INVOLUTIONS ON A TROPICAL LINE

JOAQUIM ROÉ*

Abstract

Tropical involutive linear maps and pencils of degree 2 on the tropical projective line are introduced and studied. Both concepts are related in a similar way to linear involutions and g_{2}^{1} 's in the classical (algebraic) projective line, and tropicalization relates the algebraic phenomena to the tropical ones.

1. Introduction

1.1. Complete linear series

Complete linear series on tropical curves have been recently object of intense study, and are relatively well understood thanks to Riemann-Roch type theorems and to combinatoric descriptions, see [5], [1], [2]. These linear series turn out to be polyhedral complexes which do not have pure dimension, and this fact has been an obstacle to define and study non-complete linear series. As far as we know, [6] and [3], which study linear series of plane curves (determined by imposing a singular point in the first case, three base points in the second) are the only works dealing with non-complete linear series so far. On projective tropical space, complete linear series are specially simple, as they consist of a single polytope, a simple quotient of a free tropical module. Thus it seems reasonable to consider sublinear series of these (as in [6] and [3]), and the simplest case is that of pencils of degree 2 on the projective line. In classical algebraic geometry, these are called g_{2}^{1} 's on P^{1}, and they are very closely related to linear involutions, i.e., projectivities of P^{1} onto itself whose square is the identity, and to (ramified) double covers of P^{1} by itself. In this note we introduce tropical notions of g_{2}^{1} and involutive linear maps, and show that both are closely related as in the algebraic case. Our description suggests that a double cover of the tropical line by itself could have a segment of "ramification points"; in the forthcoming work [7] we study involutions on the Berkovich projective line and show that its (ramified) double covers by itself have a whole (tropical) line of ramification points.

[^0]
1.2. Setting

Let $\mathrm{R}_{\text {trop }}=\mathrm{R} \cup\{-\infty\}$ be the tropical semifield, with operations $a \oplus b=$ $\max (a, b)$ and $a \odot b=a+b$. Natural number exponents in tropical expressions should be interpreted tropically, i.e., $a^{n}=a \odot \cdots \odot a$. A tropical polynomial in the variables x_{1}, \ldots, x_{n} is a formal expression $\bigoplus_{\alpha} a_{\alpha} \odot x^{\alpha}$ where $\alpha \in Z_{\geq 0}^{n}$ is a multi-index, $x^{\alpha}=x_{1}^{\alpha_{1}} \odot \cdots \odot x_{n}^{\alpha_{n}}$ and $a_{\alpha} \in \mathrm{R}_{\text {trop }}$ for all α. Such a tropical polynomial defines, by interpreting sums and products tropically, a piecewise linear function with integer slopes

$$
\left(x_{1}, \ldots, x_{n}\right) \mapsto \bigoplus_{\alpha} a_{\alpha} \odot x^{\alpha}=\max _{\alpha}\left(a_{\alpha}+\sum_{i=1}^{n} \alpha_{i} x_{i}\right),
$$

whose corner locus, denoted $\mathscr{T}\left(\bigoplus_{\alpha} a_{\alpha} x^{\alpha}\right)$, is a tropical affine hypersurface.
Tropical projective n-space, TP^{n}, is the quotient of $\mathrm{R}_{\text {trop }}^{n+1} \backslash\{(-\infty, \ldots,-\infty)\}$ by the equivalence relation $\left(x_{1}, \ldots, x_{n}\right) \sim\left(y_{1}, \ldots, y_{n}\right)$ when $\exists t \in \mathrm{R}, x_{i}=$ $y_{i}+t$ for all i.

