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TRANSFINITE TREE QUIVERS AND THEIR
REPRESENTATIONS

E. ENOCHS, S. ESTRADA and S. ÖZDEMIR∗

Abstract
The idea of “vertex at the infinity” naturally appears when studying indecomposable injective
representations of tree quivers. In this paper we formalize this behavior and find the structure of
all the indecomposable injective representations of a tree quiver of size an arbitrary cardinal κ .
As a consequence the structure of injective representations of noetherian κ-trees is completely
determined. In the second part we will consider the problem whether arbitrary trees are source
injective representation quivers or not.

1. Introduction

The classical representation theory of quivers motivated by Gabriel’s work ([9])
involved finite quivers and assumed that the base ring is algebraically closed
field and that all vector spaces involved were finite dimensional. Recently,
representations by modules of more general (possibly infinite) quivers over any
ring have been studied. The aim of this paper is to continue with the program
initiated in [7] and continued in [5], [3], [6], [4], [2] and [8] to develop new
techniques on the study of these more general representations.

Our main concern on this paper is to study injective representations of
transfinite tree quivers. These quivers have been recently considered by Rump
in [11] in his study of the existence of flat covers on certain non-necessarily
Abelian categories. Transfinite tree quivers also appear naturally when study-
ing indecomposable injective representations of tree quivers. Namely, in [2,
Section 3] it is proved that the indecomposable injective representations of a
tree are in one-to-one correspondence with both finite and infinite sequences of

modules of the form E
id−→ E

id−→ · · · id−→ E and E
id−→ E

id−→ E
id−→ · · ·

(whereE is an indecomposable injectiveR-module and id is the identity map).
Each one of these sequences corresponds to the different finite or infinite paths
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of the tree starting in the root. For instance for the tree quiver

A∞ = v1 −→ v2 −→ · · · −→ vn −→ · · · ,
the indecomposable injective representations are of the form

En = E
id−→ E

id−→ E
id−→ · · · id−→ E −→ 0 −→ 0 −→ · · ·

and
E∞ = E

id−→ E
id−→ E

id−→ E
id−→ · · · .

Hence when studying indecomposable injective representations of a tree one
has to consider simultaneously both the vertices of the quiver and the “vertices
at the inifinity”. In the present paper we make more precise the statement
“adding vertices at the infinity” by introducing the notion of the completion of
a tree, and studying in Section 3 the category of cocontinuous representations of
such completed trees. As an application of this, we characterize in Theorem 4.2
the indecomposable injective representations of trees of any size in terms of
its completion.

In the second part of the paper we will focus on the local properties of the
injective representations of trees.The class of source injective representation
quivers has been introduced in [2, Definition 2.2]. More precisely, a quiverQ is
source injective representation quiver whenever the injective representationsX
of (Q,R-Mod) are characterized in terms of the following two local properties
(see Section 2 for unexplained terminology):

(i) X (v) is an injective R-module, for any vertex v of Q.

(ii) For any vertex v, the morphism

X (v) −→
∏
s(a)=v

X (t (a))

induced by X (v) −→ X (t (a)) is a splitting epimorphism.

As it is shown in [2, Theorem 4.2] this important class of quivers includes
finite quivers and more generally right rooted quivers, but do not include cyclic
quivers (see [2, Example 1]). Furthermore, concerning to trees, it is shown in
[2, Corollary 5.5] that (possibly infinite) barren trees are examples of source
injective representation quivers. So implicitly the question whether all trees
are source injective representation quivers or not was arisen. We solve this
question in the negative in Section 5 by showing that non-barren trees such
that the set {t (a) : s(a) = v} is finite, for each vertex v of Q, are not source
injective representation quivers.
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2. Preliminaries

All rings considered in this paper will be associative with identity and, unless
otherwise specified, not necessarily commutative. The letter R will usually
denote a ring. All modules are left unitary R-modules. R-Mod will denote the
category of left R-modules. We refer to [1] for any undefined notion used in
the text.

