17) )»g(X)—%I;léf;)<gX(T)) .

Then the uncertainty principle (2.14) can be expressed by

gx < he(X)728%,  Ag(X) > 1.

LEMMA 2.8 ([6, Remark 2.2.17]). Forany s € R, A, is an admissible weight,
with structure constants (i A5 v)\.;) in (2.4), (2.16) depending only on the struc-
ture constants of the metric g (Co, Ny).

Proor. We first verify that 43 is a g-slowly varying weight. For gx (X —
Y) < C,', T € R*, we have

Co'gx(T) < gr(T) < Cogx(T), Cy'g%(T) < g7 (T) < Cogk(T),
which implies . - o
c;? 8x(T) < gy(T) < gX(T).

gx(T) — gv(T) gx(T)

Taking the infimum with respect to 7', we get

Co 2 hg(X)? < Mg (Y)? < Cihe(X)7,
so that A, is g-slowly varying with w;, = Co and so is Ay, with ;, = C(‘)S‘.
Next we check that A; is temperate. We have forall X, Y, T € R2",

ex(T) = Cy'ev(T) (1 + (8 A g)(X — 1)) ™,
g3(T) < Cogy(T)(1+ (g5 A g9)(X — V)™,
which gives
2N0

A (X)? < Cor (V) (14 (8% A gP)(X = 1))

Thus A, is temperate with v;, = Ny and so is Ay with Vi = |s|No. This
completes the proof of Lemma 2.8.

The composition affb of two symbols is defined by a*b* = (aftb)” and we
have, with the notations [X, Y] = o (X, Y), D = 2in)~'d,

(2.18) (atth)(X) = 2% / / a(Y)b(Z)e XY X=Z1 gy 47,
R2" x R2"
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(2.19) (ab)(X) = exp(in [Dy, Dz (a(Y)b(Z))y=z=x.

Fora € S(my, g), b € S(m,, g), we have the asymptotic expansion

(2.20) ath(x,£) = Y wi(a, b)(x, &) + rypa, b)(x, ),

O<k<p
with
(— DAl
(2.21) wi(a,b) =27* Z DY3%a DP3%b € S(mymarT*, g),
!Bl &"x & x g
lee]+1B1=k o
(2.22) rp(a, b)(X) = Ry(a(X) @ b(Y)),,_, € Stmimar, ", g),
(2.23) R La-er i [9y, dy]1d0 ! [0y, dy] ’
. = —exXp — , —_— s .
P= )y Tp—nr TP I i

Notice wy(a, b) = #{a, b}, where {, } denotes the Poisson bracket, so that
the asymptotic (2.20) at p = 2 is

1
(2.24) atth = ab + —/{a, b} + ry(a, b).
dim

DEFINITION 2.9 (The main distance function). Let g be an admissible
metric on R?". Define the main distance function, for » > 0, X, Y € R,

(2.25) 5(X,Y) =1+ (g% A gy)(Ux, — Uy,),
where Uy , is given in (2.6) and
- = inf X-Y).
g(U V) XE%JI,lYeVg( )
LEmMA 2.10 ([6, Lemma 2.2.24], Integrability of §,). Let g be an admissible

metric with structure constants (Cy, Ny). Then there exist positive constants
Ny = Ny(n, Co, Np), C = C(n, Co, No) such that for all r € (0, Cy "],

(2.26) sup / 5-(X,Y) ™ M|gy|V?dY < C < +o0.
R2n

XeR
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ProoF. Suppose r < C, 12, Using the slowness and temperance of g, for
X' e Ux,,Y €Uy,, T € R¥, we have

(8% A 8T = Cq' (g% A gy)(T)
> Co 8% (T (1 + (g% A gy (X —¥)) ™™
> Ci2 g (T (1 + Co(gy A g (X —Y)) ™™
> Co 3 Mg (T (14 (5 A g (X —Y)) ™.
Taking the infimum in X’ € Uy, Y’ € Uy,,, we get

(2.27) g5(T) < Cy™™ s, (X, V)M (g% A g9)(T).