We use the notation $\left(x_{0}: \ldots: x_{n}\right)$ for the point of TP n corresponding to $\left(x_{0}, \ldots, x_{n}\right) \in \mathrm{R}_{\text {trop }}^{n}$. A tropical polynomial P does not define a function on TP^{n}, but if it is homogeneous then its corner locus is well defined, and we also denote it $\mathscr{T}(P)$. A pair of homogeneous tropical polynomials of the same degree, not both equal to $-\infty$, define a rational function $\left(x_{0}: \ldots: x_{n}\right) \mapsto$ $\left(P\left(x_{0}, \ldots, x_{n}\right): Q\left(x_{0}, \ldots, x_{n}\right)\right)$ (a continuous piecewise linear map to the projective line). Since a polynomial different from $-\infty$ can take the value ∞ only at the borders of projective space, i.e., when at least one of the $x_{i}=-\infty$, rational function can have a nonempty indeterminacy locus (where ($P: Q$) takes the non-existent value $(-\infty:-\infty)$) but it must be a subset of the border; in the case $n=1$ such indeterminacies can always be resolved, extending the function by continuity.

As a set, TP ${ }^{1}$ can be identified with $\mathrm{R} \cup\{-\infty,+\infty\}$ by mapping ($a: b$) to $b-a$. We use the notation $p_{-}=(0:-\infty)$ and $p_{+}=(-\infty: 0)$ for the two ends, or points at infinity, of TP ${ }^{1}$. Note that TP^{1} is a totally ordered set, the order being $(a: b) \leq(c: d)$ when $b-a \leq d-c$. Given two points $p, q \in \mathrm{TP}^{1}$ we denote by $[p, q]$ the tropical convex hull [4] of the pair, which is just the segment with ends at p and q.

1.3. A divisor

A divisor on TP^{1} is an element $\sum_{p \in \mathrm{TP}^{1}} a_{p} \cdot p$ of the free abelian group on its points, and it is effective when all coefficients a_{p} are non-negative. The degree of a divisor is the sum of the coefficients. The order of a rational function $f=(P: Q)$ at a point $p \in \mathrm{TP}^{1}$ is defined, following [5], as the sum of the
outgoing slopes of f at p, and

$$
(f)=\sum_{p \in \operatorname{TP}^{1}} \operatorname{ord}_{p}(f) \cdot p
$$

is the principal divisor determined by (f). Two divisors are linearly equivalent if they differ by a principal divisor.

Given a divisor D, one considers the space $R(D)$ of all rational functions f such that $(f)+D$ is effective, and the complete linear series $|D|=\{(f)+D \mid$ $f \in R(D)\}$. Actually, this machinery makes sense mostly for curves of higher genus, because in the case of a line $|D|$ is just the set of all effective divisors of the same degree, but it is worth keeping the $\mathrm{R}_{\text {trop }}$-module and geometric structure of $R(D)$ and $|D|$ also in this case.

Thus, for any divisor D of degree $2,|D|=\left|2 \cdot p_{+}\right|$, and a rational function such that $(f)+2 \cdot p_{+}$is effective can always be written as $f(x: y)=\left(x^{2}\right.$: $P(x, y)$), where $P(x, y)=\alpha_{20} \odot x^{2} \oplus \alpha_{11} \odot x \odot y \oplus \alpha_{02} \odot y^{2}$ is a homogeneous tropical polynomial of degree 2 . So the complete linear series of degree 2 is

$$
|D|=\left\{\begin{array}{l|l}
\mathscr{T}\left(\alpha_{20} \odot x^{2} \oplus \alpha_{11} \odot x \odot y \oplus \alpha_{02} \odot y^{2}\right) & \begin{array}{l}
\alpha_{20}, \alpha_{11}, \alpha_{02} \in \mathrm{R}_{\text {trop }} \\
\alpha_{20} \oplus \alpha_{11} \oplus \alpha_{02} \neq-\infty
\end{array}
\end{array}\right\}
$$

Observe that this is not isomorphic to the tropical projective plane but to a quotient of it, because two tropical polynomials can have the same roots even if one is not a scalar multiple of the other; indeed, given α_{20}, α_{02}, for all $\alpha_{11} \leq\left(\alpha_{20}+\alpha_{02}\right) / 2, \mathscr{T}\left(\alpha_{20} \odot x^{2} \oplus \alpha_{11} \odot x \odot y \oplus \alpha_{02} \odot y^{2}\right)=\left(\alpha_{02} / 2: \alpha_{20} / 2\right)$.