A quiver is a directed graph whose edges are called arrows. As usual we
denote a quiver by Q understanding that Q = (V ,E) where V is the set of
vertices and E the set of arrows. An arrow of a quiver from a vertex v1 to a
vertex v2 is denoted by a : v1 → v2. In this case we write s(a) = v1 the initial
(starting) vertex and t (a) = v2 the terminal (ending) vertex. A finite path p
of a quiver Q is a sequence of arrows an . . . a2a1 with t (ai) = s(ai+1) for all
i = 1, 2, . . . , n − 1. Thus s(p) = s(a1) and t (p) = t (an). Two paths p and
q can be composed, getting another path qp (or pq) whenever t (p) = s(q)

(t (q) = s(p)).
A quiver Q may be thought of as a category in which the objects are the

vertices of Q and the morphisms are the paths of Q. The vertices can be
considered as the identities ofQ, that is, a vertex v ofQ is a trivial path where
s(v) = t (v) = v. A (right) rooted quiver is a quiver having no path of the
form • → • → · · · (see [6]). A tree is a quiver T having a vertex v such that
for another vertex w of T , there exists a unique path p such that s(p) = v and
t (p) = w. Such a vertex is called the root of the tree T . The (left) path space of
a quiverQ, denoted by P(Q), is the quiver whose vertices are the paths p ofQ
and whose arrows are the pairs (p, ap) : p → ap such that ap is defined (i.e.,
s(a) = t (p)). For each vertex v ∈ V , P(Q)v is a subtree of P(Q) containing
all paths of Q with initial vertex v. A tree with a root v is said to be barren if
the number of vertices ni of the ith state of T is finite for every natural number
i and the sequence of positive natural numbers n1, n2, . . . stabilizes (see [5]).
For example, the tree

• • · · ·

• • • · · ·

• • · · ·
is barren.

A representation by modulesX of a given quiverQ is a functorX : Q −→
R-Mod. Such a representation is determined by giving a moduleX(v) to each
vertex v of Q and a homomorphism X(a) : X(v1) → X(v2) to each arrow
a : v1 → v2 of Q. A morphism η between two representations X and Y
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is a natural transformation, so it will be a family {ηv : X(v) → Y (v)}v∈V
such that Y (a) ◦ ηv1 = ηv2 ◦ X(a) for any arrow a : v1 → v2 of Q. Thus the
representations of a quiverQby modules over a ringR form a category, denoted
by (Q,R-Mod). This is a Grothendieck category with enough projectives and
injectives.

The category (Q,R-Mod) is equivalent to the category of modules over
the path ring RQ, where RQ is defined as the free left R-module whose base
are the paths of Q, and where the multiplication is the obvious composition
between two paths. RQ is a ring with enough idempotents and in general it
does not have an identity (unless the set V is finite).

For a given quiverQ, one can define a family of projective generators from
an adjoint situation as it is shown in [10]. For every vertex v ∈ V and the
embedding morphism {v} ⊆ Q, the family {Sv(R) : v ∈ V } is a family of
projective generators for the category of representations (Q,R-Mod) where
the functor Sv : R-Mod → (Q,R-Mod) is defined in [10, § 28] as

Sv(M)(w) =
⊕
Q(v,w)

M

and for any arrow a : w1 → w2 of Q,

Sv(M)(a) :
⊕

Q(v,w1)

M →
⊕

Q(v,w2)

M

is given bySv(M)(a) = ⊕
Q(v,w2)

idQ(v,w2), whereQ(v,w) is the set of paths of
Q starting at v and ending atw. ThenSv is a left adjoint functor of the evaluation
functor Tv : (Q,R-Mod) → ({v}, R-Mod) ∼= R-Mod given by Tv(X) =
X(v) for any representation X ∈ (Q,R-Mod), and so given representations
M of ({v}, R-Mod) (i.e., an R-module M) and X of (Q,R-Mod) there is a
natural isomorphism:

Hom(Q,R-Mod)(Sv(M),X) ∼= HomR-Mod(M,X(v)).

