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PRE-JORDAN ALGEBRAS

DONGPING HOU, XIANG NI and CHENGMING BAI∗

Abstract
The purpose of this paper is to introduce and study a notion of pre-Jordan algebra. Pre-Jordan
algebras are regarded as the underlying algebraic structures of the Jordan algebras with a nondegen-
erate symplectic form. They are the algebraic structures behind the Jordan Yang-Baxter equation
and Rota-Baxter operators in terms of O -operators of Jordan algebras introduced in this paper.
Pre-Jordan algebras are analogues for Jordan algebras of pre-Lie algebras and fit into a bigger
framework with a close relationship with dendriform algebras. The anticommutator of a pre-
Jordan algebra is a Jordan algebra and the left multiplication operators give a representation of
the Jordan algebra, which is the beauty of such a structure. Furthermore, we introduce a notion of
O -operator of a pre-Jordan algebra which gives an analogue of the classicalYang-Baxter equation
in a pre-Jordan algebra.

1. Introduction

1.1. Motivations

Jordan algebras were first studied in the 1930s in the context of axiomatic
quantum mechanics ([6]) and appeared in many areas of mathematics like
differential geometry ([30], [19], [35], [37], [44]), Lie theory ([31], [34]) and
analysis ([37], [48]). A Jordan algebra can be regarded as an “opposite” of a
Lie algebra in the sense that the commutator of an associative algebra is a Lie
algebra and the anticommutator of an associative algebra is a Jordan algebra,
although not every Jordan algebra is isomorphic to the anticommutator of an
associative algebra (such a Jordan algebra is called special, otherwise, it is
called exceptional).

In this paper, we introduce a notion of pre-Jordan algebra, which is closely
related to Jordan algebras, from the following motivations in different (closely
related) fields.

(1) Jordan Yang-Baxter equation and O -operators. The notion of Jordan
D-bialgebra was introduced by Zhelyabin in [50] as an analogue of a Lie bi-
algebra (also see [51], [52],[53]). A class of Jordan D-bialgebras (coboundary
cases) are obtained from the solutions of an algebraic equation in a Jordan
algebra, which is an analogue of the classical Yang-Baxter equation (CYBE)
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in a Lie algebra ([51], [53]). It is called Jordan Yang-Baxter equation (JYBE)
for convenience. The CYBE plays an important role in integrable systems and
quantum groups ([17] and the references therein). The original forms of both
the CYBE and the JYBE are given in the tensor forms and it is natural to con-
sider their operator forms which are the linear transformations corresponding
to the elements in the tensor product spaces satisfying the equations.

In the case of Lie algebras, it was Semenov-Tian-Shansky who first intro-
duced certain operator form of the CYBE ([47]). Later Kupershmidt introduced
a notion of O -operator of a Lie algebra as a generalization of (the operator
form of) the CYBE in a Lie algebra ([36]). Nevertheless, the O -operators of
Lie algebras play more interesting roles in the study of the CYBE. In fact, a
skew-symmetric solution of the CYBE is exactly a special O -operator (asso-
ciated to the coadjoint representation) and more importantly, there are a kind
of algebraic structures behind the O -operators of Lie algebras and the related
CYBE, namely, pre-Lie algebras, in the following sense: the O -operators of
Lie algebras provide a direct relationship between Lie algebras and pre-Lie
algebras and in the invertible cases, they provide a necessary and sufficient
condition for the existence of a compatible pre-Lie algebra structure on a Lie
algebra; as an immediate consequence, there are some solutions of the CYBE
in certain Lie algebras obtained from pre-Lie algebras ([8]).

In order to understand the operator forms of the JYBE and the JYBE itself
well, we introduce a notion of O -operator of a Jordan algebra in this paper and
we will show that it plays a similar role of the O -operator of a Lie algebra.
Then it is natural to ask what algebraic structures behind the O -operators of
Jordan algebras and the related JYBE? The answer is pre-Jordan algebras!

(2) Rota-Baxter operators. Another kind of O -operators of Jordan algeb-
ras (associated to the regular modules) are Rota-Baxter operators. Rota-Baxter
operators (on associative algebras) were introduced by G. Baxter ([12]) in 1960.
The importance of these operators were realized by G.-C. Rota in combinator-
ics ([45]). Since then, many applications of Rota-Baxter operators have been
discovered in various areas of mathematics and mathematical physics (see for
instance [7], [14], [20], [22]). Obviously they are well-defined on any algebra.
Recently, Rota-Baxter operators were found to provide an approach of con-
structing certain type of algebras with richer structures from a known type of
algebras ([25]), such as a Rota-Baxter operator on an associative algebra is used
to construct a dendriform algebra ([2]), a Rota-Baxter operator on a dendri-
form algebra or a pair of commutating Rota-Baxter operators on an associative
algebra is used to construct a quadri-algebra ([4]). As an independent topic,
with the above approach and idea, the algebraic structure from a Rota-Baxter
operator of a Jordan algebra is exactly a pre-Jordan algebra, although it is
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an immediate consequence from the relationship between pre-Jordan algebras
and Jordan algebras in terms of O -operators of Jordan algebras.

(3) Symplectic structures on Jordan algebras. There is a correspondence
between the invertible skew-symmetric solutions of the JYBE and the nonde-
generate (skew-symmetric) symplectic form on a Jordan algebra ([52]). It is
an analogue of Drinfeld’s observation on the relationship between the invert-
ible (skew-symmetric) solutions of the CYBE and the symplectic forms on
a Lie algebra ([21]). We will show that there exists a natural pre-Jordan al-
gebra structure on a Jordan algebra with a nondegenerate (skew-symmetric)
symplectic form. Conversely, in some subsequent works, we will see that
pre-Jordan algebras play essential roles in certain constructions of Jordan al-
gebras with a nondegenerate (skew-symmetric) symplectic form ([29]). In this
sense, like pre-Lie algebras regarded as the underlying algebraic structures
of the symplectic Lie algebras ([18]), pre-Jordan algebras are regarded as the
underlying algebraic structures of the Jordan algebras with a nondegenerate
(skew-symmetric) symplectic form.

(4) Pre-Lie algebras. As we have mentioned in (1), pre-Jordan algebras
are certain analogues of pre-Lie algebras in terms of O -operators. Neverthe-
less, there are more analogues between them, even in the algebraic structures
themselves. In fact, except for the mentioned appearance in the study of the
CYBE and symplectic Lie groups and Lie algebras, pre-Lie algebras (or under
other names like left-symmetric algebras and quasi-associative algebras) are a
class of natural algebraic systems appearing in many fields in mathematics and
mathematical physics such as convex homogenous cones, affine manifolds and
affine structures on Lie groups, deformation of associative algebras, certain in-
tegrable systems, combinatorics, quantum field theory and vertex algebras (see
the survey article [13] and the references therein).

The beauty of a pre-Lie algebra is that its commutator is a Lie algebra and
its left multiplication operators give a representation of the Lie algebra. Since
the Jordan algebras are the “opposite” of the Lie algebras, it is natural and
interesting enough from a pure algebraic point of view to consider the similar
algebraic structure for a Jordan algebra, that is, the algebraic structure satisfies
that its anticommutator is a Jordan algebra and its left multiplication operators
give a representation of the Jordan algebra, which is exactly the definition
of a pre-Jordan algebra. In fact, the notion of “pre-Jordan algebra” is given
because of this reason. As pointed out in [16], the pre-Lie algebras “deserve
more attention than they have been given”. We believe that pre-Jordan algebras
might do so too.

(5) Dendriform algebras. In fact, pre-Jordan algebras fit into a bigger
framework. Recall that a dendriform algebra is equipped with an associative
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product which can be written as a linear combination of nonassociative com-
positions. It was introduced by Loday ([39]) in 1995 with motivation from
algebraic K-theory and has been studied quite extensively with connections
to several areas in mathematics and physics, including operads ([41]), homo-
logy ([27], [28]), Hopf algebras ([15], [43]), Lie and Leibniz algebras ([28]),
combinatorics ([42]), arithmetic([40]) and quantum field theory ([26]). Also
see [25] and the references therein.

