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ON THE h-VECTORS OF COHEN-MACAULAY
FLAG COMPLEXES

ALEXANDRU CONSTANTINESCU and MATTEO VARBARO

Abstract
Starting from an unpublished conjecture of Kalai and from a conjecture of Eisenbud, Green
and Harris, we study several problems relating h-vectors of Cohen-Macaulay, flag simplicial
complexes and face vectors of simplicial complexes.

1. Introduction

The f -vectors of simplicial complexes and the h-vectors of standard graded
K-algebras are fascinating subjects in combinatorics and commutative al-
gebra. These topics have been the object of study for many researchers in
the past decades (for instance see [4], [13], [12], [15]). The f -vectors of sim-
plicial complexes have been completely characterized by Kruskal and Katona,
and the h-vectors of Cohen-Macaulay standard graded K-algebras have been
characterized by Macaulay. However, many questions regarding both f - and
h-vectors remain open, when extra properties are assumed for the simplicial
complex, respectively for the standard graded algebra.

One can ask what happens to the f -vector (respectively to the h-vector) if
some special features are added to the simplicial complex (respectively to the
standard graded algebra).

An unpublished conjecture of Kalai stated that for any flag simplicial com-
plex there exists a balanced simplicial complex with the same f -vector. This
fact has been recently proven by Frohmader in [15]. This conjecture of Kalai
has also a second part which is still open, namely:

Conjecture 1.1 (Kalai). The following inclusion holds true:{
f -vectors of Cohen-Macaulay,
flag simplicial complexes

}
⊆

{
f -vectors of Cohen-Macaulay,
balanced simplicial complexes

}
.

As the h-vector of a simplicial complex is uniquely determined by its f -
vector, the above conjecture can be also stated replacing f -vectors with h-
vectors. By a theorem of Björner, Frankl and Stanley [4] the h-vectors of
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Cohen-Macaulay, balanced simplicial complexes are f -vectors of simplicial
complexes. Therefore the following would be a consequence of Kalai’s Con-
jecture 1.1:

Conjecture 1.2. The following inclusion holds true:{
h-vectors of Cohen-Macaulay,
flag simplicial complexes

}
⊆

{
f -vectors of
simplicial complexes

}
.

Actually, the above inclusion is a particular case of a more general conjecture
by Eisenbud, Green and Harris (see [12] or the lecture notes by Valla [20]),
which can be stated as:

Conjecture 1.3 (Eisenbud, Green and Harris). The following inclusion
holds true: {

h-vectors of quadratic
Artinian K-algebras

}
⊆

{
f -vectors of
simplicial complexes

}
.

After introducing most of the terminology that we will need, in Section 2
we present a few results and remarks that we will use throughout this paper. In
particular, in Theorem 2.3, we will extend results of Crupi, Rinaldo and Terai
from [10] and of the two authors from [9].

In the third section we will prove Conjecture 1.2 for vertex decomposable,
flag simplicial complexes (Theorem 3.3). This section also includes an example
of ah-vector of a quadraticArtinian algebra, which is thef -vector of a balanced
complex, but not the h-vector of a Cohen-Macaulay, flag simplicial complex
(Example 3.4). The section ends with a few comments on some technical
aspects appearing in the proof of Theorem 3.3.

In Section 4 we will first notice that the f -vector of a flag simplicial complex
is always the h-vector of a vertex decomposable, balanced, flag simplicial
complex (Proposition 4.1). This result led us to the statement:

Conjecture 1.4. The following equality holds true:

(1)

{
h-vectors of vertex decomposable,
balanced, flag simplicial complexes

}
=

{
f -vectors of flag
simplicial complexes

}
.

We were not able to find a proof for the above equality. However, relaxing
the requests on the right hand side or strengthening the ones on the left we will
be able to prove the hard inclusion of Conjecture 1.4. First, in Definition 4.2
we introduce a new class of simplicial complexes – the quasi-flag simplicial
complexes. It turns out that flag complexes are quasi-flag and in general the
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converse is not true. However, we are not aware of any quasi-flag simplicial
complex whose f -vector is not the one of a flag simplicial complex. We will
then prove the following inclusion (Theorem 4.3):{

h-vectors of vertex decomposable,
balanced, flag simplicial complexes

}
⊆

{
f -vectors of quasi-flag
simplicial complexes

}
.

In the fifth section we are going to discuss a natural extension of Conjec-
ture 1.4:

Conjecture 1.5. The following equality holds true:{
h-vectors of Cohen-Macaulay,
flag simplicial complexes

}
=

{
f -vectors of flag
simplicial complexes

}
.

In Proposition 5.2 we will see that the above conjecture is true when the
h-vector is of the form (1, n, m). We will then prove the following result
(Theorem 5.3):⎧⎨
⎩

h-vectors of (d − 1)-dimensional Cohen-
Macaulay, flag simplicial complexes on
[2d], without cone points

⎫⎬
⎭ =

{
f -vectors of flag simpli-
cial complexes on [d]

}
.

In a certain sense the above result is a first step towards proving Conjecture 1.5.
This is because when � is a Cohen-Macaulay, (d − 1)-dimensional, flag sim-
plicial complex on [n], without cone points, we have n ≥ 2d.

In the last section we will come back to Conjecture 1.4. We introduce two
properties of simplicial complexes and show that for each of them, if added
on the left hand side of (1), the conjecture holds. We also include examples of
simplicial complexes with and without these properties.

Many results in this paper have been suggested and double-checked by
extensive computer algebra experiments performed with CoCoA [6]. Some of
the topics considered in the present manuscript have been investigated, using
rather different techniques, also by Cook II and Nagel in the contemporary
work [8]. Throughout, we will point out the analogies of the two papers: For
example, Conjectures 1.4 and 1.5 are in the same spirit of [8, Conjecture 3.11].

The authors wish to thank Isabella Novik and Volkmar Welker for their
useful suggestions and comments. We also thank Aldo Conca for his support
and helpful remarks.

2. Preliminaries

Let us start by introducing some terminology and notation that we will use
throughout the paper. For general aspects on the topics presented below we
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refer the reader to the books of Stanley [19], of Bruns and Herzog [5] and of
Lovász and Plummer [17].

For a positive integer n denote by [n] the set {1, . . . , n}. A simplicial com-
plex � on [n] is a collection of subsets of [n] such that F ∈ � and F ′ ⊂ F

imply F ′ ∈ �. We will also require that for every i ∈ [n] we have {i} ∈ �.
Each element F ∈ � is called a face of �. A maximal face of � with respect
to inclusion is called a facet and we will denote by F (�) the set of facets of �.
We call a vertex v a cone point of � if v ∈ F for any F ∈ F (�). A simplicial
complex is called pure if all facets have the same cardinality. The dimension
of a face F is |F | − 1 and the dimension of � is max{dim F : F ∈ �}.