Similarly, we can find a family of injective cogenerators from an adjoint
situation (see [7]). For every vertex v ∈ V and the embedding morphism
{v} ⊆ Q, the family {ev∗(E) : v ∈ V } is a family of injective cogenerators of
(Q,R-Mod), whenever E is an injective cogenerator of R-Mod. The functor
ev∗ : R-Mod → (Q,R-Mod) is defined in [7, § 4] as

ev∗(M)(w) =
∏
Q(w,v)

M,
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and if a : w1 → w2 is an arrow of Q, then

ev∗(M)(a) :
∏

Q(w1,v)

M →
∏

Q(w2,v)

M

is given by ev∗(M)(a) =
∏

Q(w2,v)a

idQ(w2,v). Then by [7, Theorem 4.1], ev∗ is the

right adjoint functor of Tv , and so given representations M of ({v}, R-Mod)
(i.e., an R-module M) and X of (Q,R-Mod) there is a natural isomorphism:

Hom(Q,R-Mod)(X, e
v
∗(M)) ∼= HomR-Mod(X(v),M).

3. Transfinite trees and their representations

A well-ordered set is a totally ordered set satisfying the descending chain
condition. The prototype of such a set is N = {0, 1, 2, . . .}. So, a tree T can
be regarded as a partially ordered set, where u ≤ v if there is a path from u

to v (u, v ∈ T ). Such a tree can be thought of as a generalization of N as a
partially ordered set. The following is a way to define trees which correspond
to ordinal numbers in general (where N has the ordinal number ω).

Definition 3.1. By a transfinite tree we mean a partially ordered set T
satisfying

(i) the descending chain condition, that is, if v0 ≥ v1 ≥ · · · then for some
n0, we have vn0 = vn for all n ≥ n0, vi ∈ T ;

(ii) for any v ∈ T , the set of w ≤ v is totally ordered, that is, if w,w′ ≤ v

then either w ≤ w′ or w′ ≤ w;

(iii) there is a least element v ∈ T , that is, v ≤ v′ for all v′ ∈ T .

Now, we partition the transfinite tree T as follows (the partition will be
indexed by the ordinal numbers):

Let T0 = {v} where v is the least element of T . Let T1 be the set of w ∈ T
such that v �= w and such that v ≤ u ≤ w implies that v = u or u = w or
equivalently, the cardinality of the set of u ≤ w is 2. Then define T2 to be the
set of w ∈ T such that the cardinality of the set u ≤ w is 3. Similarly, we
define T3, T4, T5, . . .. Therefore, we define Tω to be the set of w ∈ T such that
if u < w then u ∈ Tn for some n ∈ N. So, for an ordinal number α, we define
Tα by transfinite induction:

So having defined Tα for α < β, we must define Tβ . If β is not a limit
ordinal, then β = α+ 1 for some α. Then we let Tα+1 consists of w ∈ T such
that v < w for some v ∈ Tα , where v ≤ u ≤ w implies that v = u or u = w.
If β is a limit ordinal, we let w ∈ Tβ if whenever v < w we have v ∈ Tα for
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some α < β and if, for every α′ < β, there is a v < w with v ∈ Tα where
α′ ≤ α < β.

Remark 3.2. If Tω = ∅ then T is a tree in the usual sense, where there is
an arrow from u to v if u < v, and u ≤ w ≤ v implies that u = w or w = v.

The following is an example of a transfinite tree which is not a (usual) tree.

Example 3.3. The tree T ≡ v0 → v1 → · · · → vn → · · · vω (where ω is
the first limit ordinal) is not a usual tree. Indeed, Tω �= ∅ since vω ∈ Tω (as for
all u < vω, u ∈ Tn for some n ∈ N).

Definition 3.4. A tree T is said to be complete if every chain (i.e., totally
ordered subset) of T has a least upper bound in T .

Remark 3.5. Every tree T has a completion T ⊆ T . This means that T is
a complete tree, T is a subtree of T such that if v ∈ T and u ≤ v for some
u ∈ T , then u ∈ T , and such that every v ∈ T is the least upper bound of a
chain in T .

Notice that, if T is a transfinite tree then we can make T into a category,
where Hom(u, v) is empty if u �≤ v. Then, for u, v,w ∈ T ,

Hom(v,w)× Hom(u, v) −→ Hom(u,w)

is defined in the obvious manner. Thus a representation X of T in R-Mod is
just a functor X : T → R-Mod.