Moreover, due to Chapoton ([15], also see [1], [2], [3]), there is a close
relationship among Lie algebras, associative algebras, pre-Lie algebras and
dendriform algebras as follows (in the sense of commutative diagram of cat-
egories):

(1.1)

Lie algebra −←−−−− Pre-Lie algebra
↑− ↑−

Associative algebra +←−−−− Dendriform algebra

Explicitly, let (A,�,≺) be a dendriform algebra, then the operation given by

(1.2) x ∗ y = x � y + x ≺ y, ∀x, y ∈ A

defines an associative algebra and the operation

(1.3) x • y = x � y − y ≺ x, ∀x, y ∈ A

defines a pre-Lie algebra. The other two “−” operations in the diagram (1.1)
are the commutators.

There are two related questions arising naturally. One is about the dendri-
form algebras themselves: whether there are some algebraic structures corres-
ponding to the other kind of “combination” of the two operations “�,≺” of a
dendriform algebra, for example, what algebraic structure (A, ·) should satisfy

(1.4) x · y = x � y + y � x, ∀x, y ∈ A.

On the other hand, due to the relationship between associative algebras, Lie
algebras and Jordan algebras, it is also natural to consider the “opposite” of
the commutative diagram (1.1), that is, find a suitable algebra structure in the
place of “pre-Lie algebra” when the “Lie algebra” is replaced by the “Jordan
algebra” and the commutator is replaced by the anticommutator.

We will show that the pre-Jordan algebra is a good candidate to answer the
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above two questions, that is, there is the following commutative diagram:

(1.5)

Associative algebra +←−−−− Dendriform algebra

↓+ ↓+
Jordan algebra +←−−−− Pre-Jordan algebra

In this sense, a pre-Jordan algebra is not only an analogue of a pre-Lie
algebra again which is consistent with the previous motivations, but can also
be regarded as an “opposite” of a pre-Lie algebra. Moreover, the above com-
mutative diagram is also consistent with the construction from the O -operators
including the Rota-Baxter operators.

1.2. Layout of the paper

The paper is organized as follows. In Section 2, we give some fundamental
results on Jordan algebras and the JYBE. In Section 3, we introduce the no-
tion of O -operator of a Jordan algebra and then give a further study on the
JYBE. In Section 4, we introduce the notion of pre-Jordan algebra and study
the relationships with Jordan algebras, the JYBE, the Jordan algebras with a
nondegenerate (skew-symmetric) symplectic form and dendriform algebras in
terms of O -operators of Jordan algebras. In Section 5, we introduce a notion of
O -operator of a pre-Jordan algebra. An analogue of the CYBE and the JYBE in
a pre-Jordan algebra and some bilinear forms on pre-Jordan algebras satisfying
certain conditions are given. In Section 6, we introduce what we call Jordan
analogues of Loday algebras as a generalization of the study of pre-Jordan
algebras.

1.3. Notations

Throughout this paper, all algebras are finite-dimensional and over a field F of
characteristic zero. Let (A, ·) be an algebra. We use the following notations.

(1) Let L·(x) and R·(x) denote the left and right multiplication operator
respectively, that is, L·(x)(y) = R·(y)(x)) = x ·y for any x, y ∈ A (or simply
by L(x) and R(x) respectively without confusion). Moreover, let L·, R· : A→
gl(A) be two linear maps with x �→ L·(x) and x �→ R·(x) respectively.

(2) Let r =∑
i ai ⊗ bi ∈ A⊗ A. Set

(1.6) r12 =
∑

i

ai⊗bi⊗1, r13 =
∑

i

ai⊗1⊗bi, r23 =
∑

i

1⊗ai⊗bi,

where 1 is a unit element if (A, ·) is unital or a symbol playing a similar role of
the unit for the nonunital cases. The operation between two rs is in an obvious
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way. For example,

(1.7)

r12 · r13 =
∑

i,j

ai · aj ⊗ bi ⊗ bj ,

r13 · r23 =
∑

i,j

ai ⊗ aj ⊗ bi · bj ,

r23 · r12 =
∑

i,j

aj ⊗ ai · bj ⊗ bi.

Note that Eq. (1.7) is independent of the existence of the unit.
(3) Let V be a vector space. Let σ : V ⊗ V → V ⊗ V be the exchanging

operator defined as

(1.8) σ (x ⊗ y) = y ⊗ x, ∀x, y ∈ V.

A tensor r ∈ V ⊗ V is called symmetric (skew-symmetric respectively) if
r = σ(r) (r = −σ(r) respectively). On the other hand, any r ∈ V ⊗V can be
identified as a linear map from the dual space V ∗ to V in the following way:

(1.9) 〈u∗, r(v∗)〉 = 〈u∗ ⊗ v∗, r〉, ∀u∗, v∗ ∈ V ∗,

where 〈 , 〉 is the ordinary pairing between the vector space V and the dual
space V ∗. The tensor r ∈ V ⊗ V is called nondegenerate if the above induced
linear map is invertible. Moreover, any invertible linear map T : V ∗ → V

induces a nondegenerate bilinear form B(, ) on V by

(1.10) B(u, v) = 〈T −1(u), v〉, ∀u, v ∈ V.

Furthermore, T is called symmetric (skew-symmetric respectively) if the in-
duced bilinear form B is symmetric (skew-symmetric respectively). Since T

can be also regarded as an element in V⊗V by Eq. (1.9), both of the symmetries
or skew-symmetries of T coincide obviously.

(4) Let V be a vector space. There are two natural symmetric and skew-
symmetric bilinear forms B and ω on the vector space V ⊕ V ∗ given by (for
any x, y ∈ V, a∗, b∗ ∈ V ∗)

B(x + a∗, y + b∗) = 〈a∗, y〉 + 〈x, b∗〉,(1.11)

ω(x + a∗, y + b∗) = 〈a∗, y〉 − 〈x, b∗〉,(1.12)

respectively.
(5) Let V1, V2 be two vector spaces and T : V1 → V2 be a linear map.

Denote the dual (linear) map by T ∗ : V ∗2 → V ∗1 given by

(1.13) 〈T ∗(v∗2), v1〉 = 〈v∗2 , T (v1)〉, ∀v1 ∈ V1, v
∗
2 ∈ V ∗2 .
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On the other hand, T can be identified as an element in V2 ⊗ V ∗1 by

(1.14) 〈v∗2 ⊗ v1, T 〉 = 〈v∗2 , T (v1)〉, ∀v1 ∈ V1, v
∗
2 ∈ V ∗2 .

Note that Eq. (1.9) is exactly the case V1 = V ∗2 of Eq. (1.14). Moreover, in
the above sense, any linear map T : V1 → V2 is obviously an element in
(V2 ⊕ V ∗1 )⊗ (V2 ⊕ V ∗1 ).

(6) Let V be a vector space. For any linear map ρ : A → gl(V ), define a
linear map ρ∗ : A→ gl(V ∗) by

(1.15) 〈ρ∗(x)v∗, u〉 = 〈v∗, ρ(x)u〉, ∀x ∈ A, u ∈ V, v∗ ∈ V ∗.

Note that in this case, ρ∗ is different from the one given by Eq. (1.13) which
regards gl(V ) as a vector space, too.

2. Jordan algebras and Jordan Yang-Baxter equation

2.1. Some basic results on Jordan algebras

Definition 2.1. A Jordan algebra is a vector space J equipped with a com-
mutative binary operation (x, y) → x ◦ y satisfying the following Jordan
identity:

(2.1) ((x ◦ x) ◦ y) ◦ x = (x ◦ x) ◦ (y ◦ x), ∀x, y ∈ J.

Remark 2.2. (1) If (A, ∗) is an associative algebra, then the operation given
by

(2.2) x ◦ y = x ∗ y + y ∗ x, ∀x, y ∈ A,

defines a Jordan algebra structure on A. Such a Jordan algebra is a special
Jordan algebra.