Let fi = fi(�) denote the number of faces of � of dimension i, in particular
f−1 = 1 and f0 = n. The sequence f (�) = (f−1, f0, . . . , fd−1), where d −1
is the dimension of �, is called the f -vector of �.

Denote by S = K[x1, . . . , xn] the polynomial ring in n variables over a
field K and let � be a simplicial complex on [n]. For each subset F ⊂ [n] we
set

xF =
∏
i∈F

xi.

The Stanley-Reisner ideal of � is the ideal I� of S generated by the square-free
monomials xF , with F /∈ �. That is

I� = (xF : F is a minimal nonface of �).

We will denote by K[�] = S/I� the Stanley-Reisner ring of �. It is a
well known fact that dim K[�] = dim � + 1. We will denote by h(�) =
(h0, h1, . . . , hs) = h(K[�]), the h-vector of the graded algebra K[�]. In
other words, if HK[�](t) is the Hilbert series of K[�], we have

HK[�](t) = h0 + h1t + · · · + hst
s

(1 − t)d
,

where d is the Krull dimension of K[�] and hs �= 0. The sequence h(�) is
called the h-vector of �. The h-vector of � can be determined directly from
the f -vector of � using the relation:

d∑
i=0

fi−1(t − 1)d−i =
d∑

i=0

hit
d−i .

Comparing the coefficients we obtain the formula:

(2) hj =
j∑

i=0

(−1)j−i

(
d − i

j − i

)
fi−1.
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It is well known that s ≤ d. So, as opposed to the f -vector, the h-vector does
not contain precise information about the dimension of the simplicial complex.
In other words, the f -vector can be determined from the h-vector only if the
dimension of � is also known.

Let � be a simplicial complex and F a face of �. The link of F in � is the
following simplicial complex:

link� F = {F ′ ∈ � : F ′ ∪ F ∈ � and F ′ ∩ F = ∅}.
For a set of vertices W ⊂ [n], the restriction of � to W is the following
subcomplex of �:

�W = {F ∈ � : F ⊂ W }.
The subcomplex �W is also called the subcomplex of � induced by the vertex
set W . If F is a face of �, then the face deletion of F in � is � \ F = {F ′ ∈
� : F �⊂ F ′}. Whenever F is a 0-dimensional face {v} we will just write �\v

for the face deletion of {v}, which in this case coincides with the subcomplex
of � induced by [n] \ {v}, and link� v for the link of {v}.

Consider �′ ⊆ � a subcomplex and let � be a simplicial complex with the
vertex set disjoint from the vertex set of �. We define the star of � with �

along �′ to be the simplicial complex:

� ∗�′ � = �
⋃

{F ′ ∪ F : F ′ ∈ �′ and F ∈ �}.
It is easy to see that, for any F ∈ � the three definitions above are connected
in the following way:

� = (� \ F) ∗link� F 〈F 〉.
A simplicial complex � on [n] is said to be k-colorable, for some k ∈ N,

if there exists a function col : [n] −→ [k] such that if col(i) = col(j) for
i �= j , then no face of � contains both i and j . Obviously, if the dimension of
� is d − 1, then k ≥ d. A (d − 1)-dimensional simplicial complex is called
balanced if it is d-colorable. For a balanced simplicial complex and for every
i ∈ [d] we denote by Vi = {v ∈ [n] : col(v) = i} the set of vertices colored i.
Fixing a coloring, the Stanley-Reisner ring of a balanced simplicial complex
has a canonical linear system of parameters (see [19, Proposition 4.3]), given
by

θi =
∑
j∈Vi

xj .

A simplicial complex � is called Cohen-Macaulay (CM for short) over a
field K if and only if the ring K[�] is Cohen-Macaulay. If � is CM over any
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field K then we simply say that � is CM. There are several combinatorial
properties of simplicial complexes that imply Cohen-Macaulayness. In this
paper we will focus on the following one. A pure simplicial complex � is
recursively defined to be vertex decomposable if it is either a simplex or else
has some vertex v such that:

(1) both � \ v and link� v are vertex decomposable,

(2) no face of link� v is a facet of � \ v.

A vertex satisfying condition (2). above is called a shedding vertex. As we
mentioned above, a vertex decomposable simplicial complex is always CM.
The other implication is known to be false in general.

Remark 2.1. If � is vertex decomposable and balanced, the sets Vi that
we defined above are uniquely determined.

A simplicial complex is called flag if all its minimal nonfaces have cardinal-
ity two. In other words, if its Stanley-Reisner ideal is generated by square-free
monomials of degree two. Flag simplicial complexes are closely related to
simple graphs, i.e. finite graphs with neither loops nor multiple edges. Let G

be a (simple) graph on the vertex set V (G) = [n] and denote by E(G) the set
of its edges. We define the edge ideal of G as the ideal:

I (G) = (xixj : {i, j} ∈ E(G)) ⊂ S.

For a flag simplicial complex � we will denote by G�, or just G if no confusion
arrises, the graph of minimal nonfaces of �. In particular I� = I (G�).

Given the correspondence between Stanley-Reisner ideals of flag simplicial
complexes and edge ideals of simple graphs we also need to introduce some
terminology related to graphs. For a vertex v ∈ V (G) we denote by N(v) =
{w ∈ V (G) : {v, w} ∈ E(G)} the open neighborhood of v in G. By N [v] we
denote the closed neighborhood of v, i.e. N(V ) ∪ {v}. For a subset of vertices
W ∈ V (G) we define:

N(W) =
(⋃

v∈W

N(v)
)

\ W.

A perfect matching of G is a collection of disjoint edges {e1, . . . , er} of G such
that every vertex belongs to one of the edges, i.e. V = ∪ ei . An independent
set in G is a collection of vertices {v1, . . . , vr} such that {vi, vj } /∈ E(G) for
any i, j ∈ {1, . . . , r}. An independent set is called maximal if it is not strictly
included in any other independent set of G. Notice that the independent sets
of G form a simplicial complex, which we will denote by �(G). It is easy
to see that G�(G) = G and �(G�) = �. A vertex cover of G is a collection
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of vertices C = {v1, . . . , vt } such that e ∩ C �= ∅ for any e ∈ E(G). A
vertex cover is called minimal if no proper subset of C is again a vertex cover.
The smallest cardinality of minimal vertex covers of G is called the covering
number of G and we will denote it by τ(G).

Lemma 2.2. Let G be a graph without isolated vertices on [2d] such that
τ(G) = d. Suppose that any vertex of G belongs to a maximal independent
set of cardinality d. Then G admits a perfect matching.

Proof. Let C = {v1, . . . , vd} ⊆ V (G) be a minimal vertex cover of cardin-
ality d. Notice that for any i = 1, . . . , d there exists a maximal independent
set H , of cardinality d, such that vi ∈ H . So there exist k ≤ d maximal
independent sets H1, . . . , Hk of cardinality d, such that

C ⊆
k⋃

j=1

Hj .