We point out that all representations of (T , R-Mod), where T is a transfinite
tree, that we consider are cocontinuous. This is because we want to generalize
usual representations of (usual) trees (or in general of quivers), that is, we
know that if Q is any quiver and X is a representation of (Q,R-Mod) then,
for a finite path vi1 → vi2 → · · · → vin on Q, we have trivially that

(∗) vin = sup{vij | j ≤ n} and X(vin) = lim−→
j≤n

X(vij ).

But if we admit infinite paths (as it happens in transfinite trees), then we want
our representations to satisfy the same property (∗), that is, if u = sup{vα |
α < γ } (and so u ∈ Tγ ), where γ is an ordinal number, then

X(u) = lim−→
α<γ

X(vα).

Such X are called cocontinuous representations. So our representations of
transfinite trees will be cocontinuous. Of course, if T is complete, then all
such supremums always exist, but if not, then we can consider the completion
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T of T because the categories (T , R-Mod) and (T , R-Mod) are easily shown
to be equivalent.

It is then clear that the indecomposable injective representations of
(T , R-Mod) are in 1–1 correspondence with the indecomposable injective
representations of (T , R-Mod).

4. Indecomposable injective representations of transfinite trees

Lemma 4.1. If Tα = ∅ for any α, then Tβ = ∅ when α ≤ β.

Proof. Suppose on the contrary that Tβ �= ∅. Then there exists a w ∈ Tβ ,
and so there is a v < w with v ∈ Tα for some α < β (by definition of Tβ)
which is impossible (since Tα = ∅).

Notice that since ev∗(E) is a right adjoint functor of the evaluation functor
Tv as we have pointed out at the end of Section 2, we have that if E is an
indecomposable injective R-module, then ev∗(E) is also an indecomposable
injective representation.

Theorem 4.2. If X is an indecomposable injective representation of
(T , R-Mod) where T is a completion of the tree T , then X ∼= ev∗(E) for
some vertex v ∈ T and some indecomposable injective R-module E.

Proof. If we consider T ′
α’s which have been defined after Definition 3.1,

then we see that they are not in a chain. So let us define Tγ = ⋃
α≤γ T ′

α in
order that the new Tγ ’s are in a chain. Now, since T is a set, T = Tλ for some
ordinal number λ (and so T0 ⊂ T1 ⊂ T2 ⊂ · · · Tω ⊂ · · · ⊂ Tλ = T ).

(i) Firstly, we will prove by transfinite induction that if, for each α ≤ λ,
there exists vα ∈ Tα such that X(vα) �= 0, then X|Tα ∼= evα∗ (E) (where E =
X(v0)). For α = 0, we have trivially that X|T0

∼= ev0∗ (E) (where E = X(v0)).
Assume that α has a successor and that X|Tα ∼= evα∗ (E). We want to show
that X|Tα+1

∼= e
vα+1∗ (E). Since X is an injective representation, we have, by [2,

Proposition 2.1], a splitting epimorphism

f : X(vα) −→ X(vα+1)⊕
∏

vα<u,u�=vα+1

X(u) (where X(vα+1) �= 0).

If f is an isomorphism, then define a representation Y ′ such that Y ′|Tα = X|Tα
and, for v ∈ Tβ when α + 1 ≤ β, Y ′(v) = X(v) if the unique path from vα
to v goes through vα+1 and Y ′(v) = 0 otherwise. Then let us define another
representation Y ′′ such that Y ′′|Tα = 0 and, for v ∈ Tβ when α + 1 ≤ β,
Y ′′(v) = 0 if the unique path from vα to v goes through vα+1 andY ′′(v) = X(v)

otherwise. In fact, Y ′ andY ′′ are subrepresentations ofX and thusX = Y ′⊕Y ′′.
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So by the indecomposability ofXwe getX = Y ′ sinceY ′(vα+1) = X(vα+1) �=
0. In particular, X|Tα+1

∼= e
vα+1∗ (E).

So now suppose that f is not an isomorphism, and letK be the kernel of f .
Then define a representation Y such that Y (v) = K if v ∈ Tγ , γ < α + 1 and
Y (v) = 0 otherwise (then of course Y (vα+1) = 0). In fact, Y is an injective
subrepresentation of X (since K is an injective module as f is splitting), and
so a direct summand of X. But since X is indecomposable and Y �= 0 (as
K �= 0), we obtain X = Y . This is impossible because X(vα+1) �= 0, but
Y (vα+1) = 0.