(2) When ch F �= 2 and 3, it was pointed out in [5] that the Jordan identity
(2.1) is equivalent to the following identity (for any x, y, z, u ∈ J )

(2.3) ((x ◦ y) ◦ u) ◦ z+ ((y ◦ z) ◦ u) ◦ x + ((z ◦ x) ◦ u) ◦ y

= (x ◦ y) ◦ (u ◦ z)+ (y ◦ z) ◦ (u ◦ x)+ (z ◦ x) ◦ (u ◦ y),

or equivalently,

(2.4) (x ◦ y, u, z)+ (y ◦ z, u, x)+ (z ◦ x, u, y) = 0, ∀x, y, z, u ∈ J,

where (x, y, z) = (x ◦ y) ◦ z− x ◦ (y ◦ z) is the associator.
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Definition 2.3. Let (J, ◦) be a Jordan algebra and V be a vector space. A
linear map ρ : J → gl(V ) is called a representation (or a module) of (J, ◦) if
(for any x, y, z ∈ J )

(2.5) [ρ(x), ρ(y ◦ z)]+ [ρ(y), ρ(z ◦ x)]+ [ρ(z), ρ(x ◦ y)] = 0;
(2.6) ρ(x)ρ(y)ρ(z)+ ρ(z)ρ(y)ρ(x)+ ρ((x ◦ z) ◦ y)

= ρ(x)ρ(y ◦ z)+ ρ(y)ρ(z ◦ x)+ ρ(z)ρ(x ◦ y),

where [ , ] is the commutator. We denote it by (ρ, V ) or simply ρ.

In fact, (ρ, V ) is a module of a Jordan algebra (J, ◦) if and only if there
exists a Jordan algebra structure on the direct sum J ⊕V (the semi-direct sum)
of the underlying vector spaces of J and V given by

(2.7) (x + u) ◦ (y + v) = x ◦ y + ρ(x)v + ρ(y)u, ∀x, y ∈ J, u, v ∈ V.

We denote it by J �ρ V or simply J � V .

Remark 2.4. Let (J, ◦) be a Jordan algebra. If a linear map ρ : J → gl(V )

satisfies

(2.8) ρ(x ◦ y) = ρ(x)ρ(y)+ ρ(y)ρ(x), ∀x, y ∈ J,

then ρ also satisfies Eqs. (2.5) and (2.6). So it is a representation of (J, ◦)
which is called a special representation.

Proposition-Definition 2.5 ([32]). Let (ρ, V ) be a representation of a
Jordan algebra (J, ◦). Then (ρ∗, V ∗) is a representation of (J, ◦), which is
called the dual representation of (ρ, V ).

Proposition-Definition 2.6 ([33]). Let (J, ◦) be a Jordan algebra. For
any x ∈ J , let rg(x) denote the left (right) multiplication operator, that is ,
rg(x)(y) = x ◦ y = y ◦ x for any y ∈ J . Let rg : J → gl(J ) be a linear map
with x �→ rg(x). Then both (rg, J ) and (rg∗, J ∗) are representations of (J, ◦).
The former is called the regular representation of J .

Definition 2.7. Let (J, ◦) be a Jordan algebra. A symmetric bilinear form
B on J is called invariant if

(2.9) B(x ◦ y, z) = B(x, y ◦ z), ∀x, y, z ∈ J.
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2.2. Jordan D-bialgebras and Jordan Yang-Baxter equation

Definition 2.8 ([50]). Let (J, ◦) be a Jordan algebra. A Jordan D-bialgebra
structure on J is a linear map � : J → J⊗J which is called co-multiplication
such that �∗ : J ∗ ⊗J ∗ → J ∗ defines a Jordan algebra structure on J ∗ and the
following three conditions hold (for any x, y ∈ J )

(2.10)

(�⊗ id− id⊗�)�(x2)

= 2(1⊗ x ⊗ 1) ◦ (�⊗ id− id⊗�)�(x)

+ 2(1⊗ 1⊗ x − x ⊗ 1⊗ 1) ◦ (id⊗σ)(�⊗ id)�(x)

+ 2(�(x)⊗ 1− 1⊗�(x)) ◦ ((id⊗σ)(�(x)⊗ 1)),

(2.11)

(�⊗ id+ id⊗�+ (σ ⊗ id)(id⊗�))((1⊗ x + x ⊗ 1) ◦�(x))

= 2(1⊗ x ⊗ 1) ◦ ((id⊗�)�(x))

+ 2(x ⊗ 1⊗ 1) ◦ ((id⊗σ)(�⊗ id)�(x))

+ 2(1⊗�(x)) ◦ ((id⊗σ)(�(x)⊗ 1))+ (�⊗ id)�(x2),

(2.12)

�(x2 ◦ y)−�(x2) ◦ (y ⊗ 1)−�(y) ◦ (1⊗ x2)+ 2�(y)(x ⊗ x)

= 2�(x ◦ y) ◦ (x ⊗ 1)− 2(�(x) ◦ (y ⊗ 1)) ◦ (x ⊗ 1)

− 2(�(x) ◦ (1⊗ y)) ◦ (1⊗ x)+ 2�(x) ◦ (1⊗ (x ◦ y)),

where 1 is the unit in the universal enveloping algebra U(J ). We denote it by
(J, �).

Remark 2.9. According to [50] and [53], a Jordan D-bialgebra (J, �) is
equivalent to the following structure: there is a Jordan algebra structure on the
direct sum J ⊕ J ∗ of the underlying vector spaces of J and J ∗ such that both
J and J ∗ are subalgebras and the symmetric bilinear form on J ⊕J ∗ given by
Eq. (1.11) is invariant.

Proposition 2.10 ([53]). Let (J, ◦) be a Jordan algebra and r ∈ J ⊗ J .
Set

(2.13) �r(x) = (rg(x)⊗ id− id⊗ rg(x))r, ∀x ∈ J.

If r is skew-symmetric and r satisfies

(2.14) r12 ◦ r13 + r13 ◦ r23 − r12 ◦ r23 = 0,

then (J, �r) is a Jordan D-bialgebra.
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Definition 2.11. Let (J, ◦) be a Jordan algebra and r ∈ J ⊗J . Eq. (2.14)
was called “Jordan analogue” of the classical Yang-Baxter equation in [51]
and [53]. We call it JordanYang-Baxter equation (JYBE) in J for convenience.

Proposition 2.12 ([52]). Let (J, ◦) be a Jordan algebra and r ∈ J ⊗ J .
Suppose that r is skew-symmetric and nondegenerate. Then r is a solution of
JYBE in J if and only if the bilinear form ω induced by r through Eq. (1.10)
satisfies

(2.15) ω(x ◦ y, z)+ ω(y ◦ z, x)+ ω(z ◦ x, y) = 0, ∀x, y, z ∈ J.

Definition 2.13 ([52]). A symplectic form ω on a Jordan algebra (J, ◦)
is a skew-symmetric bilinear form satisfying Eq. (2.15).

Remark 2.14. In some references (for example, [11]), a symplectic form
on a Jordan algebra is assumed to be nondegenerate.

3. O -operators of Jordan algebras and Jordan Yang-Baxter equation

Proposition 3.1. Let (J, ◦) be a Jordan algebra and r ∈ J ⊗ J be skew-
symmetric. Then r is a solution of JYBE in J if and only if r satisfies

(3.1) r(a∗) ◦ r(b∗) = r(rg∗(r(a∗))b∗ + rg∗(r(b∗))a∗), ∀a∗, b∗ ∈ J ∗.

Proof. Let {e1, . . . , en} be a basis of J and {e∗1, . . . , e∗n} be the dual basis.
Suppose that ei ◦ ej = ∑n

k=1 ck
ij ek and r = ∑n

i,j=1 aij ei ⊗ ej , aij = −aji .
Hence r(e∗i ) =

∑n
k=1 akiek = −∑n

k=1 aikek . Then r is a solution of JYBE in
J if and only if (for any i, j, k)

n∑

t,l=1

{ci
tlatj alk − c

j

tlait alk + ck
tlait ajl} = 0.

The left-hand side of the above equation is just the coefficient of ek in the
following equation

−r(rg∗(r(e∗j ))e∗i + rg∗(r(e∗i ))e
∗
j )+ r(e∗i ) ◦ r(e∗j ).

Therefore the conclusion holds.

Definition 3.2. Let (J, ◦) be a Jordan algebra. A Rota-Baxter operator
(of weight zero) on J is a linear map R : J → J satisfying

(3.2) R(x) ◦ R(y) = R(R(x) ◦ y + x ◦ R(y)), ∀x, y ∈ J.
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Remark 3.3. In the case of associative algebras, a Rota-Baxter operator
of weight λ ∈ F on an associative algebra (A, ·) is a linear map R : A → A

satisfying

(3.3) R(x) ·R(y) = R(R(x) · y)+R(x ·R(y))+ λR(x · y), ∀x, y ∈ A.