We have also

gX(T) 2gX/(T) 3 o I / N\ No

Ci(l + , WX —-Y

o (D) = C0 gy = Coll+ (8% A g (X = 1) N
< Cy(1+ Colgx A gP)(X' = Y")™

o o ’ INYAL
< Cy™(1+ (gg A g (X —Y))™.
By taking the infimum in X', Y’, we get the following inequality

sx(D) _ Cats,(X, )M,

2.28
(229 gr(T) —

Then

1+gx(X—Y) <143gx(X —X')+3gx(X' —Y") +3gx(Y' = Y)

by (2.28) , ,
< 308 (X, V)M (14 gx(X — X) + gx(X' = Y') + gy (Y = Y))

<3Cy ™8, (X, V)V (14277 + g3(X = 1))

by (2.27)
< 905, (X, V)M (14 (8% A g9 (X = 1)),

sothat 1 + gx(X —Y) < 9C8+2N°8, (X, Y)*Mo*1 In the other hand, we have

gy |'/? n(3+No) nNo
W <C, 5 (X, Y)",
X
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so that for Ny = nNy+ (n + 1)(2Ny + 1) > 0,
/ 5,(X, ¥) M |gy 12 dY
RZn

< C(n, Co, No>f 8,(X, Y) Nt gy |12 gy
R2n

—(n+1
< C'n.Co.No) | (14 gx(X — 1)) D1 ex V2 dy
RV[

= C'(n, Cy, No)/ 1+1Z»H~" "V 4z < +00.
RZn

The proof of the lemma is complete.

3. L2-boundedness

In this section, we prove the L2-boundedness of pseudo-differential operators
with symbol in S(1, g) and make precise the operator norms.

3.1. The constant metric case

PrOPOSITION 3.1. Suppose that g is a positive-definite quadratic form (constant
metric) on R*" with g < g°. Then there exists a constant C (n) > 0 depending

only on the dimension n such that for alla € S(1, g),
2n+1
la” | 2@y < C@llalls).

PRrROOF. Since g is a constant metric, according to Lemma 4.4.25 in [6],
there exist symplectic coordinates (x, &) such that

g= Y A dx P +1dg ). g7 = Y adx* +1dgl?).
l<j=n l<j=n
with A; > 0. g < g7 is expressed as

min A; > 1.

1<j=n
As a result, we have g < |dx|> + |d&|?> := Ty, which implies S(1,g) C
S(1, Ty) and for all @ € S(1, g),

I 1
(3.1) VieN, lall§r, < lalsy -

By Theorem 1.1.4 in [6] and a¥ = (J'2a)(x, D), where J' is introduced in
Lemma 4.1.2 in [6], we obtain that

2n+1
la® L7z = COnllaliSy ),
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where C(n) depends only on n. Together with (3.1), we complete the proof of
the proposition.

3.2. The general case

THEOREM 3.2. Let g be an admissible metric on R*" with structure constants
(Co, No) (see Definition 2.6). Then there exist C = C(n, Cy, Ng) > 0 and
[l =1, Cy, No) € N such that for all a € S(1, g) (see Definition 2.3),

0
la® |l z2mny = Cllallg g

Proor. Using the partition in Proposition 2.5, we write

a¥ = / a,lﬁ’|gy|1/2dY,
R2n

where ay is supported in Uy, and satisfies (2.12). By Proposition 3.1, we have

supy llay | g2@nyy < C(r, n, Co, N0)||a||§2(r{21)) < 400. The following lemma

is useful.

