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INVOLUTIONS ON A TROPICAL LINE

JOAQUIM ROÉ∗

Abstract
Tropical involutive linear maps and pencils of degree 2 on the tropical projective line are introduced
and studied. Both concepts are related in a similar way to linear involutions and g1

2’s in the classical
(algebraic) projective line, and tropicalization relates the algebraic phenomena to the tropical ones.

1. Introduction

1.1. Complete linear series

Complete linear series on tropical curves have been recently object of intense
study, and are relatively well understood thanks to Riemann-Roch type the-
orems and to combinatoric descriptions, see [5], [1], [2]. These linear series
turn out to be polyhedral complexes which do not have pure dimension, and
this fact has been an obstacle to define and study non-complete linear series.
As far as we know, [6] and [3], which study linear series of plane curves (de-
termined by imposing a singular point in the first case, three base points in
the second) are the only works dealing with non-complete linear series so far.
On projective tropical space, complete linear series are specially simple, as
they consist of a single polytope, a simple quotient of a free tropical module.
Thus it seems reasonable to consider sublinear series of these (as in [6] and
[3]), and the simplest case is that of pencils of degree 2 on the projective line.
In classical algebraic geometry, these are called g1

2’s on P1, and they are very
closely related to linear involutions, i.e., projectivities of P1 onto itself whose
square is the identity, and to (ramified) double covers of P1 by itself. In this note
we introduce tropical notions of g1

2 and involutive linear maps, and show that
both are closely related as in the algebraic case. Our description suggests that a
double cover of the tropical line by itself could have a segment of “ramification
points”; in the forthcoming work [7] we study involutions on the Berkovich
projective line and show that its (ramified) double covers by itself have a whole
(tropical) line of ramification points.
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1.2. Setting

Let R trop = R ∪ {−∞} be the tropical semifield, with operations a ⊕ b =
max(a, b) and a�b = a+b. Natural number exponents in tropical expressions
should be interpreted tropically, i.e., an = a � · · · � a. A tropical polynomial
in the variables x1, . . . , xn is a formal expression

⊕
α aα � xα where α ∈ Zn

≥0
is a multi-index, xα = x

α1
1 � · · ·� xαn

n and aα ∈ R trop for all α. Such a tropical
polynomial defines, by interpreting sums and products tropically, a piecewise
linear function with integer slopes

(x1, . . . , xn) 	→
⊕

α

aα � xα = max
α

(
aα +

n∑
i=1

αixi

)
,

whose corner locus, denoted T
(⊕

α aαxα
)
, is a tropical affine hypersurface.

Tropical projective n-space, TPn, is the quotient of Rn+1
trop \{(−∞, . . . ,−∞)}

by the equivalence relation (x1, . . . , xn) ∼ (y1, . . . , yn) when ∃t ∈ R, xi =
yi + t for all i.

We use the notation (x0 : . . . : xn) for the point of TPn corresponding to
(x0, . . . , xn) ∈ Rn

trop. A tropical polynomial P does not define a function on
TPn, but if it is homogeneous then its corner locus is well defined, and we
also denote it T (P ). A pair of homogeneous tropical polynomials of the same
degree, not both equal to −∞, define a rational function (x0 : . . . : xn) 	→
(P (x0, . . . , xn) : Q(x0, . . . , xn)) (a continuous piecewise linear map to the
projective line). Since a polynomial different from −∞ can take the value ∞
only at the borders of projective space, i.e., when at least one of the xi = −∞,
rational function can have a nonempty indeterminacy locus (where (P : Q)

takes the non-existent value (−∞ : −∞)) but it must be a subset of the border;
in the case n = 1 such indeterminacies can always be resolved, extending the
function by continuity.

As a set, TP1 can be identified with R ∪ {−∞, +∞} by mapping (a : b)

to b − a. We use the notation p− = (0 : −∞) and p+ = (−∞ : 0) for the
two ends, or points at infinity, of TP1. Note that TP1 is a totally ordered set,
the order being (a : b) ≤ (c : d) when b − a ≤ d − c. Given two points
p, q ∈ TP1 we denote by [p, q] the tropical convex hull [4] of the pair, which
is just the segment with ends at p and q.

1.3. A divisor

A divisor on TP1 is an element
∑

p∈TP1 ap · p of the free abelian group on its
points, and it is effective when all coefficients ap are non-negative. The degree
of a divisor is the sum of the coefficients. The order of a rational function
f = (P : Q) at a point p ∈ TP1 is defined, following [5], as the sum of the
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outgoing slopes of f at p, and

(f ) =
∑

p∈TP1

ordp(f ) · p

is the principal divisor determined by (f ). Two divisors are linearly equivalent
if they differ by a principal divisor.