This notion has an analogue in the context of Jordan algebras too, but, in this
paper, we only use Rota-Baxter operators of Jordan algebras of weight zero.

Corollary 3.4. Let (J, ◦) be a Jordan algebra and r ∈ J ⊗ J be skew-
symmetric. Suppose that there is a symmetric nondegenerate invariant bilinear
form B on J . Let ϕ : J → J ∗ be a linear map given by 〈ϕ(x), y〉 = B(x, y)

for any x, y ∈ J . Then r is a solution of JYBE in J if and only if rϕ is a
Rota-Baxter operator (of weight zero) on J .

Proof. In fact, ϕ(rg(x)y) = rg∗(x)ϕ(y) for any x, y ∈ J since

〈ϕ(rg(x)y), z〉 = B(x ◦ y, z) = B(y ◦ x, z)

= B(y, x ◦ z) = 〈rg∗(x)ϕ(y), z〉, ∀x, y, z ∈ J.

That is, the representations (rg, J ) and (rg∗, J ∗) are isomorphic. Let a∗ =
ϕ(x), b∗ = ϕ(y), then by Proposition 3.1, r is a solution of JYBE in J if and
only if

rϕ(x) ◦ rϕ(y) = r(a∗) ◦ r(b∗) = r(rg∗(r(a∗))b∗ + rg∗(r(b∗))a∗)
= rϕ(rϕ(x) ◦ y + x ◦ rϕ(y)).

Therefore the conclusion holds.

Definition 3.5. Let (J, ◦) be a Jordan algebra and ρ : J → gl(V ) be
a representation. A linear map T : V → J is called an O -operator of J

associated to ρ if T satisfies

(3.4) T (u) ◦ T (v) = T (ρ(T (u))v + ρ(T (v))u), ∀u, v ∈ V.

Example 3.6. Let (J, ◦) be a Jordan algebra. Then a Rota-Baxter operator
(of weight zero) is an O -operator of J associated to the regular representation
(rg, J ) and a skew-symmetric solution of JYBE in J is an O -operator of J

associated to the representation (rg∗, J ∗).

Theorem 3.7. Let (J, ◦) be a Jordan algebra. Let ρ : J → gl(V ) be
a representation of J and ρ∗ : J → gl(V ∗) be the dual representation.
Let T : V → J be a linear map which can be identified as an element in
(J �ρ∗ V ∗)⊗ (J �ρ∗ V ∗). Then r = T − σ(T ) is a skew-symmetric solution
of JYBE in J �ρ∗ V ∗ if and only if T is an O -operator of J associated to ρ.
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Proof. Let {e1, . . . , en} be a basis of J . Let {v1, . . . , vm} be a basis of V

and {v∗1 , . . . , v∗m} be the dual basis. Set T (vi) = ∑n
k=1 aikek, i = 1, . . . , m.

Then, we have

T =
m∑

i=1

T (vi)⊗v∗i =
m∑

i=1

n∑

k=1

aikek⊗v∗i ∈ J⊗V ∗ ⊂ (J �ρ∗V
∗)⊗(J �ρ∗V

∗).

Therefore we have

r12 ◦ r13 =
m∑

i,k=1

{T (vi) ◦ T (vk)⊗ v∗i ⊗ v∗k − ρ∗(T (vi))v
∗
k ⊗ vi ⊗ T (vk)

− ρ∗(T (vk))v
∗
i ⊗ T (vi)⊗ v∗k };

r12 ◦ r23 =
m∑

i,j=1

{−v∗i ⊗ T (vi) ◦ T (vk)⊗ v∗k + T (vi)⊗ ρ∗(T (vk))v
∗
i ⊗ v∗k

+ v∗i ⊗ ρ∗(T (vi))v
∗
k ⊗ T (vk)};

r13 ◦ r23 =
m∑

i,k=1

{v∗i ⊗ v∗k ⊗ T (vi) ◦ T (vk)− T (vi)⊗ v∗k ⊗ ρ∗(T (vk))v
∗
i

− v∗i ⊗ T (vk)⊗ ρ∗(T (vi))v
∗
k }.

By the definition of dual representation, we know

ρ∗(T (vk))v
∗
i =

m∑

j=1

〈v∗i , ρ(T (vk))vj 〉v∗j ,

Then
m∑

i,k=1

T (vi)⊗ ρ∗(T (vk))v
∗
i ⊗ v∗k

=
m∑

i,k=1

m∑

j=1

〈v∗j , ρ(T (vk))vi〉T (vj )⊗ v∗i ⊗ v∗k

=
m∑

i,k=1

T {〈v∗j , ρ(T (vk))vi〉vj } ⊗ v∗i ⊗ v∗k

=
m∑

i,k=1

T {ρ[T (vk)]vi} ⊗ v∗i ⊗ v∗k .
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Hence, we get

r12 ◦ r13 + r13 ◦ r23 − r12 ◦ r23

=
m∑

i,k=1

{{T (vi) ◦ T (vk)− ρ(T (vi))vk − ρ(T (vk))vi} ⊗ v∗i ⊗ v∗k

+ v∗i ⊗ {T (vi) ◦ T (vk)− ρ(T (vi))vk − ρ(T (vk))vi} ⊗ v∗k
+ v∗i ⊗ v∗k ⊗ {T (vi) ◦ T (vk)− ρ(T (vi))vk − ρ(T (vk))vi}}.

So r is a solution of JYBE in J �ρ∗ V ∗ if and only if T is an O -operator of J

associated to ρ.

Combining Proposition 3.1 and Theorem 3.7, we have the following con-
clusion.

Corollary 3.8. Let (J, ◦) be a Jordan algebra and ρ : J → gl(V ) be a
representation. Set Ĵ = J �ρ∗ V ∗. Let T : V → J be a linear map. Then the
following conditions are equivalent:

(1) T is an O -operator of J associated to ρ.

(2) T −σ(T ) is a skew-symmetric solution of the JYBE in the Jordan algebra
Ĵ .

(3) T − σ(T ) is an O -operator of the Jordan algebra Ĵ associated to
(rg∗

Ĵ
, Ĵ ∗).

Remark 3.9. The equivalence between the above (1) and (3) can be ob-
tained by a straightforward proof and then Theorem 3.7 follows from this
equivalence and Proposition 3.1.

4. Pre-Jordan algebras

4.1. Definition and some basic properties

Definition 4.1. A pre-Jordan algebra A is a vector space equipped with a
binary operation (x, y) → x · y satisfying the following equations (for any
x, y, z, u ∈ A):

(4.1) (x ◦ y) · (z · u)+ (y ◦ z) · (x · u)+ (z ◦ x) · (y · u)

= z · [(x ◦ y) · u]+ x · [(y ◦ z) · u]+ y · [(z ◦ x) · u],

(4.2) x · [y · (z · u)]+ z · [y · (x · u)]+ [(x ◦ z) ◦ y] · u
= z · [(x ◦ y) · u]+ x · [(y ◦ z) · u]+ y · [(z ◦ x) · u],

where x ◦ y = x · y + y · x.
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Remark 4.2. Eqs. (4.1) and (4.2) are equivalent to the following equations
(for any x, y, z, u ∈ A) respectively

(4.3) (x, y, z, u)1 + (y, z, x, u)1 + (z, x, y, u)1

+ (y, x, z, u)1 + (x, z, y, u)1 + (z, y, x, u)1 = 0,

(4.4) (x, y, z · u)− (x · z, y, u)+ (y, z, x, u)2

+ (y, x, z, u)2 + (z, y, x · u)− (z · x, y, u) = 0,

where (x, y, z) = (x · y) · z− x · (y · z) is the associator and

(4.5)
(x, y, z, u)1 = (x · y) · (z · u)− x · [(y · z) · u],

(x, y, z, u)2 = (x · y) · (z · u)− [x · (y · z)] · u.

Corollary 4.3. Any associative algebra is a pre-Jordan algebra.

Proof. It follows immediately from Eqs. (4.3) and (4.4).