LemMA 3.3 (Cotlar). Let H be a Hilbert space and (2, </, v) a measured
space such that v is a o -finite positive measure. Let (A,),cq be a measurable
Sfamily of bounded operators on H such that

1/2 1/2
sup / IATA: NS5y dv(z) < M, sup / 1Ay ALl Sy dV(2) < M.
yEQ JQ yeQJQ

Then for allu € H, we have
// [(Ayu, Azu) | dv(y) dv(z) < MP||ul,,
QxQ

which implies the strong convergence of A = fQ Aydv(y)and ||Allzmy < M.

In order to apply Cotlar’s lemma, we should estimate ||ay ay || #(12 k), i€,
a semi-norm of aytlaz in S(1, gy + gz). Indeed, the following estimate holds.

LEMMmA 3.4. Let g, ay be as above. For any k, N € N, there exist C =
Ck,N,n)>0,1l=I1(k,N,n) € N such that

- k - 1 1 —N
(3.2) lay8az Iy ¢+ < Clarlis o llazllsh o, (Y. Z)7.

We use some biconfinement estimates, which can be found in [6, section
2.3], to prove Lemma 3.4.
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DEerINITION 3.5 (Confined symbols). Let g be a positive-definite quadratic
form on R? such that g < g°. Let a be a smooth function on R*" and U C R?".
We say that a is g-confined in U, if for all k, N € N, there exits Cy y > 0 such
that for all X, T € R?",

a®COTH < Cong(MY2(1+g° (X — 1)) "2,
We denote
. N/2
(3.3) lal%" = sup @R COTH(1+ g7 (X - U)",
X,TeR¥,g(T)=1
and
(34) llallgy = max a5

THEOREM 3.6 ([6, Theorem 2.3.2], biconfinement estimate). Let g1, g2 be
two positive-definite quadratic forms on R*" such that g =< gj‘.’. Letaj, j =1,2
be g;-confined in U;, a gj-ball of radius < 1. Then for all k, N € N, for all
X, T € R™,

(3.5) |(a1ta)® (X)T*|
< Ae (g1 + ) (T (1+ (&7 A gd)(X = Up) + (87 A g (X —U)) 2,

with Ay = vk, N.mllaillS) y llaallS) o 1 =2n+ 1+ k+ N.

Now we begin the proof of Lemma 3.4.

ProoF oF LEMMA 3.4. The symbol ay is gy-confined in Uy,,, since ay is
supported in the gy-ball Uy .. Moreover, we have

kN k k
Yk, N €N, layllyh) = sup a® )T,
' XeUy,,TeR gy (T)=1
0) (k,l) 0
VIeN, llayll,, v, = max laylly, v, = laylisi g)-

Applying (3.5) to ayflaz and using the triangular inequality

1
(gy NgH(X —Uy,) +(gy Ng)(X = Uyz,) > 5(8? ANg) Wy, —Uz,),
we get
@ytaz)® (XOT <y, N.m)lay I}, , llazll§) ., (8y + 82)(T)*/?

o o —N/2
x (14 L(g5 A g3) Uy, —Uz)) "
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Using the definition of the distance §,, we complete the proof of Lemma 3.4.

END OF THE PROOF OF THEOREM 3.2. Now by Proposition 3.1, Lemma 3.4
and the estimate (2.12), we obtain that for any N > 0, there exists [ =
[(N, n) € N such that

—w W —w __w2n+1)
”ayaz ”J(LZ(R")) =< C(")”ayaz ||5(1,gy+gz)

<IN, mlay L, . lazlL, sy, )N

S(1,gy) S(1,g2)
[ 2 _
< C(N.n, Co)(llall§yy ) 8- (¥, 2)™N

The same inequality holds for ayfiaz. Choose N = 2N}, where N is given in
(2.26), so that

1/2

| 1/2
ZL(L*(R"))

max{ @y ay | g2y layay | } < Cllall§y 8-(v, )7,
where C = C(n,Cy, N;) > 0,1 = Il(n, N;) € N. Then together with
Lemma 2.10, the assumptions of Cotlar’s lemma are fulfilled with M =
Clla ||(Sl()1’ 2 and this completes the proof of Theorem 3.2.