Given a divisor D, one considers the space R(D) of all rational functions f

such that (f )+D is effective, and the complete linear series |D| = {(f )+D |
f ∈ R(D)}. Actually, this machinery makes sense mostly for curves of higher
genus, because in the case of a line |D| is just the set of all effective divisors
of the same degree, but it is worth keeping the R trop-module and geometric
structure of R(D) and |D| also in this case.

Thus, for any divisor D of degree 2, |D| = |2 · p+|, and a rational function
such that (f ) + 2 · p+ is effective can always be written as f (x : y) = (x2 :
P(x, y)), where P(x, y) = α20�x2⊕α11�x�y⊕α02�y2 is a homogeneous
tropical polynomial of degree 2. So the complete linear series of degree 2 is

|D| =
{

T (α20 � x2 ⊕ α11 � x � y ⊕ α02 � y2)

∣∣∣∣ α20, α11, α02 ∈ R trop

α20 ⊕ α11 ⊕ α02 �= −∞
}
.

Observe that this is not isomorphic to the tropical projective plane but to a
quotient of it, because two tropical polynomials can have the same roots even
if one is not a scalar multiple of the other; indeed, given α20, α02, for all
α11 ≤ (α20 +α02)/2, T (α20 �x2 ⊕α11 �x�y⊕α02 �y2) = (α02/2 : α20/2).

2. Tropical involutions

2.1. Tropical matrices and projectivities

In the set TM2 of all 2 × 2 matrices with entries in R trop, not all equal to −∞,
consider the equivalence relation

A ∼ B when ∃t ∈ R, A = B +
(

t t

t t

)
.

Let PTM2 be the set of matrices in TM2 with no column equal to
(−∞

−∞
)

modulo

∼. Given A ∈ TM2 with no column equal to
(−∞

−∞
)

, there is an associated map

ϕA : TP1 → TP1 given by multiplication on the left, and ϕA = ϕB ⇔ A ∼ B.
We define the sign of a matrix as

σ

(
a00 a10

a01 a11

)
= sign(a00 + a11 − a10 − a01) ∈ {−1, 0, 1}.
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2.2. Main properties of the sign Let A, B ∈ TM2 with no column equal

to
(−∞

−∞
)

.

(1) If A ∼ B then σ(A) = σ(B), i.e., the sign of a matrix in PTM2 is
well-defined.

(2) σ(A � B) ∈ {0, σ (A)σ(B)}.
(3) σ(A) = 0 ⇔ ϕA is constant.

(4) σ(A) = 1 ⇔ ϕA is order-preserving, i.e., p ≥ q ⇒ ϕA(p) ≥ ϕA(q).

(5) σ(A) = −1 ⇔ ϕA is order-reversing, i.e., p ≥ q ⇒ ϕA(p) ≤ ϕA(q).

The proof of 2.2 is elementary.

2.3. Involutive matrices

In PTM2, consider the subset ITM2 of those matrices with 2 equal values in the

diagonal, i.e., of the form Ja,b,c =
(

b a

c b

)
. These form the tropicalization of the

locus of involutive matrices in PGL(2), and we call them involutive tropical
matrices. Denote ϕa,b,c = ϕJa,b,c

.

2.4. Characterization Let A ∈ PTM2, and let F = Im(ϕA) ⊂ TP1. A is
involutive if and only if F is not reduced to an end of TP1 and the restriction
of ϕ2

A to F is the identity map.

Proof. By Develin-Sturmfels [4], the image of ϕA is the tropical convex
hull of the two points determined by the columns of A, i.e., a point or a segment
of positive length. Thus, ϕa,b,c is surjective (bijective in fact) if and only if
b = −∞ or a = c = −∞. Now for all (x : y) ∈ TP1, ϕ−∞,b,−∞(x : y) =
(b�x : b�y) = (x : y), i.e., ϕ−∞,b,−∞ is the identity map. On the other hand,
ϕ2

a,−∞,c(x : y) = ϕa,−∞,c(a � y : c � x) = (a � c � x : a � c � y) = (x : y),
so ϕ2

a,−∞,c is the identity map, for all a, c ∈ R.
It is not hard to check that ϕa,b,c, restricted to its image, is always a bijection,

but we distinguish three different cases, depending on the sign of the matrix.