Now assume that γ ≤ λ is a limit ordinal and that X|Tα ∼= evα∗ (E) for all
α < γ . We show that X|Tγ ∼= e

vγ∗ (E). Let vγ = sup{vα | α < γ }. Then

X(vγ ) = lim−→
α<γ

X(vα) = lim−→
α<γ

E = E

and if vγ �= u ∈ Tγ , then

X(u) = lim−→
α<γ

X|Tα (u) = lim−→
α<γ

0 = 0.

So X|Tγ ∼= e
vγ∗ (E).

(ii) On the contrary to (i), let us assume that there exists α∗ ≤ λ such that
X(v) = 0, for all v ∈ Tα∗ andα∗ is the smallest ordinal with this property. Then
α∗ cannot be a limit ordinal. Because, ifα∗ is a limit ordinal thenX|Tβ ∼= e

vβ∗ (E)
for all β < α∗ by (i), but then vα∗ = sup{vβ | β < α∗} ∈ Tα∗ and

X(vα∗) = lim−→
β<α∗

X|Tβ (vβ) = lim−→
β<α∗

E = E �= 0

which contradicts with our assumption. So α∗ is a successor ordinal. Let α∗ =
μ+ 1. Thus X|Tμ ∼= e

vμ∗ (E) by (i) (since X(vμ) �= 0), and X(vβ) = 0 for all
vβ ∈ Tβ , when β ≥ μ+ 1 (since, by assumption, X(v) = 0 for any v ∈ Tα∗ ).
Hence X ∼= e

vμ∗ (E) in T .

The following definition is based on the characterization of locally noeth-
erian categories of representations of quivers provided in [5, Theorem 2.6].

Definition 4.3. A transfinite tree T is called noetherian if (T , R-Mod) is
locally noetherian for every left noetherian ring R, that is, P(Q)v is barren for
all v ∈ T and R is left noetherian.

Example 4.4. Consider the tree T as in Example 3.3 and the category of
(cocontinuous) representations (T , R-Mod), whereR is a left noetherian ring.
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Then the (left) path spaces of T are:

P(Q)v0 ≡ v0 −→ v1 −→ · · · (not including vω),

P (Q)v1 ≡ v1 −→ v2 −→ · · · (not including vω),
...

P (Q)vω ≡ vω.

So all of them are barren. Thus T is noetherian.

Since (T , R-Mod) is a Grothendieck category we obtain the following
corollary.

Corollary 4.5 (Matlis Theorem for noetherian transfinite trees). Let T be
a noetherian transfinite tree. Then any injective representation of (T , R-Mod)
is, uniquely up to isomorphism, the direct sum of the indecomposable injectives
ev∗(E) for some v ∈ T , where E is an indecomposable injective R-module.

5. Non-source injective representation trees

As we have pointed out in the introduction, infinite barren trees are source
injective representation quivers. So, in this section, we show that non-barren
trees which satisfy some condition on their vertices are not source injective
representation quivers.

Definition 5.1 ([2, Definition 2.2]). A quiverQ is called a source injective
representation quiver if, for any ring R, any injective representation X of
(Q,R-Mod) can be characterized in terms of the following conditions:

(i) X(v) is injective R-module, for any vertex v of Q.

(ii) For any vertex v the morphism

X(v) −→
∏
s(a)=v

X(t (a))

induced by X(v) −→ X(t(a)) is a splitting epimorphism.

In the proof of the following lemma, we use the fact that a morphism
ζ : Su(R) → X is uniquely determined by defining ζ(1u) ∈ X(u) for any
vertex u and representation X of a quiver Q (since Su is a left adjoint functor
of the evaluation functor Tv).