Proposition 4.4. Let (A, ·) be a pre-Jordan algebra. Then the operation
given by

(4.6) x ◦ y = x · y + y · x, ∀x, y ∈ A,

defines a Jordan algebra J (A), which is called the associated Jordan algebra
of (A, ·) and (A, ·) is also called a compatible pre-Jordan algebra structure
on the Jordan algebra (J (A), ◦).

Proof. For any x, y, z, a ∈ A, it is easy to show that

(x ◦ y) ◦ (a ◦ z)+ (y ◦ z) ◦ (a ◦ x)+ (z ◦ x) ◦ (a ◦ y)

= [(x ◦ y) ◦ a] ◦ z+ [(y ◦ z) ◦ a] ◦ x + [(z ◦ x) ◦ a] ◦ y

if and only if l1 + l2 + l3 = r1 + r2 + r3, where

l1 = (x ◦ y) · (a · z)+ (y ◦ a) · (x · z)+ (x ◦ a) · (y · z),
l2 = (x ◦ a) · (z · y)+ (z ◦ a) · (x · y)+ (x ◦ z) · (a · y),

l3 = (a ◦ y) · (z · x)+ (y ◦ z) · (a · x)+ (z ◦ a) · (y · x),

r1 = [(x · y) · a] · z+ x · [a · (y · z)]+ [(y · x) · a] · z
+ y · [a · (x · z)]+ [a · (x · y)] · z+ [a · (y · x)] · z,

r2 = x · [a · (z · y)]+ [(x · z) · a] · y + [a · (x · z)] · y
+ [a · (z · x)] · y + z · [a · (x · y)]+ [(z · x) · a] · y,
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r3 = [a · (y · z)] · x + [a · (z · y)] · x + y · [a · (z · x)]

+ [(y · z) · a] · x + z · [a · (y · x)]+ [(z · y) · a] · x.

Note that

r1 = [(x · y) · a] · z+ x · [a · (y · z)]+ [(y · x) · a] · z+ y · [a · (x · z)]
+ [a · (x · y)] · z+ [a · (y · x)] · z

= (x · y) · (a · z)+ (x · a) · (y · z)+ (y · x) · (a · z)+ (y · a) · (x · z)
+ (a · x) · (y · z)+ (a · y) · (x · z) = l1.

Similarly, we have l2 = r2, l3 = r3.

The identities (4.1) and (4.2) are given from the following conclusion:

Proposition 4.5. Let A be a vector space with a binary operation denoted
by ·. Then (A, ·) is a pre-Jordan algebra if and only if (A, ◦) defined by Eq. (4.6)
is a Jordan algebra and (L·, A) is a representation of (A, ◦).

Proof. “⇒” It is exactly Proposition 4.4.
“⇐” It can be obtained straightforwardly or by a similar proof as of Pro-

position 4.6.

4.2. Pre-Jordan algebras and O -operators of Jordan algebras

Proposition 4.6. Let (J, ◦) be a Jordan algebra and (ρ, V ) be a representa-
tion. If T is an O -operator associated to (ρ, V ), then there exists a pre-Jordan
algebra structure on V defined by

(4.7) u ∗ v = ρ(T (u))v, ∀u, v ∈ V.

Therefore there exists an associated Jordan algebra structure on V given by
Eq. (4.6) and T is a homomorphism of Jordan algebras. Moreover, T (V ) =
{T (v) | v ∈ V } ⊂ J is a Jordan subalgebra of (J, ◦) and there is an induced
pre-Jordan algebra structure on T (V ) given by

(4.8) T (u) · T (v) = T (u ∗ v), ∀u, v ∈ V.

The corresponding associated Jordan algebra structure on T (V ) given by
Eq. (4.6) is just a Jordan subalgebra of (J, ◦) and T is a homomorphism of
pre-Jordan algebras.



34 dongping hou, xiang ni and chengming bai

Proof. For any u, v, w, a ∈ V , we set x = T (u), y = T (v), z = T (w)

and u ◦ v = u ∗ v + v ∗ u.

(u ◦ v) ∗ (w ∗ a) = [ρ(T (u))v + ρ(T (v))u] ∗ (ρ(T (w))a)

= ρ{T [ρ(T (u))v + ρ(T (v))u]}ρ(T (w))a

= ρ[T (u) ◦ T (v)]ρ(T (w))a = ρ(x ◦ y)ρ(z)a,

u ∗ [(v ◦ w) ∗ a] = ρ(T (u))ρ{T [ρ(T (v))w + ρ(T (w))v]}a
= ρ(T (u))ρ[T (v) ◦ T (w)]a = ρ(x)ρ(y ◦ z)a,

u ∗ [v ∗ (w ∗ a)] = ρ(T (u))ρ(T (v))ρ(T (w))a = ρ(x)ρ(y)ρ(z)a,

[(u ◦ w) ◦ v] ∗ a = ρ{T [ρ(T (u ◦ w))v + ρ(T (v))(u ◦ w)]}a
= ρ{T (u ◦ w) ◦ T (v)}a
= ρ{T [ρ(T (u))w + ρ(T (w))u] ◦ T (v)}a
= ρ{(T (u) ◦ T (w)) ◦ T (v)}a = ρ((x ◦ z) ◦ y)a.

Hence

(u ◦ v) ∗ (w ∗ a)+ (v ◦ w) ∗ (u ∗ a)+ (w ◦ u) ∗ (v ∗ a)

= ρ(x ◦ y)ρ(z)a + ρ(y ◦ z)ρ(x)a + ρ(z ◦ x)ρ(y)a

= ρ(z)ρ(x ◦ y)a + ρ(x)ρ(y ◦ z)a + ρ(y)ρ(z ◦ x)a

= w ∗ [(u ◦ v) ∗ a]+ u ∗ [(v ◦ w) ∗ a]+ v ∗ [(w ◦ u) ∗ a],

u ∗ [v ∗ (w ∗ a)]+ w ∗ [v ∗ (u ∗ a)]+ [(u ◦ w) ◦ v] ∗ a

= ρ(x)ρ(y)ρ(z)a + ρ(z)ρ(y)ρ(x)a + ρ((x ◦ z) ◦ y)a

= ρ(z)ρ(x ◦ y)a + ρ(x)ρ(y ◦ z)a + ρ(y)ρ(z ◦ x)a

= w ∗ [(u ◦ v) ∗ a]+ u ∗ [(v ◦ w) ∗ a]+ v ∗ [(w ◦ u) ∗ a].

So (V , ∗) is a pre-Jordan algebra. The other conclusions follow immediately.

A direct consequence of Proposition 4.6 is the following construction of a
pre-Jordan algebra from a Rota-Baxter operator (of weight zero) of a Jordan
algebra.

Corollary 4.7. Let (J, ◦) be a Jordan algebra and R be a Rota-Baxter
operator (of weight zero) on J . Then there is a pre-Jordan algebra structure
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on J given by

(4.9) x · y = R(x) ◦ y, ∀x, y ∈ J.

Proof. It follows immediately from Example 3.6 and Proposition 4.6.

Corollary 4.8. Let (J, ◦) be a Jordan algebra. Then there exists a compat-
ible pre-Jordan algebra structure on J if and only if there exists an invertible
O -operator of (J, ◦).

Proof. If there exists an invertible O -operator of (J, ◦) associated to a
representation (ρ, V ), then by Proposition 4.6, there is a pre-Jordan algebra
structure on J given by

x · y = T (ρ(x)T −1(y)), ∀x, y ∈ J.

It is a compatible pre-Jordan algebra structure on (J.◦) since

x · y + y · x = T (ρ(x)T −1(y))+ T (ρ(y)T −1(x))

= T (T −1(x) ◦ T −1(y)) = x ◦ y, ∀x, y ∈ J.

Conversely, let (J, ·) be a pre-Jordan algebra and (J, ◦) be the associated
Jordan algebra. Then the identity map id : A→ A is an O -operator of (J, ◦)
associated to (L·, A).

The following conclusion reveals the relationship between pre-Jordan al-
gebras and the Jordan algebras with a nondegenerate symplectic form:

Proposition 4.9. Let (J, ◦) be a Jordan algebra with a nondegenerate
symplectic form ω. Then there exists a compatible pre-Jordan algebra structure
“·” on J given by

(4.10) ω(x · y, z) = ω(y, x ◦ z), ∀x, y ∈ J.