2. Tropical involutions

2.1. Tropical matrices and projectivities

In the set TM_{2} of all 2×2 matrices with entries in $\mathrm{R}_{\text {trop }}$, not all equal to $-\infty$, consider the equivalence relation

$$
A \sim B \text { when } \exists t \in \mathrm{R}, A=B+\left(\begin{array}{ll}
t & t \\
t & t
\end{array}\right)
$$

Let PTM_{2} be the set of matrices in TM_{2} with no column equal to $\binom{-\infty}{-\infty}$ modulo \sim. Given $A \in \mathrm{TM}_{2}$ with no column equal to $\binom{-\infty}{-\infty}$, there is an associated map $\varphi_{A}: \mathrm{TP}^{1} \rightarrow \mathrm{TP}^{1}$ given by multiplication on the left, and $\varphi_{A}=\varphi_{B} \Leftrightarrow A \sim B$.

We define the sign of a matrix as

$$
\sigma\left(\begin{array}{ll}
a_{00} & a_{10} \\
a_{01} & a_{11}
\end{array}\right)=\operatorname{sign}\left(a_{00}+a_{11}-a_{10}-a_{01}\right) \in\{-1,0,1\}
$$

2.2. MAIN PROPERTIES OF THE SIGN Let $A, B \in \mathrm{TM}_{2}$ with no column equal to $\binom{-\infty}{-\infty}$.
(1) If $A \sim B$ then $\sigma(A)=\sigma(B)$, i.e., the sign of a matrix in PTM_{2} is well-defined.
(2) $\sigma(A \odot B) \in\{0, \sigma(A) \sigma(B)\}$.
(3) $\sigma(A)=0 \Leftrightarrow \varphi_{A}$ is constant.
(4) $\sigma(A)=1 \Leftrightarrow \varphi_{A}$ is order-preserving, i.e., $p \geq q \Rightarrow \varphi_{A}(p) \geq \varphi_{A}(q)$.
(5) $\sigma(A)=-1 \Leftrightarrow \varphi_{A}$ is order-reversing, i.e., $p \geq q \Rightarrow \varphi_{A}(p) \leq \varphi_{A}(q)$.

The proof of 2.2 is elementary.

2.3. Involutive matrices

In PTM_{2}, consider the subset ITM 2 of those matrices with 2 equal values in the diagonal, i.e., of the form $J_{a, b, c}=\left(\begin{array}{ll}b & a \\ c & b\end{array}\right)$. These form the tropicalization of the locus of involutive matrices in PGL(2), and we call them involutive tropical matrices. Denote $\varphi_{a, b, c}=\varphi_{J_{a, b, c}}$.
2.4. Characterization Let $A \in \mathrm{PTM}_{2}$, and let $F=\operatorname{Im}\left(\varphi_{A}\right) \subset \mathrm{TP}^{1}$. A is involutive if and only if F is not reduced to an end of TP^{1} and the restriction of φ_{A}^{2} to F is the identity map.

Proof. By Develin-Sturmfels [4], the image of φ_{A} is the tropical convex hull of the two points determined by the columns of A, i.e., a point or a segment of positive length. Thus, $\varphi_{a, b, c}$ is surjective (bijective in fact) if and only if $b=-\infty$ or $a=c=-\infty$. Now for all $(x: y) \in \operatorname{TP}^{1}, \varphi_{-\infty, b,-\infty}(x: y)=$ $(b \odot x: b \odot y)=(x: y)$, i.e., $\varphi_{-\infty, b,-\infty}$ is the identity map. On the other hand, $\varphi_{a,-\infty, c}^{2}(x: y)=\varphi_{a,-\infty, c}(a \odot y: c \odot x)=(a \odot c \odot x: a \odot c \odot y)=(x: y)$, so $\varphi_{a,-\infty, c}^{2}$ is the identity map, for all $a, c \in \mathrm{R}$.