Set F = V (G) \ C. By definition F is a maximal independent set of G

of cardinality d. For any j = 1, . . . , k, set Cj = C ∩ Hj . Notice that |F ∩
N(Cj )| = |Cj | for any j = 1, . . . , k. In fact, since Hj is a maximal independent
set, it is easy to show that F ∩ N(Cj ) = F \ Hj , so

|F ∩ N(Cj )| = |F \ Hj | = |F | − |F ∩ Hj | = d − (d − |Cj |) = |Cj |.

For any j = 1, . . . , k, set Aj = Cj \ (⋃j−1
p=1 Cp

)
and Bj = (F ∩ N(Cj )) \(⋃j−1

p=1(F ∩ N(Cp))
)
.

Claim 1. For any j = 1, . . . , k we have |Aj | = |Bj |.
Set C̃j = Cj ∩ (⋃j−1

p=1 Cp

)
. If we had |C̃j | < |F ∩ N(C̃j )|, then (C \ C̃j ) ∪

(F ∩ N(C̃j )) would be a vertex cover of cardinality less than d. Thus

|C̃j | ≥ |F ∩ N(C̃j )|.

Putting everything together we obtain

|Bj | = |F ∩ N(Cj )| − |F ∩ N(C̃j )| ≤ |Cj | − |C̃j | = |Aj |.

But then d = ∑k
j=1 |Bj | ≤ ∑k

j=1 |Aj | = d, from which we get the claim.

For any j = 1, . . . , k let Gj denote the subgraph of G induced by⋃j

p=1(Ap ∪ Bp).
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Claim 2. For any j = 1, . . . , k the graph Gj has a perfect matching.
We will prove Claim 2 by induction. Notice that G1 is a bipartite graph with
bipartition

C1 ∪ (F ∩ N(C1)).

The covering number of G1 is |C1| = |F ∩ N(C1)|. In fact, if C ′ were a
vertex cover of G1 of cardinality less than |C1|, then C ′ ∪ (C \ C1) would be a
vertex cover of G of cardinality less than d, a contradiction. Therefore G1 has
a perfect matching by König’s theorem ([17, Theorem 1.1.1]).

Assume that Gj−1 has a perfect matching. Consider the bipartite subgraph
of G induced on the vertices of Cj ∪ (F ∩ N(Cj )). As above, by König’s
theorem, it has a perfect matching. Moreover, such a perfect matching restricts
to a perfect matching of the subgraph of G induced by Aj ∪ Bj , since

F ∩ N(C̃j ) ⊆ Bj .

So we can extend the perfect matching of Gj−1 to a perfect matching of Gj .

Before we state the next theorem we recall a graph theoretical notion from
[9]. An edge e of a graph G is called right edge if |C ∩ e| = 1 for any minimal
vertex cover C of G. By the paper of the second author with Benedetti [2],
e = {i, j} is right if and only if ∀ {i, i ′}, {j, j ′} ∈ E(G) ⇒ {i ′, j ′} ∈ E(G).
Finally, recall that G satisfies the weak square condition if every vertex of G

belongs to a right edge.

Theorem 2.3. Let � = �(G) be a (d − 1)-dimensional flag simplicial
complex on [2d] without cone points. The following are equivalent:

(1) G has a perfect matching of right edges, {{u1, v1}, . . . , {ud, vd}}, such
that {u1, . . . , ud} is an independent set and if {ui, vj } is an edge of G

then i ≤ j .
(2) � is strongly connected.
(3) � is Cohen-Macaulay over any field.
(4) G has a unique perfect matching and it is unmixed.
(5) � is vertex decomposable.

Proof. The equivalence of the first four points is known from [9, The-
orem 4.7] for graphs that satisfy the weak square condition. So we only need
to check that every vertex of G belongs to a right edge. Each of the first four
properties implies that � is pure. In particular any vertex of G belongs to an
independent set of cardinality d. So by Lemma 2.2 G has a perfect matching,
say {e1, . . . , ed} ⊆ E(G). Since � is pure of dimension d −1, for any minimal
vertex cover C ⊆ V (G) we have |C ∩ei | = 1 for all i = 1, . . . , d. This means
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that G satisfies the weak square condition, so [9, Theorem 4.7] implies that
the properties (1), (2), (3) and (4) are equivalent.

Since a vertex decomposable simplicial complex is always CM, (5) ⇒ (3)

follows. We will argue by induction on d to prove that (1) ⇒ (5). If d = 1 it is
trivial, since any 0-dimensional simplicial complex is vertex decomposable.

Therefore consider d ≥ 2. Clearly vd is a shedding vertex of �, and � \ vd

and link� vd are flag simplicial complexes. Precisely they are �\vd = �(G1)

and link� vd = �(G2) where G1 is the subgraph of G induced on the set
of vertices V (G) \ {vd} and G2 is the subgraph of G induced on the set of
vertices V (G) \ N [vd ]. Notice that � \ vd is a (d − 1)-dimensional simplicial
complex as well as �. Clearly the graph Gred

1 obtained from G1 after removing
its (unique) isolated vertex, is a graph on 2(d − 1) vertices such that (1) is
easily seen holding true. So �(Gred

1 ) is vertex decomposable by induction,
and since � \ vd is obtained from �(Gred

1 ) adding some cone points, it is
vertex decomposable too. We want to show that (1) holds true also for Gred

2 .
To see this, assume that ui is not a vertex of G2 for some i < d . Then, using
the fact that {ui, vi} is right, it is easy to see that vi is an isolated vertex in
G2. Analogously, if vi is not a vertex of G2 then ui is an isolated vertex of
G2. Hence the perfect matching of G induces a perfect matching on Gred

2 .
At this point it is easy to see that (1) holds true for Gred

2 , so using the above
argument link� vd is vertex decomposable by induction. Therefore � is vertex
decomposable.

We conclude this section with a useful remark. Let A = S/J be an Artinian
K-algebra. We will say that A is a quadratic Artinian K-algebra if J is gener-
ated by quadrics, and that A is a monomial Artinian K-algebra if J is generated
by monomials.

Remark 2.4. Let � be a simplicial complex on [n]. Construct the ideal

J� = I� + (x2
1 , . . . , x2

n) ⊆ S.

It is straightforward to verify that S/J� is a monomial Artinian K-algebra
such that

h(S/J�) = f (�).

On the other hand, if A = S/J is a monomial Artinian K-algebra such that
x2

i ∈ J for any i = 1, . . . , n, then J = I� + (x2
1 , . . . , x2

n) for some simplicial
complex � on [n]. Once again we have

h(A) = f (�).

Therefore the set of h-vectors of monomialArtinian K-algebras whose defining
ideal contains the square of each variable is equal to the set of f -vectors of
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simplicial complexes. By the same argument, characterizing the f -vectors of
flag simplicial complexes is equivalent to classifying the h-vectors of quadratic
monomial Artinian K-algebras.

3. h-vectors of Vertex Decomposable Flag Simplicial Complexes

In this section we are going to prove Conjecture 1.2 when � is vertex decom-
posable. First of all, we want to remark that the inclusion in Conjecture 1.3 is
strict. To this aim let us take a look at the next example.