4. Fefferman-Phong inequality

In this section, we prove that the constant in the Fefferman-Phong inequality
depends only on the structure constants of the metric and a fixed semi-norm
of the symbol.

THEOREM 4.1 (Fefferman-Phong inequality). Let g be an admissible metric
on R*" with structure constants (Co, Ny) (see Definition 2.6). Let a be a non-
negative symbol in S(\2, g) (see Definition 2.3 and (2.17)). Then the operator
a® on L*(R") is semi-bounded from below. More precisely, there exist | =
I(n, Cy, Ng) €N, C = C(n, Cy, Ny) > 0 such that

(4.1) a" + Clallg; ,, = 0.

4.1. The constant metric case

For the constant metric case, we use the results of Sjostrand and refer the
readers to [6, page 116] for the detailed proof.

Letl = Z‘iezzn Xo(X — j) be a partition of unity, xo € CfO(RZ”). Denote
%X = xo(X — ).

PROPOSITION 4.2 ([6, Proposition 2.5.6]). Supposea € & (R*"). We say that
a belongs to the class o ifw, € L' (R*), withw,(E) = SUp; ez |F (xja)(B),
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where & is the Fourier transform. We have
So.0 C So.0:2n41 C & C CO(R™) N L¥(R™),

where S(()),o = C°(R®) is the space of C*™ functions on R*" which are bounded
as well as all their derivatives, Sy .2n41 is the set of functions defined on R*"
such that |(8§‘8}?a)(x, &) < Copforlal+I|B| < 2n+1. o is a Banach algebra
for the multiplication with the norm ||a|| o = ||wall L1 o).

THEOREM 4.3 ([6, Theorem 2.5.10]). For all non-negative function a defined
on R* satisfying a®¥ € o/, then the operator a® is semi-bounded from below.

More precisely,
a’ + Cylla® = 0,

where C,, depends only on the dimension n.

4.2. Proof of Theorem 4.1

We shall use the partition of unity (¢y)yecg» given in Theorem 2.4. Let
(Yy)yer be a family of real-valued functions supported in Uy, equal to
1 on Uy, and

(4.2) sup 19yl ) = C k.7, Co).
Y erR*"

Indeed, with the same notations as in the proof of Theorem 2.4, the function
Yy (X) = xo (%r‘zgy (X— Y)) satisfies the requirements. Then withay = ¢ya,
we write

(4.3) Yyllayfyy = ay +ry.

LEMMA 4.4 (Estimate for ry). For all k, N € N, there exist C = C(k, N,
Co) > 0,1 = I(k, N,Co) € N such that for all X € R*, T e R> with
gv(T) =1,

- -N
@4 IR COTH = Cllaylly e g, (1 + 87X = Ur2))

Moreover, there exist C; = Ci(n, Co, Ng) > 0, 1 = [;(n, Cy, Ng) € N such
that

4.5) ‘

12 o)
/ rylgyl" dYH < Cillaliggz -
R L(L2RY) ¢

To prove Lemma 4.4, we use the biconfinement estimate for the remainders,
the proof of which can be found in [6, section 2.3].
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THEOREM 4.5 ([6, Theorem 2.3.4], biconfinement estimate). Let g, g, be
two positive-definite quadratic forms on R*" with g =g Leta;, j=1,2be
gj-confined in U;, a gj-ball of radius < 1. Recall (2.20)

rp(ar, az)(X)

1 .
= (@ta)(X) — Y —(i7[Dx,, Dx,]) (a1 (X1)a2(X2)) 1y, _y,_x-
O<k<p ’

Then for allk,1, p € N, forall X, T € R*", we have

4.6) |(rp(a1,a)) " OTH < Apn p (g1 + g (M)A
x (14 (87 A (X —Up) + (g Agd)(X —Up) "

with Ay, = C(k, N, p, m)llarl¥  Maall? ., [ = 2n+ 14k + p+ N and

81U 82,U»’
(T 1/2 (T 1/2
@7 A= ot (DY (DY)
’ Ter?,T£0\ g2(T) Ter,T£0\ g1(T)