It is not hard to check that $\varphi_{a, b, c}$, restricted to its image, is always a bijection, but we distinguish three different cases, depending on the sign of the matrix.
$\sigma\left(J_{a, b, c}\right)=1$: This includes all cases when a or c is $-\infty$, i.e., when the image contains an end of TP^{1}. In this case, a computation as above shows that $\varphi_{a, b, c}$ restricted to $[(b: c),(a: b)]$ is the identity, whereas $[(0:-\infty),(b: c)]$ maps identically to $(b: c)$ and $[(a: b),(-\infty: 0)]$ maps to $(a: b)$. Moreover $\varphi_{a, b, c}$ is idempotent, i.e., $\varphi_{a, b, c}^{2}=\varphi_{a, b, c}$. Topologically speaking $\varphi_{a, b, c}$ is the retraction of TP^{1} to F.
$\sigma\left(J_{a, b, c}\right)=0$: In this case $\varphi_{a, b, c}$ is constant and the image point is not an end of TP 1. Therefore, trivially, it is idempotent and restricted to its image it is the identity map.
$\sigma\left(J_{a, b, c}\right)=-1$: This includes all cases with $b=-\infty$; these are involutions and have been considered before, so assume $b \in \mathrm{R}$. In this case $a, c \in \mathrm{R}$, and one checks that $\varphi_{a, b, c}$ restricted to $[(a: b),(b: c)]$ is the unique orientation-reversing isometry, whereas $[(0:-\infty),(a: b)]$ maps identically to $(b: c)$ and $[(b: c),(-\infty: 0)]$ maps to $(a: b)$. Moreover $\varphi_{a, b, c}^{2}=\varphi_{-a,-b,-c}$ is the retraction of TP^{1} to F.

Conversely, let $A=\left(\begin{array}{ll}a_{00} & a_{10} \\ a_{01} & a_{11}\end{array}\right)$ be a matrix such that the restriction of φ_{A}^{2} to $F=\operatorname{Im}\left(\varphi_{A}\right)$ is the identity map. Write $A^{2}=\left(\begin{array}{ll}b_{00} & b_{10} \\ b_{01} & b_{11}\end{array}\right)$. If

$$
A^{2}\binom{x}{y}=\binom{b_{00} \odot x \oplus b_{10} \odot y}{b_{01} \odot x \oplus b_{11} \odot y}=\binom{x}{y}
$$

in a segment of positive length, we must have $b_{00} \odot x \oplus b_{10} \odot y=b_{00} \odot x$ (i.e., $y-x<b_{00}-b_{10}$) and $b_{01} \odot x \oplus b_{11} \odot y=b_{11} \odot y$ (i.e., $y-x>b_{01}-b_{11}$) in that segment, and $b_{00}=b_{11}$. So we can assume without loss of generality that $b_{00}=b_{11}=0$ and $b_{10}+b_{01}<0$, i.e., $A^{2}=J_{b_{10}, 0, b_{01}}$. The equation

$$
A^{2}=\left(\begin{array}{cc}
a_{00}^{2} \oplus a_{10} \odot a_{01} & a_{10} \odot\left(a_{00} \oplus a_{11}\right) \\
a_{01} \odot\left(a_{00} \oplus a_{11}\right) & a_{10} \odot a_{01} \oplus a_{11}^{2}
\end{array}\right)=\left(\begin{array}{cc}
0 & b_{10} \\
b_{01} & 0
\end{array}\right)
$$

has two types of solutions, depending on whether $0=2 a_{00}>a_{10}+a_{01}$ or $2 a_{00} \leq a_{10}+a_{01}=0$. If $0=2 a_{00}>a_{10}+a_{01}$ then one is forced to have $2 a_{11}=0$ and so $A=A^{2}=J_{a_{10}, 0, a_{01}}$ is one of the retractions above, $\sigma(A)=1$.