Example 3.1. Consider the f -vector of the empty triangle, (1, 3, 3). If a
quadratic Artinian K-algebra with h-vector (1, 3, 3) existed, then it would be
of the kind:

A = K[x, y, z]/(f1, f2, f3),

where the fi’s are degree 2 homogeneous polynomials of K[x, y, z]. Clearly
we have the inequality dimK((f1, f2, f3)3) ≤ 9, while dimK(K[x, y, z]3) =
10. This implies dimK(A3) ≥ 1, a contradiction. Another way to obtain a
contradiction is to notice that the ideal (f1, f2, f3) is a complete intersection,
thus the h-vector of A has to be symmetric.

Before stating the main result of this section we will prove the following
algebraic lemma.

Lemma 3.2. LetAbe a standard graded, Noetherian, d-dimensional, Cohen-
Macaulay K-algebra and J ⊆ A a height 1 ideal generated by elements of
degree 1 such that A/J is Cohen-Macaulay. If K is infinite, then for any i ∈ N
we have

hi(A/J ) ≤ hi(A).

Proof. By [5, Proposition 1.5.12] we can choose a degree 1 homogeneous
element x ∈ J which is A-regular. Thus for any i we have that hi(A/(x)) =
hi(A). Moreover A/(x) and A/J have the same dimension. Let us extend x

to a regular sequence for A of degree 1 elements, say x, x2, . . . , xd where
d = dim(A). It turns out that x2, . . . , xd is a system of parameters for A/J .
Because A/J is Cohen-Macaulay, x2, . . . , xd is a regular sequence for A/J .
So there is a graded surjection

A/(x, x2, . . . , xd) −→ A/(J + (x2, . . . , xd)),

from which we get the desired inequality:

hi(A/J ) ≤ hi(A).

We are ready to prove the main theorem of this section.
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Theorem 3.3. Let � be a vertex decomposable, flag simplicial complex.
Then there exists a simplicial complex � such that f (�) = h(�).

Proof. Suppose that � is a d-dimensional simplicial complex on [n]. If �

is the d-simplex, then it is enough to choose � = {∅}. So we can assume that
� is not a simplex and use induction on d and n.

Let v be a shedding vertex of � such that �1 = � \ {v} and �2 = link� v

are vertex decomposable simplicial complexes. We may assume v = n, so it
turns out that �1 is of dimension d on [n − 1], whereas �2 is of dimension
d − 1. For any i = 0, . . . , d we have

fi(�) = |{i-faces of � not containing v}| + |{i-faces of � containing v}|
= fi(�1) + fi−1(�2).

Using (2) it is not difficult to show that the same formula holds at the level of
h-vectors:

hi(�) = hi(�1) + hi−1(�2) for every i = 1, . . . , (d + 1).

Before proceeding with the induction we will prove the following:

Claim. For any i we have hi(�2) ≤ hi(�1).
By definition we have that

I�1 = (xi1xi2 : {i1, i2} /∈ � and v /∈ {i1, i2}),
I�2 = (xi1xi2 : {i1, i2} /∈ �, v /∈ {i1, i2} and both {i1, v}, {i2, v} ∈ �).

Moreover K[�1] = K[xi : i �= v]/I�1 and K[�2] = K[xi : i �= v and {i, v}∈
�]/I�2 . Therefore

K[�2] = K[�1]/(xi : {i, v} /∈ �).

Since �1 and �2 are vertex decomposable, K[�1] and K[�2] are Cohen-
Macaulay. So we are in the situation of Lemma 3.2. Hence

hi(�2) = hi(K[�2]) ≤ hi(K[�1]) = hi(�1),

and the claim follows.
By induction there exist two simplicial complexes, �1 and �2, such that

f (�1) = h(�1) and f (�2) = h(�2). We want to construct the desired sim-
plicial complex � starting from them. By the Kruskal-Katona theorem (for
instance see [19, Theorem 2.1]) we can assume that both �1 and �2 are rev-lex
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complexes. Therefore, since by the claim fi(�2) ≤ fi(�1), actually �2 is a
subcomplex of �1. So it makes sense to construct the simplicial complex

� = �1 ∗�2 {u},

where u is a new vertex. It is straightforward to check that

fi(�) = fi(�1) + fi−1(�2) = hi(�1) + hi−1(�2) = hi(�).

The reader might think at this point that h-vectors of quadratic Artinian
K-algebras are h-vectors of Cohen-Macaulay flag simplicial complexes. The
following example will show that this is not the case.

Example 3.4. Let h = (1, 4, 5, 1) be a sequence of integers (notice that h

is the f -vector of a balanced simplicial complex). In the paper of Roos [18]
we found the quadratic Artinian K- algebra A = K[x1, x2, x3, x4]/I , where I

is the ideal

I = (x1x2 + x2
3 , x1x4, x2

1 + x2
3 + x2

4 , x2
2 , x2x3 + x3x4),

with h(A) = (1, 4, 5, 1).
If there existed a Cohen-Macaulay flag simplicial complex � with h(�) =

h, then there would exist an Artinian Koszul K-algebra B with h(B) = h. In
fact, if θ = θ1, . . . , θd is a system of parameters for K[�], it is enough to take
B = K[�]/(θ). This follows from the theorem of Fröberg [14] and the result
of Backelin and Fröberg [1, Theorem 4]. This implies that

1

1 − 4z + 5z2 − z3
=

∑
i≥0

dimK(TorB
i (K, K))zi,

(for instance see [1, p. 87]). Computing the coefficients on the left hand side
we obtain dimK(TorB

9 (K, K)) = −174, obviously a contradiction.

In light of Examples 3.1 and 3.4, we conclude this section discussing
whether the simplicial complex � of Theorem 3.3 could be chosen with some
extra properties. First of all we have a remark.

Remark 3.5. It is easy to see that the following holds true: A simplicial
complex � on [n] is flag if and only if � = {∅} or there exists a vertex v of
� such that � \ v is flag and link� v = �W for some W ⊆ [n] (in particular
link� v is flag).
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Let �2 ⊆ �1 be two simplicial complexes, with �2 = (�1)W induced by a
subset of vertices W ⊆ [n]. Then

K[xi : i ∈ W ]

J�2

∼= S

J�1 + (xj : j /∈ W)
,

where J�1 and J�2 are the ideals defined in Remark 2.4. Therefore

f (�2) = h

(
S

J�1 + (xj : j /∈ W)

)
.

Thus we are in the situation in which there exists a monomial Artinian K-
algebra A and an ideal I ⊆ A generated by variables such that

f (�1) = h(A) and f (�2) = h(A/I).