Now we use Theorem 4.5 to prove Lemma 4.4.
PrOOF OF LEMMA 4.4. By the asymptotic formula (2.24), we have
1
Vytay = ay + — {Yy, ay} +r2(Yy, ay),
=0

since ¥y = 1 on the support of ay. The symbol vy is gy-confined in Uy,
and ay is gy-confined in Uy ., and moreover, we have

0] )
VEeN, vyl . = 1l

1 2 )]
layllig) v, = 2 lar s .-

Applying (4.6) to r,(Yy, ay), we have for all k, N € N, there exist C(k, N,
n) > 0,1(k, N, n) € N such that for all X, T € R*",

k
@8) |(rnGy,an) P OT
_ o —N
< Cl, Ny IS o, May ) o, gy (T2 AT3(1+ 85 (X — Uyar))

I} l —N
< Ck, NIyl g v 1§, e g0 & (D (14 7(X = Uy20)) ™,

noticing here A > defined in (4.7) is equal to A, (Y). An analogous estimate as
(4.8) holds for r;(ay, ¥y). In our case, we write ry, which is defined in (4.3),

ry = (Yylay — ay)ivy + (ayivy —ay) = n(Yy, ay) iy +ra(ay, ¥y).
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Then the estimate (4.4) follows from (4.8) and (3.5). Furthermore, for any
k, N € N, there exist C = C(k, N,n,Cy) > 0,1 =1(k, N,n, Cy) € N such
that

O} -N
”rYﬂrZ ”S(] gy+gz) — C”aY ”S()L (Y)2.gv) “aZ ”S(Ag(Z)Z,gZ)‘SZ’(Y’ Z) .

Thus we can apply Cotlar’s lemma and get the estimate (4.5).

LEMMA 4.6 (Estimate for yry). For all k, N € N, there exist C = C(k, N,
Co) > 0,1 = I(k, N,Co) € N such that for all X € R*, T e R* with
gv(T) <1,

@9 Wyt PCOTH < C(1Wrlgh ) (1 + g5 (X — Uyz)) ™"

Moreover, there exists Cy = Cy(n, Cy, Ny) > O such that

(4.10) H/l/fywl/f'y”lgyl”de” <G

L(L*(RM)

Proor. The inequality (4.9) follows immediately from (3.5). And it follows
from (3.5), (4.2) and (4.9) that for all k, N € N,

Wy 89 28PN, ety < Cor (Y, )7V,

for some C = C(k, N, n, Cy) > 0. Then by choosing N = 2N; and using
Cotlar’s lemma, we get the estimate (4.10).

END OF THE PROOF OF THEOREM 4.1. The symbol ay is non-negative
and uniformly in S(A,(Y)?, gy), so that we can apply the Fefferman-Phong
inequality (Theorem 4.3) for the constant metric gy to get

w ((n))
aY + C(n)”aY”S()\g(y)Z’gy) Z 0

By Proposition 2.5 and Lemma 2.8, we have

1 i
lay g tyye gy < €. Co, No)llallgg? .

so that

(4.11) ¥+ Cs ||a||<;g;g>g) 0.
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where C; = Ciz(n, Co, Ng) > 0, [(n) € N are constants. Combining (4.3),
(4.5), (4.10) and (4.11), we obtain

a’ = /2 aylgy|'?dy
Rn

= [ wrarurignzay - [ g ay
R=" R="

1 1/2 1
= —Cillal), [, vuplen P dy - cilaly,

O]
> _C”a”S(Ag,g)’

for some C = C(n, Co, Ng) > 0 and ! = I(n, Cy, Ng) € N. The proof of
Theorem 4.1 is complete.
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