All other solutions have $a_{10}+a_{01}=0$ and $a_{00}, a_{11} \leq 0$. The condition that φ_{A}^{2} is the identity on F implies that each column of A determines a point in the segment $\left[\left(0: b_{01}\right),\left(b_{10}: 0\right)\right]$ where φ_{A}^{2} is the identity, therefore

$$
\begin{aligned}
a_{01}+\max \left(a_{00}, a_{11}\right) & =a_{01} \odot\left(a_{00} \oplus a_{11}\right)=b_{01}-0 \leq a_{11}-a_{10}, \\
-a_{10}-\max \left(a_{00}, a_{11}\right) & =-\left(a_{10} \odot\left(a_{00} \oplus a_{11}\right)\right)=0-b_{10} \leq a_{01}-a_{00}
\end{aligned}
$$

$\operatorname{somax}\left(a_{00}, a_{11}\right) \leq a_{11}-a_{01}-a_{10}=a_{11}$ and $\max \left(a_{00}, a_{11}\right) \leq a_{00}-a_{01}-a_{10}=$ a_{00}. Thus $a_{00}=a_{11} \leq a_{10}+a_{01}$, which shows A is involutive, and either constant or of negative sign.

3. Tropical pencils

3.1. $A g_{2}^{1}$ on TP^{1}

A g_{2}^{1} on TP ${ }^{1}$ must be a linear subseries of the complete linear series of degree 2 which, as explained in 1.3 , is
$\left|2 \cdot p_{+}\right|=\left\{\mathscr{T}\left(\alpha_{20} \odot x^{2} \oplus \alpha_{11} \odot x \odot y \oplus \alpha_{02} \odot y^{2}\right) \mid \alpha_{20}, \alpha_{11}, \alpha_{02} \in \mathrm{R}_{\text {trop }}\right\}$,

Since a tropical line in a plane is given by a tropical linear equation, we define g_{2}^{1} 's as determined by a tropical linear equation in the coefficients $\alpha_{20}, \alpha_{11}, \alpha_{02} \in \mathrm{R}_{\text {trop }}$. Thus, if $L_{a, b, c}$ denotes the tropical line defined as the corner locus of the tropical polynomial function $a \odot \alpha_{20} \oplus b \odot \alpha_{11} \oplus c \odot \alpha_{02}$, the corresponding g_{2}^{1} is

$$
\begin{aligned}
g_{a, b, c} & =\left\{\mathscr{T}\left(\alpha_{20} \odot x^{2} \oplus \alpha_{11} \odot x \odot y \oplus \alpha_{02} \odot y^{2}\right) \mid\left(\alpha_{20}: \alpha_{11}: \alpha_{02}\right) \in L_{a, b, c}\right\} \\
& \subset\left|2 \cdot p_{+}\right| .
\end{aligned}
$$

3.2. CORRESPONDENCE PENCILS \leftrightarrow INVOLUTIONS Let $a, b, c \in \mathrm{R}_{\text {trop }}$, with $a \oplus b \neq-\infty \neq b \oplus c$. Then the set $\left\{p+\varphi_{a, b, c}(p)\right\}_{p \in \mathrm{TP}^{1}} \subset\left|2 p_{+}\right|$is equal to $g_{a, b, c}$.

Proof. The proof is slightly different depending on the sign of the involutive matrix $J_{a, b, c}$. Let us prove the statement for $\sigma\left(J_{a, b, c}\right) \geq 0$, and leave the negative case to the reader. Let F be the image of $\varphi_{a, b, c}$; its end points are $(b: c)$ and $(a: b)$, and its mid point is $(a / 2: c / 2)$.