Moreover, if A is quadratic, then by Remark 3.5 the complex �1 ∗�2 {v} is
flag. In the proof of Theorem 3.3 we have that K[�2] = K[�1]/I , where I

is an ideal generated by variables. Since K[�1] and K[�2] are both Cohen-
Macaulay, going modulo a generic regular sequence, we could restrict to the
Artinian case. The problem is that the quadratic Artinian reduction A of K[�1]
is not necessarily monomial. This is why, even assuming that �1 and �2 are
flag, we could not conclude that �1 ∗�2 {v} is also flag. In other words, if in the
proof of Theorem 3.3 we assume by induction that �1 and �2 are flag, we do
not see how to construct a flag simplicial complex �, because �2 might not be
a subcomplex of �1 induced by some set of vertices. However, the behavior of
the f -vector of �2 is similar to that of the f -vector of an induced subcomplex
of �1. For instance, if f0(�2) = f0(�1), it follows by the proof of Theorem 3.3
that fi(�2) = fi(�1) for any i. In the next section we present more precise
results in this direction under the assumption that � is also balanced (see
Definition 4.2 and Theorem 4.3).

4. Balanced, Vertex Decomposable, Flag Complexes

The reason for which we study balanced, vertex decomposable, flag simplicial
complexes is given by Proposition 4.1 (similar to [8, Corollary 3.10]). We
conjecture that the converse of this proposition is true. In Theorem 4.3 we
will prove a weaker version of the equality in Conjecture 1.4. Finally we will
prove that the conjecture holds for (d − 1)-dimensional, balanced, flag, vertex
decomposable simplicial complexes on [2d], without cone points.

Proposition 4.1. Let � be a flag simplicial complex. Then there exists a
balanced, flag, vertex decomposable simplicial complex � such that h(�) =
f (�).
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Proof. Set n = dim � + 1 and as in Remark 2.4 consider the ideal

J� = I� + (x2
1 , . . . , x2

n) ⊆ S.

Consider the polarization of J�:

J
pol
� = I� + (x1y1, . . . , xnyn) ⊆ P = K[x1, . . . , xn, y1, . . . , yn].

Since polarization is a particular distraction, it preserves the height and the
graded Betti numbers (see the paper of Bigatti, Conca and Robbiano [3]).
Particularly

h(P/J
pol
� ) = h(S/J�) = f (�),

where the last equality follows from Remark 2.4. The simplicial complex
� associated to J

pol
� is flag. More precisely � = �(G), where G is the

graph on {u1, . . . , un, v1, . . . , vn} whose edges are {ui, vi} for i = 1, . . . , n

and {vi, vj } such that {i, j} is not a face of �. Then, by Theorem 2.3, �

is vertex decomposable. Moreover � is easily seen to be balanced setting
col(ui) = col(vi) = i for any i = 1, . . . , n.

We conjecture that the converse of Proposition 4.1 is also true:

Conjecture 1.4. The following equality holds:{
h-vectors of vertex decomposable
balanced and flag simplicial complexes

}
=

{
f -vectors of flag
simplicial complexes

}
.

Next, we are going to prove a result in support of the above conjecture.
This next theorem will be a version of Conjecture 1.4, in which we will prove
that the hard inclusion (⊆) holds with weakened conditions on the right hand
side of the equality. In Theorem 4.5 and in the two lemmas of Section 6 we
will prove that equality holds when adding some stronger conditions on the
left hand side. First we need to define a new class of simplicial complexes,
suggested by Remark 3.5.

Definition 4.2. Let � be a simplicial complex on [n]. Then � is quasi-flag
if and only if n = 0 or there exists a vertex v of � such that

(1) � \ v has the f -vector of a quasi-flag simplicial complex,

(2) link� v = �W for some W ⊆ [n] and the f -vector of link� v is that of
a quasi-flag simplicial complex.

Theorem 4.3. Let � be a balanced, vertex decomposable, flag simplicial
complex on [n]. Then there exists a quasi-flag simplicial complex � such that
f (�) = h(�).
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Proof. If � is a simplex then we can choose � = {∅}. If � is not a
simplex we can choose a shedding vertex v such that �1 = � \ {v} and
�2 = link� v are vertex decomposable, flag simplicial complexes. As in the
proof of Theorem 3.3, we have

K[�2] = K[�1]/(xi : i ∈ W),

where W = {i : {i, v} /∈ �}. Let col : [n] → [d] be a d-coloring of �, where
dim � = d − 1. For any j = 1, . . . , d we set Vj = {i ∈ [n] : col(i) = j}.
We can assume that v = n ∈ Vd . Notice that the coloring on � induces a
d-coloring on �1 and a (d − 1)-coloring on �2, so that �1 and �2 are both
balanced. So we have the following system of parameters for K[�1]:

θi =
∑
j∈Vi

j �=n

xj , i = 1, . . . , d.

It turns out that θi , where i = 1, . . . , (d − 1), provides also a system of
parameters for K[�2]. Note that θd is zero in K[�2]. We may assume that
i ∈ Vi for any i = 1, . . . , d and that i /∈ W for any i = 1, . . . , (d − 1).
Consider the ideal of K[xd+1, . . . , xn−1]:

I =
(

xixj , xi

( ∑
k∈Vh

k �=h

xk

)
: d + 1 ≤ i, j ≤ n − 1,

h = 1, . . . , d, and {i, j}, {i, h} /∈ �1

)
.

Going modulo the θi’s, it is easy to see that

K[�1]

(θ1, . . . , θd)
∼= K[xd+1, . . . , xn−1]

I
= A.

Moreover

K[�2]

(θ1, . . . , θd)
= K[�2]

(θ1, . . . , θd−1)
∼= A

(xi : i ∈ W)
= B.

Since �1 and �2 are both Cohen-Macaulay,

h(�1) = h(A) and h(�2) = h(B).

Notice that x2
i ∈ I for any i = d + 1, . . . , n − 1. So for any term-order ≺ in

K[xd+1, . . . , xn−1] there exists a simplicial complex �1 such that

LT≺(I ) = J�1 .
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If we consider as ≺ a deg-rev-lex term-order such that the smallest variables
are the xi’s with i ∈ W , we have

LT≺(I + (xi : i ∈ W)) = J�1 + (xi : i ∈ W),

see for instance the book of Eisenbud [11, Proposition 15.12]. By the above
discussion we have f (�1) = h(�1) and f ((�1)W ) = h(�2). By induction �1

and �2 = (�1)W have both the f -vector of quasi-flag simplicial complexes.
So

� = �1 ∗�2 {u},
where u is a new vertex, is a quasi-flag simplicial complex. As in the proof
of Theorem 3.3 we have f (�) = h(�), thus we conclude (notice that since
�2 is already contained in �1 this time we need not use the Kruskal-Katona
theorem).

Remark 4.4. By Remark 3.5 the flag simplicial complexes are quasi-flag.
However notice that not all f -vectors of simplicial complexes are f -vectors
of quai-flag simplicial complexes. For instance take f = (

1, n,
(
n

2

))
. The up

to isomorphism unique complex with such an f -vector is the complete graph
Kn. However the link of any vertex of Kn is not a subcomplex of Kn induced
by a set of vertices. Thus Kn is not quasi-flag.