Proof. Define a linear map T : J → J ∗ by 〈T (x), y〉 = ω(x, y),∀x, y ∈
J . Then T is invertible and T −1 is an O -operator of J associated to the rep-
resentation (rg∗, J ∗) since (for any x, y, z ∈ J )

〈T (x ◦ y), z〉 = ω(x ◦ y, z) = ω(y, x ◦ z)+ ω(x, y ◦ z)

= 〈rg∗(x)T (y), z〉 + 〈rg∗(y)T (x), z〉.
By Corollary 4.8, there is a compatible pre-Jordan algebra structure “·” on
(J, ◦) given by

x · y = T −1(rg∗(x)T (y)), ∀x, y ∈ J,
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which gives exactly

ω(x · y, z) = 〈T (x · y), z〉 = 〈rg∗(x)T (y), z〉
= 〈T (y), x ◦ z〉 = ω(y, x ◦ z), ∀x, y, z ∈ J.

So the conclusion holds.

The following conclusion provides a construction of solutions of JYBE in
certain Jordan algebras from pre-Jordan algebras.

Corollary 4.10. Let (A, ·) be a pre-Jordan algebra. Then

(4.11) r =
n∑

i

(ei ⊗ e∗i − e∗i ⊗ ei)

is a skew-symmetric solution of Jordan Yang-Baxter equation in the Jordan
algebra J (A) �L∗· J (A)∗, where {e1, . . . , en} is a basis of A and {e∗1, . . . , e∗n}
is the dual basis. Moreover, there is a symplectic form ω on J (A) �L∗· J (A)∗
induced by r through Eq. (1.10) which is given by Eq. (1.12).

Proof. Since id is an O -operator of the associated Jordan algebra (J (A), ◦)
associated to (L·, A), the conclusion follows from Theorem 3.7 and Proposi-
tion 2.12.

4.3. Relationships with dendriform algebras

Definition 4.11 ([39]). A dendriform algebra (A,�,≺) is a vector space A

equipped with two binary operations denoted by�,≺: A⊗A→ A satisfying
the following equations:

(4.12)

x � (y � z) = (x ∗ y) � z,

(x � y) ≺ z = x � (y ≺ z),

(x ≺ y) ≺ z = x ≺ (y ∗ z),

where x, y, z ∈ A and x ∗ y = x � y + x ≺ y.

Proposition 4.12. Let (A,�,≺) be a dendriform algebra. Then the oper-
ation given by

(4.13) x · y = x � y + y ≺ x, ∀x, y ∈ A,

defines a pre-Jordan algebra structure on A.

Proof. For any x, y ∈ A, set x∗y = x � y+x ≺ y and x◦y = x ·y+y ·x.
We divide the left hand side of Eq. (4.1) into three parts:

(x◦y)·(z·u)+(y◦z)·(x ·u)+(z◦x)·(y ·u) = T1+T2+T3, ∀x, y, z, u ∈ A,
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where

T1 = [(x ∗ y) ∗ z] � u+ u ≺ [z ∗ (y ∗ x)]+ (x � u) ≺ (y ∗ z)

+ (y ∗ z) � (u ≺ x)+ (x � u) ≺ (z ∗ y)+ (z ∗ y) � (u ≺ x)

+ u ≺ [y ∗ (z ∗ x)]+ [(x ∗ z) ∗ y] � u,

T2 = u ≺ [z ∗ (x ∗ y)]+ [(y ∗ x) ∗ z] � u+ [(y ∗ z) ∗ x] � u

+ u ≺ [x ∗ (z ∗ y)]+ (y � u) ≺ (z ∗ x)+ (z ∗ x) � (u ≺ y)

+ (y � u) ≺ (x ∗ z)+ (x ∗ z) � (u ≺ y),

T3 = (z � u) ≺ (x ∗ y)+ (x ∗ y) � (u ≺ y)+ (z � u) ≺ (y ∗ x)

+ (y ∗ x) � (u ≺ z)+ u ≺ [x ∗ (y ∗ z)]+ [(z ∗ y) ∗ x] � u

+ [(z ∗ x) ∗ y] � u+ u ≺ [y ∗ (z ∗ x)].

Note that

T1 = x � [(y ∗ z) � u]+ [(y ∗ z) � u] ≺ x + x � [u ≺ (y ∗ z)]

+ [u ≺ (y ∗ z)] ≺ x + x � [(z ∗ y) � u]+ [(z ∗ y) � u] ≺ x

+ x � [u ≺ (z ∗ y)]+ [u ≺ (z ∗ y)] ≺ x

= x · [(y ◦ z) · u],

T2 = y � [(z ∗ x) � u]+ [(z ∗ x) � u] ≺ y + y � [u ≺ (z ∗ x)]

+ [u ≺ (z ∗ x)] ≺ y + y � [(x ∗ z) � u]+ [(x ∗ z) � u] ≺ y

+ y � [u ≺ (x ∗ z)]+ [u ≺ (x ∗ z)] ≺ y

= y · [(z ◦ x) · u],

T3 = z � [(x ∗ y) � u]+ [(x ∗ y) � u] ≺ z+ z � [u ≺ (x ∗ y)]

+ [u ≺ (x ∗ y)] ≺ z+ z � [(y ∗ x) � u]+ [(y ∗ x) � u] ≺ z

+ z � [u ≺ (y ∗ x)]+ [u ≺ (y ∗ x)] ≺ z

= z · [(x ◦ y) · u].

So Eq. (4.1) holds. Similarly, Eq. (4.2) holds.

The following conclusion is obvious.

Corollary 4.13. Let (A,�,≺) be a dendriform algebra. Then the opera-
tion given by

(4.14)
x ◦ y = x ∗ y + y ∗ x = x · y + y · x

= x � y + y ≺ x + x ≺ y + y � x, ∀x, y ∈ A,

defines a Jordan algebra structure on A, where (A, ∗) is the associative al-
gebra defined by Eq. (1.2) and (A, ·) is the pre-Jordan algebra defined by
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Eq. (4.13). That is, the Jordan algebras as the anticommutator of (A, ∗) and
(A, ·) respectively coincide.

Therefore we have the commutative diagram (1.5). Moreover, combining
it with diagram (1.1), we have the following (detailed) commutative diagram:

Jordan algebra

Associative algebra

�(Eq. (1.3))

�(Eq. (4
.13))

�(anticommutator)

Lie algebra Pre-Lie algebra

Pre-Jordan algebra

�(commutator)

�(commutator)

�(anticommutator)

Dendriform algebra(4.15) �(Eq. (1.2))

∈

∈

where both “⇑∈” and “⇓∈” mean the inclusion.

5. O -operators of pre-Jordan algebras

5.1. Bimodules of pre-Jordan algebras

Definition 5.1. Let (A, ·) be a pre-Jordan algebra and V be a vector space.
Let l·, r· : A → gl(V ) be two linear maps. Then V (or the pair (l·, r·), or
(l·, r·, V )) is called a bimodule of A if the following conditions hold (for any
x, y, z ∈ A):

(5.1) [l·(x ◦ y), l·(z)]+ [l·(y ◦ z), l·(x)]+ [l·(z ◦ x), l·(y)] = 0,

(5.2) l·(x ◦ y)r·(z)+ r(x · z)l·(y)+ r·(y · z)r·(x)

+ r·(x · z)r·(y)+ r·(y · z)l·(x) = l·(x)r·(z)l·(y)+ l·(y)r·(z)r·(x)

+ r·[(x ◦ y)z]+ l·(y)r·(z)l·(x)+ l·(x)r·(z)r·(y),

(5.3) l·(x ◦ y)l·(z)+ l·(y ◦ z)l·(x)+ l·(z ◦ x)l·(y)

= l·(x)l·(y)l·(z)+ l·[y ◦ (x ◦ z)]+ l·(z)l·(y)l·(x),

(5.4) r·(z · y)l·(x)+ r·(x · y)r·(z)+ l·(x ◦ z)r·(y)

+ r·(x · y)l·(z)+ r·(z · y)r·(x) = l·(x)r·(z · y)+ r·(y)r·(x ◦ z)

+ r·(y)l·(x ◦ z)+ l·(z)r·(x · y),

(5.5) l·(x · y)r·(z)+ r·(x · z)l·(y)+ r·(y · z)r·(x)+ l·(y · x)r·(z)
+ r·(x · z)r·(y)+ r·(y · z)l·(x) = l·(x)l·(y)r·(z)+ r·(z)l·(y)r·(x)

+ r·(z)r·(y)r·(x)+ r·(z)l·(y)l·(x)+ r·[y · (x · z)]+ r·(z)r·(y)l(x),

where x ◦ y = x · y + y · x.
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According to [46], (l·, r·, V ) is a bimodule of a pre-Jordan algebra (A, ·)
if and only if the direct sum A ⊕ V (as vector space) turns into a pre-Jordan
algebra (the semidirect sum) by defining multiplication in A⊕ V by

(5.6) (x + u) ∗ (y + v) = x · y + (l·(x)v+ r·(y)u), ∀x, y ∈ A, u, v ∈ V.