Lemma 5.2. If the tree T is not barren, then there exists a family {Ei | i ∈ I }
of injective representations of T such that

⊕
i∈I Ei is not injective, where I is

an infinite index set.
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Proof. Since T is not barren, there is an infinite set W of vertices of
T in such a way that any two distinct vertices are not connected (see [5,
Lemma 3.4]). Let us well order W , for example W = {w1, w2, . . .}, and let
us consider the representations Sw1(R), Sw2(R), . . . (where Sv is Mitchell’s
functor). Then

∑
w∈W Sw(R) ⊆ Sv(R), where v is the root of the tree, and this

sum is direct. Now given w̃ ∈ W we have a canonical projection

Sw̃(R)
τw̃ ⊕

w∈W Sw(R)
πi ⊕

j>i Swj (R).

And let us consider the injective hull
⊕

j>i Swj (R)
di

↪−−→ Ewi . Then we have
the following commutative diagram:

Sw̃(R) ↪−−−→ ⊕
w∈W Sw(R)

diπiτw̃ ϕ

Ewi ↪−−−−−−→ ⊕
i≥1 Ewi

where ϕ exists by the universal property of the direct sum. So if we assume that⊕
i≥1 Ewi is injective, then there exists a morphism ψ : Sv(R) → ⊕

i≥1 Ewi
makes the following diagram commute:⊕

w∈W Sw(R) ↪−−−→ Sv(R)

ϕ
ψ⊕

i≥1 Ewi

Now let wi ∈ W fixed, but arbitrary. We will show that the ith-component of
ψ(1v) is nonzero. Let h :

⊕
i≥1 Ewi (v) → ⊕

i≥1 Ewi (wi+1) be the morphism
corresponding to the representation

⊕
i≥1 Ewi acting on the path p such that

s(p) = v and t (p) = wi+1. Then

hψ(1v) = ψ(1wi+1) = ϕ(1wi+1)

= (π1(1wi+1)︸ ︷︷ ︸
�=0

, π2(1wi+1)︸ ︷︷ ︸
�=0

, . . . , πi(1wi+1)︸ ︷︷ ︸
�=0

, 0, 0, . . .)

Thus the ith-component of ψ(1v) is nonzero, for all i ≥ 1, which is a contra-
diction. Hence

⊕
i≥1 Ewi cannot be injective.

Theorem 5.3. If the tree T is such that the set {t (a) : s(a) = v} is finite
for each v ∈ T and each arrow a, and T is not barren, then T is not a source
injective representation quiver.

Proof. Assume that R is a left noetherian ring. Since T is not barren, the
previous argument in the proof of Lemma 5.2 shows that there is a family of
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injective representations {Ew | w ∈ W } such that
⊕

W Ew is not injective.
However, as Ew (w ∈ W ) are injective representations, they do satisfy the
conditions (i) and (ii) of being a source injective representation quiver (by [2,
Proposition 2.1]), that is,

(i) Ew(v) is an injective R-module for all v ∈ T ;

(ii) Ew(v) −→ ∏
s(a)=v

Ew(t (a)) is a splitting epimorphism.

Therefore, the representation
⊕

W Ew also satisfies (i) and (ii). In fact,

(i)
(⊕
W

Ew
)
(v) = ⊕

W

Ew(v) is an injective R-module, for all v ∈ T (since

R is left noetherian);

(ii)
( ⊕
w∈W

Ew
)
(v) −→ ⊕

w∈W

∏
s(a)=v

Ew(t (a)) ∼= ∏
s(a)=v

( ⊕
w∈W

Ew
)
(t (a)) is a

splitting epimorphism (where the isomorphism follows since the set
{t (a) | s(a) = v} is finite by hypothesis).

Hence T is not a source injective representation quiver.

Example 5.4. The binary tree is not a source injective representation quiver.

Remark 5.5. In Theorem 5.3, the condition {t (a) : s(a) = v} is finite for
each v ∈ T cannot be omitted. For instance, if we consider the non-barren
tree: ... v1

v0 v2

... v3

then the direct sum
⊕

W Ew constructed in Theorem 5.3 does not satisfy the
condition (ii) of being a source injective representation quiver (even ifR is left
noetherian). Furthermore, T is a source injective representation quiver because
it is right rooted quiver (see [2, Theorem 4.2]).

Acknowledgments. The second author wishes to thank Francisco Guil
Asensio for several stimulating conversations related to the topic of this paper.
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