Another example is also provided by the f -vector (1, 4, 5, 1). The up to
isomorphism unique complex � which has such an f -vector is the one whose
set of facets is

F (�) = {{1, 2}, {1, 3}, {2, 3, 4}}.
The unique vertex v such that link� v is an induced subcomplex of � is 4.
However the f -vector of � \ 4 is (1, 3, 3), which is not the f -vector of a
quasi-flag simplicial complex by the above considerations. Therefore � is not
quasi-flag.

We are not aware of any example of quasi-flag simplicial complex whose
f -vector is not flag.

Some evidence in favor of Conjecture 1.4 is also provided by the following
theorem.

Theorem 4.5. The following equality holds true:⎧⎪⎪⎨
⎪⎪⎩

h(�) : � is a (d − 1)-dimensional
balanced, flag, vertex decomposable
simplicial complex on [2d], without
cone points

⎫⎪⎪⎬
⎪⎪⎭ =

{
f (�) : � is a flag sim-
plicial complex on [d]

}
.
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Proof. It is easy to see that the proof of Proposition 4.1 yields that the set
on the right hand side is a subset of the one on the left. For the other inclusion
let {{u1, v1}, . . . , {ud, vd}} be the perfect matching of G = G� described in
(1) of Theorem 2.3. Also denote by

P = K[x1, . . . , xd, y1, . . . , yd ]

the polynomial ring containing I�, where xi is the variable associated to ui and
yi the one associated to vi . Notice that � is balanced, so by [19, Proposition 4.3]
the set {θi = xi + yi : i = 1, . . . , d}
is a system of parameters for K[�]. Thus we have the graded isomorphism

K[�]

(θ1, . . . , θd)
−→ K[z1, . . . , zd ]

(z2
i , zhzk : i = 1, . . . , d, {vh, vk} or {uh, vk} is an edge)

which maps yi to zi and xi to −zi . Since � is Cohen-Macaulay over K we
have

h

(
K[�]

(θ1, . . . , θd)

)
= h(�).

So, by the above graded isomorphism, we have

h(�) = h

(
K[z1, . . . , zd ]

(z2
i , zhzk : i = 1, . . . , d, {vh, vk} or {uh, vk} is an edge)

)
.

Using Remark 2.4 we obtain the desired conclusion.

5. h-vectors of Cohen-Macaulay Flag Complexes

In this section we are going to discuss a natural generalization of Conjec-
ture 1.4, namely:

Conjecture 1.5. The following equality holds true:{
h-vectors of Cohen-Macaulay,
flag simplicial complexes

}
=

{
f -vectors of flag
simplicial complexes

}
.

One reason for the above conjecture is given by the following remark.

Remark 5.1. Conjecture 1.5 implies Kalai’s Conjecture 1.1.

Proof. If � is a d-dimensional, CM, flag simplicial complex then, if Con-
jecture 1.5 were true, there would exist a s-dimensional, flag simplicial com-
plex �′ with f (�′) = h(�), where s ≤ d. By [15] there exists also a s-
dimensional, balanced simplicial complex �′′, with f (�′′) = f (�′). By [4,
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Theorem 1], there exists a s-dimensional CM, balanced simplicial complex
�′′′ with h(�′′′) = f (�′′). Thus h(�′′′) = h(�). Adding d − s cone points
to �′′′ we get a d-dimensional simplicial complex � that is still CM and bal-
anced. Furthermore h(�) = h(�′′′) = h(�). Since dim � = dim �, we get
f (�) = f (�).

The set on the right hand side of the equality in Conjecture 1.5 is contained
in the one on the left by Proposition 4.1. So the hard part of the conjecture is
to prove that for any Cohen-Macaulay, flag simplicial complex � there exists
a flag simplicial complex � with f (�) = h(�).

First of all, notice that as an easy consequence of a more general theorem
of Conca, Trung and Valla ([7]), we obtain the validity of Conjecture 1.5 when
the h-vector of � is “short enough”. Here is the precise statement:

Proposition 5.2. Let � be a Cohen-Macaulay, flag simplicial complex
with h-vector (1, n, m). Then there exists a flag simplicial complex � with
f (�) = h(�).

Proof. The K-algebra K[�] is Koszul by [14]. Taking a regular sequence
of linear forms θ1, . . . , θd , where d − 1 = dim �, we get that A = K[�]/(θ1,

. . . , θd) is a Koszul Artinian K-algebra by [1, Theorem 4]. Since h(A) =
h(�) = (1, n, m), we have m ≤ n2/4 by [7, Theorem 3.1]. Under this condi-
tion it is easy to construct a bipartite graph with n vertices and m edges. Such
a bipartite graph can also be seen as a 1-dimensional, flag simplicial complex
with f -vector (1, n, m).

In particular the above proposition implies that Conjecture 1.5 is true when
the dimension of � is 1. The following theorem brings more evidence in favor
of Conjecture 1.5.

Theorem 5.3. The following equality holds true:⎧⎨
⎩

h(�) : � is a (d − 1)-dimensional,
CM, flag simplicial complex on [2d],
without cone points

⎫⎬
⎭ =

{
f (�) : � is a flag sim-
plicial complex on [d]

}
.

Proof. If � is a (d − 1)-dimensional, CM, flag simplicial complex on
[2d] without cone points then � is vertex decomposable and balanced by
Theorem 2.3. Thus Theorem 4.5 yields the conclusion.

Suppose � is a CM, flag simplicial complex, without cone points and G�

is bipartite with partition of the vertex set A∪B. As both A and B are minimal
vertex covers, by the purity of � we have |A| = |B|. This implies the following
corollary, which corresponds to [8, Theorem 4.12].
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Corollary 5.4. The following inclusion holds true:{
h(�) : � CM, flag simplicial
complex, with G� bipartite

}
⊆

{
f (�) : � is a flag
simplicial complex

}
.

We conclude this section with the following remark.

Remark 5.5. If � = �(G) is a flag, CM simplicial complex, then �(G) is
pure. In particular any vertex of G belongs to an independent set of cardinality
dim � + 1. Therefore, if � is a (d − 1)-dimensional, flag, CM simplicial
complex on [n] without cone points, then n ≥ 2d by the result of Gitler and
Valencia [16, Theorem 2.1].

In the spirit of the previous remark, Theorem 5.3 can be seen as the first
step towards proving Conjecture 1.5.

6. Further Results and Examples

In this last section we will present two rather technical properties of flag sim-
plicial complexes. We will show that the first property (which we call balanced
cone-face property – (3)) implies Cohen-Macaulayness (Proposition 6.2) and
that the h-vector of such a simplicial complex is the f -vector of a flag simpli-
cial complex (Lemma 6.1). For simplicial complexes with the second property
(4) we will construct a new complex, with the same h-vector, which will satisfy
the hypothesis of Theorem 4.5. We will also present examples of simplicial
complexes with and without these properties.