We denote it by A �l·,r· V or simply A � V .

Proposition 5.2. Let (l·, r·) be a bimodule of a pre-Jordan algebra (A, ·).
Let J (A) be the associated Jordan algebra.

(1) (l·, V ) is a representation of J (A).

(2) (l· + r·, V ) is a representation of J (A).

(3) If ρ : J (A) → gl(V ) is a representation of J (A), then (ρ, 0, V ) is a
bimodule of (A, ·).

(4) Both (l·, 0, V ) and (l· + r·, 0, V ) are bimodules of (A, ·).
(5) The pre-Jordan algebras A �l·,r· V and A �l·+r·,0 V have the same as-

sociated Jordan algebra J (A) �l·+r· V .

Proof. (1) and (3) follows directly from Eqs. (5.1) and (5.3). Moreover,
(l·, r·, V ) is a bimodule of a pre-Jordan algebra (A, ·) if and only if (l· + r·, V )

is a representation of the associated Jordan algebra (J (A), ◦) and Eqs. (5.2),
(5.4) and (5.5) hold. Thus (2) holds. (4) follows from (1), (2) and (3). (5)
follows from the relationship between a pre-Jordan algebra and the associated
Jordan algebra.

Proposition-Definition 5.3. Let (A, ·) be a pre-Jordan algebra and (l·,
r·, V ) be a bimodule. Then (l∗· + r∗· ,−r∗· , V ∗) is a bimodule of (A, ·). It is
called the dual bimodule of (l·, r·, V ).

Proof. This conclusion can be obtained by a straightforward proof on the
Eqs. (5.1)–(5.5). We give another approach by using the relationships between
the bimodules of a pre-Jordan algebra (A, ·) and the representations of the
associated Jordan algebra (J (A), ◦) with the (known) dual representations of
(J (A), ◦). Let (l̄·, r̄·, V ∗) be the dual bimodule of (l·, r·, V ). Then by Proposi-
tion 5.2, both (l̄· + r̄·, V ∗) and (l̄·, V ∗) are representations of the Jordan algebra
(J (A), ◦). On the other hand, since both (l· + r·, V ) and (l·, V ) are representa-
tions of the Jordan algebra (J (A), ◦), by Proposition-Definition 2.5, their dual
bimodules are (l∗· + r∗· , V ∗) and (l∗· , V ∗) respectively. Therefore we have the
following equations

l̄· + r̄· = l∗, l̄· = l∗· + r∗· .

Thus (l∗· + r∗· ,−r∗· , V ∗) is a bimodule of (A, ·).
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By Propositions 5.2. and Proposition-Definition 5.3, the following conclu-
sion is obvious.

Corollary 5.4. Let (A, ·) be a pre-Jordan algebra and (l·, r·, V ) be a
bimodule.

(1) Both (l∗· + r∗· , 0, V ∗) and (l∗· , 0, V ∗) are bimodules of (A, ·).
(2) Both (l∗· + r∗· , V ∗) and (l∗· , V ∗) are representations of the associated

Jordan algebra J (A).

(3) The pre-Jordan algebras A �l∗· ,0 V ∗ and A �l∗· +r∗· ,−r∗· V ∗ have the same
associated Jordan algebra J (A) �l∗· V ∗.

Proposition-Definition 5.5. Let (A, ·) be a pre-Jordan algebra. Then
(L·, R·, A), (L·, 0, A) and (rg, 0, A) are bimodules of A and the first one is
called the regular bimodule of A, where rg = L· + R·. On the other hand,
(rg∗,−R∗· , A∗), (L∗· , 0, A∗), and (rg∗, 0, A∗) are bimodules of A too.

5.2. O -operators of pre-Jordan algebras and JP -equation

Definition 5.6. Let (A, ·) be a pre-Jordan algebra and (l·, r·, V ) be a bimod-
ule. A linear map T : V → A is called an O -operator of A associated to
(l·, r·, V ) if

(5.7) T (u) · T (v) = T (l·(T (u))v + r·(T (v))u), ∀u, v ∈ V.

In particular, an O -operator of a pre-Jordan algebra (A, ·) associated to the
regular bimodule (L·, R·, A) is called a Rota-Baxter operator (of weight zero)
on (A, ·).

The following conclusion is obvious.

Corollary 5.7. Let T be an O -operator of a pre-Jordan algebra (A, ·)
associated to a bimodule (l·, r·, V ). Then T is an O -operator of the associated
Jordan algebra J (A) associated to (l· + r·, V ).

Proposition 5.8. Let (A, ·) be a pre-Jordan algebra and r ∈ A ⊗ A be
symmetric. Then the following conditions are equivalent.

(1) r is an O -operator of the associated Jordan algebra (J (A), ◦) associated
to (L∗· , A∗).

(2) r is an O -operator of (A, ·) associated to (rg∗,−R∗· , A∗).
(3) r satisfies

(5.8) r13 ◦ r23 − r12 · r23 − r12 · r13 = 0.
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Proof. Let {e1, . . . , en} be a basis of A and {e∗1, . . . , e∗n} be the dual basis.
Suppose that ei · ej =∑n

k=1 ak
ij ek and r =∑n

i,j=1 rij ei ⊗ ej , rij = rji . Hence
r(e∗i ) =

∑n
k=1 rikek . Then r satisfies Eq. (5.8) if and only if (for any i, j, t)

n∑

k,l=1

{rikrjl(a
t
kl + at

lk)− rikrlt a
j

kl − rlj rkta
i
lk} = 0.

The left-hand side of the above equation is just the coefficient of et and ej in

r(e∗i ) ◦ r(e∗j )− r(L∗· (r(e
∗
i ))e

∗
j + L∗· (r(e

∗
j ))e∗i )

and
r(rg∗(r(e∗i ))e

∗
t )− r(e∗i ) · r(e∗t )− r(R∗· (r(e

∗
t ))e

∗
i )

respectively. Hence the conclusion holds.

Definition 5.9. Let (A, ·) be a pre-Jordan algebra and r ∈ A⊗A. Eq. (5.8)
is called JP -equation in A.

Remark 5.10. Like the CYBE in a Lie algebra ([36]) and the JYBE in a
Jordan algebra (see Proposition 3.1), the JP -equation in a pre-Jordan algebra
can be regarded as an analogue of the CYBE (and the JYBE) in the sense of
Proposition 5.8. Furthermore, like the close relationship between the JYBE
and the Jordan D-bialgebras given in Proposition 2.10, in a subsequent work
[29], we shall show that JP -equation arises naturally in the study of certain
bialgebra structure on a pre-Jordan algebra.

Theorem 5.11. Let (A, ·) be a pre-Jordan algebra. Let (l·, r·, V ) be a
bimodule of (A, ·) and (l∗· +r∗· ,−r∗· , V ∗) be the dual bimodule. Let T : V → J

be a linear map which can be identified as an element in (A �l∗· +r∗· ,−r∗· V ∗)⊗
(A�l∗· +r∗· ,−r∗· V

∗). Then r = T +σ(T ) is a symmetric solution of JP -equation
in the pre-Jordan algebra A �l∗· +r∗· ,−r∗· V ∗ if and only if T is an O -operator of
(A, ·) associated to (l·, r·, V ).

Proof. This conclusion follows from a similar proof as of Theorem 3.7.