σ(Ja,b,c) = 1: This includes all cases when a or c is −∞, i.e., when the
image contains an end of TP1. In this case, a computation as above
shows that ϕa,b,c restricted to [(b : c), (a : b)] is the identity, whereas
[(0 : −∞), (b : c)] maps identically to (b : c) and [(a : b), (−∞ : 0)]
maps to (a : b). Moreover ϕa,b,c is idempotent, i.e., ϕ2

a,b,c = ϕa,b,c.
Topologically speaking ϕa,b,c is the retraction of TP1 to F .

σ(Ja,b,c) = 0: In this case ϕa,b,c is constant and the image point is not an end
of TP1. Therefore, trivially, it is idempotent and restricted to its image it
is the identity map.
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σ(Ja,b,c) = −1: This includes all cases with b = −∞; these are involu-
tions and have been considered before, so assume b ∈ R. In this case
a, c ∈ R, and one checks that ϕa,b,c restricted to [(a : b), (b : c)] is
the unique orientation-reversing isometry, whereas [(0 : −∞), (a : b)]
maps identically to (b : c) and [(b : c), (−∞ : 0)] maps to (a : b).
Moreover ϕ2

a,b,c = ϕ−a,−b,−c is the retraction of TP1 to F .

Conversely, let A =
(

a00 a10

a01 a11

)
be a matrix such that the restriction of ϕ2

A to

F = Im(ϕA) is the identity map. Write A2 =
(

b00 b10

b01 b11

)
. If

A2

(
x

y

)
=

(
b00 � x ⊕ b10 � y

b01 � x ⊕ b11 � y

)
=

(
x

y

)

in a segment of positive length, we must have b00 �x ⊕b10 �y = b00 �x (i.e.,
y − x < b00 − b10) and b01 � x ⊕ b11 � y = b11 � y (i.e., y − x > b01 − b11)
in that segment, and b00 = b11. So we can assume without loss of generality
that b00 = b11 = 0 and b10 + b01 < 0, i.e., A2 = Jb10,0,b01 . The equation

A2 =
(

a2
00 ⊕ a10 � a01 a10 � (a00 ⊕ a11)

a01 � (a00 ⊕ a11) a10 � a01 ⊕ a2
11

)
=

(
0 b10

b01 0

)

has two types of solutions, depending on whether 0 = 2a00 > a10 + a01 or
2a00 ≤ a10 + a01 = 0. If 0 = 2a00 > a10 + a01 then one is forced to have
2a11 = 0 and so A = A2 = Ja10,0,a01 is one of the retractions above, σ(A) = 1.

All other solutions have a10 + a01 = 0 and a00, a11 ≤ 0. The condition that
ϕ2

A is the identity on F implies that each column of A determines a point in
the segment [(0 : b01), (b10 : 0)] where ϕ2

A is the identity, therefore

a01 + max(a00, a11) = a01 � (a00 ⊕ a11) = b01 − 0 ≤ a11 − a10,

−a10 − max(a00, a11) = −(a10 � (a00 ⊕ a11)) = 0 − b10 ≤ a01 − a00,

so max(a00, a11) ≤ a11−a01−a10 = a11 and max(a00, a11) ≤ a00−a01−a10 =
a00. Thus a00 = a11 ≤ a10 + a01, which shows A is involutive, and either
constant or of negative sign.

3. Tropical pencils

3.1. A g1
2 on TP1

A g1
2 on TP1 must be a linear subseries of the complete linear series of degree 2

which, as explained in 1.3, is

|2 · p+| = {T (α20 � x2 ⊕ α11 � x � y ⊕ α02 � y2) | α20, α11, α02 ∈ R trop},
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Since a tropical line in a plane is given by a tropical linear equation, we
define g1

2’s as determined by a tropical linear equation in the coefficients
α20, α11, α02 ∈ R trop. Thus, if La,b,c denotes the tropical line defined as the
corner locus of the tropical polynomial function a � α20 ⊕ b � α11 ⊕ c � α02,
the corresponding g1

2 is

ga,b,c = {T (α20 � x2 ⊕ α11 � x � y ⊕ α02 � y2) | (α20 : α11 : α02) ∈ La,b,c}
⊂ |2 · p+|.

3.2. Correspondence pencils ↔ involutions Let a, b, c ∈ R trop, with
a ⊕ b �= −∞ �= b ⊕ c. Then the set {p + ϕa,b,c(p)}p∈TP1 ⊂ |2p+| is equal to
ga,b,c.

Proof. The proof is slightly different depending on the sign of the invol-
utive matrix Ja,b,c. Let us prove the statement for σ(Ja,b,c) ≥ 0, and leave the
negative case to the reader. Let F be the image of ϕa,b,c; its end points are
(b : c) and (a : b), and its mid point is (a/2 : c/2).