Lemma 6.1. Suppose � is a balanced, flag simplicial complex of dimension
d − 1 and let F0 = {a1, . . . , ad} be a facet of � with the property that:

(3) ∀ v ∈ V (�), ∃ 1 ≤ i ≤ d such that (F0 \ {ai}) ∪ {v} is a facet of �.

Then we have h(�) = f (� \ F0).

Proof. For simplicity, we will denote by (h0, . . . , hr) and (f−1, . . . , fd−1)

the h-vector, respectively the f -vector, of �. The f -vector of � \ F0 will be
denoted by (f ′−1, . . . , f

′
s ). We will prove the lemma by induction. First of all,

it is clear that h0 = f ′−1 = 1 and h1 = f ′
0 = n − d. Suppose that we already

have hj = f ′
j−1 for all j ≤ i.

The following observation is the key of the proof. As � is flag, for any
d ≥ i > j , if {v1, . . . , vi−j } and {w1, . . . , wj } are two faces of � such that
{vk, wl} ∈ � for any k and l, then {v1, . . . , vi−j , w1, . . . , wj } ∈ �.

Every i-dimensional face F ∈ � is a disjoint union: (F \F0)∪(F ∩F0). We
will count the i-faces of � with |F \F0| = j . As � is balanced, the number of
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vertices of F0 that are colored different from all the vertices of F \F0 is exactly
d − j . Choose an (i − j)-face G ⊂ F0 supported on these vertices. It is easy
to notice that, by our hypothesis and the above observation, G∪ (F \F0) ∈ �.
As there are

(
d−j

i+1−j

)
different ways to choose G, we get that the number of

i-faces of � with |F \ F0| = j is

f ′
j ·

(
d − j

i + 1 − j

)
.

Decomposing the set of i-faces of � according to the cardinality of F \ F0,
we obtain

fi =
i+1∑
j=0

(
d − j

i + 1 − j

)
f ′
j−1.

As the the f -vector of � can be computed from the h-vector of � by the
formula:

fi =
i+1∑
j=0

(
d − j

i + 1 − j

)
hj ,

we obtain by the inductive hypothesis that hi+1 = f ′
i .

Notice we did not request in Lemma 6.1 that � is Cohen-Macaulay. This
is because, under the hypothesis of the above lemma, � is always CM.

Proposition 6.2. If � is a simplicial complex with the same properties as
in the statement of Lemma 6.1 then � is Cohen-Macaulay.

Proof. As we have seen in the preliminaries section, a balanced sim-
plicial complex has a canonical linear system of parameters, namely {θi =∑

col(j)=i xj : i = 1, . . . , d}. It is easy to see that the property (3) is equivalent
to

xai
xv ∈ Gens(I�) ⇒ col(ai) = col(v), ∀ i = 1, . . . , d.

Notice also that if Vi is the set of vertices of color i, then xvxw ∈ Gens(I�) for
any v, w ∈ Vi and ∀ i = 1, . . . , d. If we denote by W = [n] \ F0, considering
the above observation, it is not difficult to see that

K[�]

(θ1, . . . , θd)
� K[xi : i ∈ W ]

(x2
i , xixj : {i, j} minimal nonface of �W)

.

The isomorphism is obtained by sending xi �→ xi if i /∈ F0 and

xi �→ −
∑

col(j)=col(i)

xj if i ∈ F0.
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By Remark 2.4 we obtain that

h

(
K[�]

(θ1, . . . , θd)

)
= f (�W).

As �W = � \ F0, by Lemma 6.1 we also have that

h

(
K[�]

(θ1, . . . , θd)

)
= h(K[�]),

which by [19, Lemma 2.6] implies that � is Cohen-Macaulay.

Let us present now an example of a simplicial complex satisfying (3). First
let us establish a graphical convention. Throughout this section, the thicker
vertical lines in the pictures of graphs represent the fact that the subgraphs
induced by the vertices in one column are complete (e.g. in the next figure, the
subgraphs induced by each of the vertex sets {1, 4, 7}, {2, 5, 8} and {3, 6, 9}
are complete).

Example 6.3. The independence complex � of the graph on the left is an
example of simplicial complex satisfying the hypothesis of Lemma 6.1. It is
easy to see that F0 = {1, 2, 3} satisfies property (3). One can check that � is
pure, of dimension 2 and that h(�) = (1, 6, 5).

1 2 3

7 8 9

4
5

6

6

8 9

4
5

7

On the right hand side you can see a picture of the 1-dimensional simplicial
complex � \ F0. One can notice that � \ F0 is no longer pure, nor balanced.
The only property inherited from �, apart from flagness, is the 3-colorability.

In the remaining part of this section we will show that under certain condi-
tions, a flag, balanced, CM simplicial complex may be “modified” such that it
satisfies the hypothesis of Theorem 4.5. Let � be a CM, flag balanced (d −1)-
dimensional simplicial complex on [n]. As we have seen, if n = 2d and � has
no cone points, we know that there exists a flag simplicial complex � such that
h(�) = f (�). Suppose now that n > 2d. Adding n− 2d cone points to � we
still obtain a CM, flag and balanced simplicial complex, and the dimension of
this new complex is one less than half the number of vertices.
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In order to simplify notation, suppose that � is already a (d − 1)-dimen-
sional, CM, flag, balanced simplicial complex on [2d], with r cone points
z1, . . . , zr . Let [2d] = ∪d

i=1Vi be the partition of the vertices corresponding to
the coloring. Without loss of generality we may also assume that Vd+1−j = {zj }
for j = 1, . . . , r . We will denote by G = G� the graph of minimal nonfaces
of �. Suppose that � has the property that in G for every i ∈ 1, . . . , d with
|Vi | > 2 we have

(4) ∃ yi,1, yi,2 ∈ Vi such that ∀ x ∈ Vi

we have N [yi,1] ⊆ N [x] or N [yi,2] ⊆ N [x].

Denote by Vi = Vi \ {yi,1, yi,2} and by V = ∪Vi the union over all i =
1, . . . , (d −r) with |Vi | > 2. Notice that the cardinality of V satisfies |V | = r ,
where r is the number of cone points. For any x ∈ V denote by yx the element of
property (4). If for both yi,1 and yi,2 the inclusion of the closed neighborhoods is
satisfied, then randomly choose one of them as yx . We will denote by Gens(I�)

the set of minimal generators of the Stanley-Reisner ideal of �. If no confusion
may arise, we will denote the variables with the same letters as the vertices of
�. With the above notation we have:

Lemma 6.4. The flag simplicial complex �̃ corresponding to the square-free
monomial ideal generated by

(5)
(

Gens(I�) \
(⋃

x∈V

{xyx}
))

∪
(⋃

x∈V

{xzj }
)

is balanced, Cohen-Macaulay and has the same f -vector as �.