We first prove that $\left\{p+\varphi_{a, b, c}(p)\right\}_{p \in \mathrm{TP}^{1}} \subset g_{a, b, c}$. Distinguish four cases, depending on the position of the point $p \in \operatorname{TP}^{1}$ relative to these three points.
$p \leq(b: c)$: Put $p=(b: t)$ with $t \leq c$, then $p+\varphi_{a, b, c}(p)=(b: t)+(b:$ $c)=\mathscr{T}\left(c \odot t \odot x^{2} \oplus b \odot c \odot x \odot y \oplus b^{2} \odot y^{2}\right)$, and $\left(c \odot t: b \odot c: b^{2}\right) \in L_{a, b, c}$ because $a \odot c \odot t \leq b \odot b \odot c=c \odot b^{2}$.
$(b: c) \leq p \leq(a / 2: c / 2)$: Put $p=(b: t)$ with $c \leq t \leq b+(c-a) / 2$, then $p+\varphi_{a, b, c}(p)=2(b: t)=\mathscr{T}\left(t^{2} \odot x^{2} \oplus b \odot c \odot x \odot y \oplus b^{2} \odot y^{2}\right)$, and $\left(t^{2}: b \odot c: b^{2}\right) \in L_{a, b, c}$ because $a \odot t^{2} \leq b \odot b \odot c=c \odot b^{2}$.
$(a / 2: c / 2) \leq p \leq(a: b):$ Put $p=(t: b)$ with $a \leq t \leq b+(a-c) / 2$, then $p+\varphi_{a, b, c}(p)=2(t: b)=\mathscr{T}\left(b^{2} \odot x^{2} \oplus a \odot b \odot x \odot y \oplus t^{2} \odot y^{2}\right)$, and $\left(b^{2}: a \odot b: t^{2}\right) \in L_{a, b, c}$ because $a \odot b^{2}=b \odot a \odot b \geq c \odot t^{2}$.
$p \geq(a: b)$: Put $p=(t: b)$ with $t \leq a$, then $p+\varphi_{a, b, c}(p)=\{(a: b),(t:$ $b)\}=\mathscr{T}\left(b^{2} \odot x^{2} \oplus a \odot b \odot x \odot y \oplus a \odot t \odot y^{2}\right)$, and $\left(b^{2}: a \odot b:\right.$ $a \odot t) \in L_{a, b, c}$ because $a \odot b^{2}=b \odot a \odot b \geq c \odot a \odot t$.

Along the way we have shown that equations parameterized by two of the three rays in $L_{a, b, c}$ (namely, $a+\alpha_{20} \leq b+\alpha_{11}=c+\alpha_{02}$ and $a+\alpha_{20}=$ $b+\alpha_{11} \geq c+\alpha_{02}$) do give pairs of points $p+\varphi_{a, b, c}(p)$. The third ray, with equations $a+\alpha_{20}=c+\alpha_{02} \geq b+\alpha_{11}$ corresponds to the polynomials $c \odot x^{2} \oplus t \odot x \odot y \oplus a \odot y^{2}$ with $t \leq(a+c) / 2$, whose unique double root is the mid point $(a / 2: c / 2) \in F$, fixed by $\varphi_{a, b, c}$, so we are done.

4. Tropicalization

4.1. Tropicalization of involutions

Next we check that all tropical involutive maps (and g_{2}^{1} 's) as defined above arise as tropicalizations of algebraic involutions. Let K be a valued field, with value group $G \subset \mathrm{R}$, and denote the valuation by v. Assume furthermore that $v(2)=0$. Given $a, b, c \in G \cup\{-\infty\}$, with $a \oplus b \neq-\infty \neq b \oplus c$, choose $\alpha, \beta, \gamma \in K$ such that $v(\alpha)=-a, v(\beta)=-b, v(\gamma)=-c$. Since there are fields with value grup equal to R , the restriction to G is not actually relevant; rather, it is considered here only for completeness.