We first prove that {p + ϕa,b,c(p)}p∈TP1 ⊂ ga,b,c. Distinguish four cases,
depending on the position of the point p ∈ TP1 relative to these three points.

p ≤ (b : c): Put p = (b : t) with t ≤ c, then p + ϕa,b,c(p) = (b : t) + (b :
c) = T (c�t�x2⊕b�c�x�y⊕b2�y2), and (c�t : b�c : b2) ∈ La,b,c

because a � c � t ≤ b � b � c = c � b2.

(b : c) ≤ p ≤ (a/2 : c/2): Put p = (b : t) with c ≤ t ≤ b + (c − a)/2, then
p + ϕa,b,c(p) = 2(b : t) = T (t2 � x2 ⊕ b � c � x � y ⊕ b2 � y2), and
(t2 : b � c : b2) ∈ La,b,c because a � t2 ≤ b � b � c = c � b2.

(a/2 : c/2) ≤ p ≤ (a : b): Put p = (t : b) with a ≤ t ≤ b + (a − c)/2, then
p + ϕa,b,c(p) = 2(t : b) = T (b2 � x2 ⊕ a � b � x � y ⊕ t2 � y2), and
(b2 : a � b : t2) ∈ La,b,c because a � b2 = b � a � b ≥ c � t2.

p ≥ (a : b): Put p = (t : b) with t ≤ a, then p + ϕa,b,c(p) = {(a : b), (t :
b)} = T (b2 � x2 ⊕ a � b � x � y ⊕ a � t � y2), and (b2 : a � b :
a � t) ∈ La,b,c because a � b2 = b � a � b ≥ c � a � t .

Along the way we have shown that equations parameterized by two of the
three rays in La,b,c (namely, a + α20 ≤ b + α11 = c + α02 and a + α20 =
b + α11 ≥ c + α02) do give pairs of points p + ϕa,b,c(p). The third ray, with
equations a + α20 = c + α02 ≥ b + α11 corresponds to the polynomials
c � x2 ⊕ t � x � y ⊕ a � y2 with t ≤ (a + c)/2, whose unique double root
is the mid point (a/2 : c/2) ∈ F , fixed by ϕa,b,c, so we are done.
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4. Tropicalization

4.1. Tropicalization of involutions

Next we check that all tropical involutive maps (and g1
2’s) as defined above

arise as tropicalizations of algebraic involutions. Let K be a valued field, with
value group G ⊂ R, and denote the valuation by v. Assume furthermore that
v(2) = 0. Given a, b, c ∈ G ∪ {−∞}, with a ⊕ b �= −∞ �= b ⊕ c, choose
α, β, γ ∈ K such that v(α) = −a, v(β) = −b, v(γ ) = −c. Since there are
fields with value grup equal to R, the restriction to G is not actually relevant;
rather, it is considered here only for completeness.

Consider the matrix A =
(

β α

γ −β

)
; if it turns out to be singular (which

can indeed happen if a + c = 2b) replace α by some α + x with x �= 0,

v(x) > a, which certainly exist. Since A2 =
(

β2+αγ 0
0 β2+αγ

)
, A is the matrix

of an involution in P2
K , and its tropicalization is the involutive tropical matrix(

b a

c b

)
.

It is clear that the g1
2 on P1

K corresponding to the involution with matrix A

tropicalizes to the tropical g1
2 corresponding to the tropicalized matrix. It is

more illustrative to pay some attention to the fixed points of the involution.

4.2. Tropicalization of fixed points Let K̄ be an algebraic closure of
K , and let p, q ∈ P1

K̄
be the fixed points of the involution ϕA : P1

K̄
determined

by A =
(

β α

γ −β

)
. Let At =

(
b a

c b

)
= −v(A) be the tropicalization of A. Then

σ(At) = 1 if and only if v(p) �= v(q), and in this case the ends of the segment
fixed by the tropical involutive map are −v(p) and −v(q).

Proof. p = (x : y) and q = (x ′ : y ′) are the zeros of the homogeneous
polynomial γ x2 −2βxy −αy2, so their tropicalizations −v(p), −v(q) are the
tropical roots of the tropicalization F = c � x2 ⊕ b � x � y ⊕ a � y2. These
are distinct if and only if 2b ≥ c + a, i.e., if and only if σ(At) = 1. In such
a case, the columns of At are exactly the tropical roots of F, and they are also
the ends of the segment fixed by the tropical involutive map.
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