Proof. It is easy to see that it will be enough to prove the lemma for r = 1.
We call a “step” the deletion of xyx from Gens(I�) together with the adding
of xzj to Gens(I�) for some x ∈ V . Notice that after “taking a step” property
(4) still holds in the new complex. To prove the lemma we have to show that
at each step the f -vector does not change and that properties 1. and 2. below
hold. It is clear that each step reduces r , the number of cone points, by one. We
will not need to prove Cohen-Macaulayness at each step, as it follows from
properties 1. and 2. when there are no more cone points.

Suppose r = 1 and that i is the color for which |Vi | > 2. Let x, y ∈ Vi be
two vertices with N [y] ⊆ N [x] and let z be a cone point.

We will first prove that f (�̃) = f (�). As z is a cone point for �, it will
also be a cone point for the simplicial complex link� x. We will denote by
Lxz = link�{x, z}. By definition V (Lxz)∩N [x] = ∅ , so property (4) implies
that V (Lxz) ∩ N [y] = ∅ as well. This ensures that deleting the generator xy

we obtain the new faces {F ∪ {x, y} : F ∈ Lxz} = �̃ \ �. On the other hand,
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adding xz as a generator we delete exactly the faces {F ∪ {x, z} : F ∈ Lxz}.
This means we have for every i ∈ {−1, . . . , d − 1}:

fi(�̃) = fi(�) − fi−2(Lxz) + fi−2(Lxz),

where fj = 0 for j < −1.
Notice that �̃ is still balanced. The only vertex that changes color is x, which

will be colored with the same color as z. We will write ∪d
i=1Ṽi for the partition

of the vertices induced by the coloring. In order to prove that �̃ remains CM
we will prove that

(1) �̃ is pure.

(2) �̃S is a connected, 1-dimensional complex for any subset of vertices
S = Ṽi ∪ Ṽj with 1 ≤ i < j ≤ d.

Notice that (also for r > 1) �̃ is a (d − 1)-dimensional simplicial complex on
[2d], without cone points. It is easy to check that conditions 1. and 2. above
imply the first point of Theorem 2.3 and thus imply Cohen-Macaulayness.

To prove 1., we only have to check that the facets of the form {x, y} ∪ F

with F ∈ Lxz are of dimension d − 1. But the maximal faces under inclusion
in Lxz are all of cardinality d − 2 by the purity of �, so �̃ is also pure.

To prove 2., we have to check three cases. Fix S = Ṽi ∪ Ṽj with 1 ≤ i <

j ≤ d.
Case 1. S ∩ {x, y, z} = ∅. In this case �̃S = �S , so by [19, Theorem 4.5]

it is CM, thus connected.
Case 2. S ∩ {x, y, z} = {y}. The inclusion N [y] ⊆ N [x] is equivalent to

{v, x} ∈ � ⇒ {v, y} ∈ �.

Let v, w be two vertices in �̃S . Again by [19, Theorem 4.5] in �S∪{x} there
exists a path connecting them: v = v1, v2, . . . , vt = w. Suppose vk = x for
some k. By the above observation {vk−1, y}, {y, vk+1} ∈ �̃S , so we can modify
the path to v1, . . . , vk−1, y, vk+1, . . . , vt . Hence �̃S is also connected.

Case 3. S ∩ {x, y, z} ⊇ {x, z}. Suppose z ∈ Ṽj . As z is a cone point in �,
it is connected to all vertices of Ṽi . If y ∈ Ṽi then it is enough to notice that
{x, y} ∈ �̃S . Otherwise, as �̃ is pure and balanced, there exists at least one
vertex v ∈ Ṽi such that {x, v} is an edge.

Using the above lemma together with Theorem 4.5 we obtain the following
corollary.

Corollary 6.5. If � is a Cohen-Macaulay, flag, balanced simplicial com-
plex satisfying property (4), there exists a flag simplicial complex � such that
h(�) = f (�).
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In the next example we will see how Lemma 5 works.

Example 6.6. Let �′ be the flag, balanced simplicial complex correspond-
ing to the graph on {1, . . . , 8} represented on the left hand side. Consider �

to be the independence complex of the whole graph G on {1, . . . , 10}. Notice
that � is obtained from �′ by adding the cone points 9 and 10. It is not difficult
to check that � is CM, (actually vertex decomposable).

1 2 3 9 10

7 8

4 5 6

1 2 3 9 10

4 5 6 7 8

Now we construct the simplicial complex �̃ as the independence complex
of the graph G̃ depicted on the right hand side. If we set V1 = {1, 4, 7} and
V2 = {2, 5, 8}, using the notation of Lemma 5 we have V = V1∪V2 = {7}∪{8}.
As V1 = N [4] ⊆ N [7] = V1 ∪ {2, 3, 8} and V2 ∪ {6, 7} = N [2] ⊆ N [8] =
V2 ∪ {6, 7} we may choose y7 = 4 and y8 = 2. Deleting the edges {4, 7}
and {2, 8} and adding the edges {7, 9} and {8, 10} we find ourselves in the
hypothesis of Lemma 5, so �̃ is flag, balanced, CM and f (�̃) = f (�).

Unfortunately, property (4) is not satisfied in general. The following simpli-
cial complex turned up in several contexts as a counter-example to the strategy
we were trying to use in order to prove Conjecture 1.4.

Example 6.7. Let � be the 2-dimensional simplicial complex on {1, . . . , 8}
represented below on the left hand side. The picture on the right hand side
represents the graph G = G� of minimal nonfaces.

3

4

2

15

6

7

2 3

6 7

4 5

1

88

Notice that � is balanced and it is also easy to check that it is vertex de-
composable. One vertex decomposition is obtained by removing in order the
vertices 8, 7, 6, 5, 4. Let V1 = {1, 4, 6}, V2 = {2, 5, 7} and V3 = {3, 8} be the
disjoint sets of vertices of the same color. Notice that these sets are uniquely
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determined, i.e. there is a unique 3-coloring modulo a permutation of the col-
ors. From G we can easily read that N [1] = V1 ∪ {5}, N [4] = V1 ∪ {7} and
N [6] = V1 ∪{2}, so � does not satisfy property (4). It is also easy to check that
� does not satisfy the conditions of Lemma 6.1. However, h(�) = (1, 5, 3)

is clearly the f -vector of a flag simplicial complex.
We would also like to notice that link� 8 is vertex decomposable, but its

vertex decomposition cannot be induced by the vertex decomposition of �,
because 7 is not a shedding vertex for link� 8. Notice that for � \ 8 both the
lexicographic and the reversed lexicographic order on F (� \ 8) are shelling
orders. However, this is no longer true for (� \ 8){1,7,6,5}.

The above observations also underline the fact that even if vertex decompos-
ability strongly encourages proofs by induction, in the case of Conjecture 1.4
this strategy works only in the presence of extra assumptions or leads to weaker
conclusions.

The flag, balanced, pure simplicial complexes having property (3) are ex-
actly the independence complexes of the clique-whiskered graphs introduced
in [8]. Both Lemma 6.1 and Proposition 6.2 have a correspondent in the above
mentioned paper.
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