Consider the matrix $A=\left(\begin{array}{cc}\beta & \alpha \\ \gamma & -\beta\end{array}\right)$; if it turns out to be singular (which can indeed happen if $a+c=2 b$) replace α by some $\alpha+x$ with $x \neq 0$, $v(x)>a$, which certainly exist. Since $A^{2}=\left(\begin{array}{cc}\beta^{2}+\alpha \gamma & 0 \\ 0 & \beta^{2}+\alpha \gamma\end{array}\right), A$ is the matrix of an involution in P_{K}^{2}, and its tropicalization is the involutive tropical matrix $\left(\begin{array}{ll}b & a \\ c & b\end{array}\right)$.

It is clear that the g_{2}^{1} on P_{K}^{1} corresponding to the involution with matrix A tropicalizes to the tropical g_{2}^{1} corresponding to the tropicalized matrix. It is more illustrative to pay some attention to the fixed points of the involution.
4.2. Tropicalization of fixed points Let \bar{K} be an algebraic closure of K, and let $p, q \in \mathrm{P}_{\bar{K}}^{1}$ be the fixed points of the involution $\varphi_{A}: \mathrm{P}_{\bar{K}}^{1}$ determined by $A=\left(\begin{array}{cc}\beta & \alpha \\ \gamma & -\beta\end{array}\right)$. Let $A^{t}=\left(\begin{array}{l}b \\ c \\ c\end{array}\right)=-v(A)$ be the tropicalization of A. Then $\sigma\left(A^{t}\right)=1$ if and only if $v(p) \neq v(q)$, and in this case the ends of the segment fixed by the tropical involutive map are $-v(p)$ and $-v(q)$.

Proof. $p=(x: y)$ and $q=\left(x^{\prime}: y^{\prime}\right)$ are the zeros of the homogeneous polynomial $\gamma x^{2}-2 \beta x y-\alpha y^{2}$, so their tropicalizations $-v(p),-v(q)$ are the tropical roots of the tropicalization $F=c \odot x^{2} \oplus b \odot x \odot y \oplus a \odot y^{2}$. These are distinct if and only if $2 b \geq c+a$, i.e., if and only if $\sigma\left(A^{t}\right)=1$. In such a case, the columns of A^{t} are exactly the tropical roots of F , and they are also the ends of the segment fixed by the tropical involutive map.

REFERENCES

1. Baker, M., and Norine, S., Riemann-Roch and Abel-Jacobi theory on a finite graph, Adv. Math. 215 (2007), 766-788.
2. Baker, M., and Norine, S., Harmonic morphisms and hyperelliptic graphs, Int. Math. Res. Not. 15 (2009), 2914-2955.
3. Brodsky, S. B., and Sturmfels, B., Tropical quadrics through three points, Linear Algebra Appl. 435 (2011), 1778-1785.
4. Develin, M., and Sturmfels, B., Tropical convexity, Doc. Math. 9 (2004), 1-27 (electronic), correction: ibid., pp. 205-206.
5. Gathmann, A., and Kerber, M., A Riemann-Roch theorem in tropical geometry, Math. Z. 259 (2008), 217-230.
6. Markwig, H., Markwig, T., and Shustin, E., Tropical curves with a singularity in a fixed point, Manuscripta Math. 137 (2012), 383-418.
7. Martínez, C., and Roé, J., Involutions on berkovich and tropical lines, in preparation.

UNIVERSITAT AUTÒNOMA DE BARCELONA
DEPARTAMENT DE MATEMÀTIQUES
E-08193 BELLATERRA (BARCELONA)
SPAIN
E-mail: jroe@mat.uab.cat

[^0]: * Partially supported by the Spanish Ministerio de Ciencia e Innovacion project MTM200910359.

 Received 16 April 2010, in final form 21 November 2011.