Corollary 5.12. Let (J, ◦) be a Jordan algebra and (ρ, V ) be a repres-
entation. Suppose that T : V → J is an O -operator of (J, ◦) associated to
(ρ, V ). Then r = T + σ(T ) is a symmetric solution of JP -equation in the
pre-Jordan algebra T (V ) �ρ∗,0 V ∗, where T (V ) ⊂ A is a pre-Jordan algebra
given by Eq. (4.8) and (ρ∗, 0, V ∗) is a bimodule of T (V ) since the associated
Jordan algebra is a Jordan subalgebra of (J, ◦) and T can be identified as an
element in T (V )⊗ V ∗ ⊂ (T (V ) �ρ∗,0 V ∗)⊗ (T (V ) �ρ∗,0 V ∗).
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Proof. The conclusion follows immediately from Theorem 5.11 since T

is an O -operator of the pre-Jordan algebra T (V ) associated to the bimodule
(ρ, 0, V ).

Remark 5.13. By Theorem 3.7 and Corollary 5.12, roughly speaking, the
symmetric part of an O -operator of a Jordan algebra corresponds to a symmetric
solution of JP -equation, whereas the skew-symmetric part of an O -operator
of a Jordan algebra corresponds to a skew-symmetric solution of JYBE.

5.3. Bilinear forms on pre-Jordan algebras and JP -equation

Proposition 5.14. Let (A, ·) be a pre-Jordan algebra and T : A∗ → A be an
invertible linear map.

(1) T is an O -operator of (A, ·) associated to the bimodule (L∗· +R∗· , 0, A∗)
if and only if the bilinear form B induced by T through Eq. (1.10) satisfies

(5.9) B(x · y, z) = B(y, x · z+ z · x), ∀x, y ∈ A.

(2) T is an O -operator of (A, ·) associated to the bimodule (L∗· + R∗· ,
−R∗· , A∗) if and only if the bilinear form B induced by T through Eq. (1.10)
satisfies

(5.10) B(x ·y, z) = B(y, x · z)+B(y, z ·x)−B(x, z ·y), ∀x, y, z ∈ A.

(3) T is an O -operator of the associated Jordan algebra (J (A), ◦) associ-
ated to the bimodule (L∗· , A∗) if and only if the bilinear form B induced by
T through Eq. (1.10) satisfies

(5.11) B(x ◦ y, z) = B(y, x · z)+B(x, y · z), ∀x, y, z ∈ A.

Proof. We only give an explicit proof of (1) and the proof of (2) and (3) is
similar. For any x, y, z ∈ A, we set x = T (a∗), y = T (b∗), z = T (c∗). Then
we show that

B(x · y, z)−B(y, x · z+ z · x)

= 〈T −1(x · y), z〉 − 〈T −1(y), x · z+ z · x〉
= 〈T −1(T (a∗) · T (b∗)), z〉 − 〈b∗, x · z+ z · x〉
= 〈T −1(T (a∗) · T (b∗))− (L∗· + R∗· )(x)b∗, z〉
= 〈T −1(T (a∗) · T (b∗)− T (L∗· + R∗· )(x)b∗), z〉.

Hence (1) holds.
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Proposition 5.15. Let (A, ·) be a pre-Jordan algebra and B be a bilinear
form on A. If B satisfies Eq. (5.11), then

(5.12) ω(x, y) = B(x, y)−B(y, x), ∀x, y ∈ A,

is a symplectic form on the associated Jordan algebra (J (A), ◦).
Proof. It follows from (for any x, y, z ∈ A)

ω(x ◦ y, z)+ C.P. = B(x · y, z)−B(x, y · z)
+B(y · x, z)−B(y, x · z)+ C.P. = 0,

where “C.P.” means cyclic permutation.

Remark 5.16. If a bilinear form B on a pre-Jordan algebra (A, ·) is sym-
metric, then it is obvious that B satisfies Eq. (5.10) if and only if B satisfies
Eq. (5.11).

Definition 5.17. Let (A, ·) be a pre-Jordan algebra. A skew-symmetric
bilinear form B on A is called invariant if B satisfies Eq. (5.9). A symmetric
bilinear form B on A satisfying Eq. (5.11) is called a 2-cocycle.

Proposition 5.18. Let (A, ·) be a pre-Jordan algebra and ω be a skew-
symmetric bilinear form on A. If ω is invariant, then ω is a symplectic form on
the associated Jordan algebra J (A). Conversely, if ω is a nondegenerate sym-
plectic form on a Jordan algebra (J, ◦), then ω is invariant on the compatible
pre-Jordan algebra given by Eq. (4.10).

Proof. If ω is invariant, then

ω(x◦y, z) = ω(x ·y, z)+ω(y ·x, z) = ω(y, z◦x)+ω(x, y◦z), ∀x, y, z ∈ A.

Thus ω is a symplectic form on the associated Jordan algebra J (A). The second
half part follows from Proposition 4.9 immediately.

From the proof of Proposition 5.18, the following conclusion is obvious.

Corollary 5.19. Let (A, ·) be a pre-Jordan algebra. If a skew-symmetric
bilinear form ω is invariant, then ω satisfies

(5.13) ω(x · y, z)+ ω(y · z, x)+ ω(z · x, y) = 0, ∀x, y, z ∈ A.

Corollary 5.20. Let (A, ·) be a pre-Jordan algebra and r ∈ A ⊗ A.
Suppose that r is symmetric and nondegenerate. Then r is a solution of JP-
equation in A if and only if the bilinear form B induced by r through Eq. (1.10)
is a 2-cocycle on A.
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Proof. It follows from Proposition 5.8 and Proposition 5.14.

Corollary 5.21. Let (A, ·) be a pre-Jordan algebra. Then

(5.14) r =
n∑

i

(ei ⊗ e∗i + e∗i ⊗ ei)

is a symmetric solution of JP -equation in A �L∗· ,0 A∗, where {e1, . . . , en} is a
basis of A and {e∗1, . . . , e∗n} is the dual basis. Moreover, there is a symmetric
2-cocycle B on A �L∗· ,0 A∗ induced by r through Eq. (1.10) which is given by
Eq. (1.11).

Proof. Since id is an O -operator of the pre-Jordan algebra (A, ·) associated
to the bimodule (L·, 0, A), the conclusion follows from Theorem 5.11 and
Corollary 5.20.

There is a “chain” of algebraic equations and bilinear forms on the Jordan
algebra and the pre-Jordan algebras corresponding to the algebra relations
given in Section 4. It can be interpreted by a simplified illustration as follows.

Symmetric bilinear form

Jordan algebra (invariant)

Skew-symmetric bilinear form

Jordan algebra (symplectic)

Symmetric bilinear form

Pre-Jordan algebra (2-cocycle)

Pre-Jordan algebra (invariant)

JYBE

JP-equation

6. Generalization: Jordan analogues of Loday algebras

In fact, there are certain algebras structures which are similar to dendriform
algebras, such as quadri-algebras of Aguiar and Loday ([4]) and octo-algebras
of Leroux ([38]). All of them are called Loday algebras ([49], or ABQR operad
algebras in [23], [24]). These algebras have a common property of “splitting
associativity”, that is, expressing the multiplication of an associative algebra
as the sum of a string of binary operations ([41]). Explicitly ([38]), let (X, ∗)
be an associative algebra and (∗i )1≤i≤N : X ⊗ X → X be a family of binary
operations on X. Then the operation ∗ splits into the N operations ∗1, . . . , ∗N
if

(6.1) x ∗ y =
N∑

i=1

x ∗i y, ∀x, y ∈ X.
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Motivated by the study of Loday algebras, it is natural to generalize the
study in this paper in certain wide extent as follows. Let (X, ◦) be a Jordan
algebra and (∗i )1≤i≤N : X ⊗ X → X be a family of binary operations on X.
Then the operation ◦ splits into the commutator of N operations ∗1, . . . , ∗N if

(6.2) x ◦ y =
N∑

i=1

(x ∗i y + y ∗i x), ∀x, y ∈ X.

Like Loday algebras, only Eq. (6.2) is too general to get more interesting
structures. So some additional conditions for the above operations ∗i to define
what we call Jordan analogues of Loday algebras are necessary. We will pay
our main attention to the case that N = 2n, n = 0, 1, 2, . . .. As the study on
the Loday algebras in such cases given in [9] and generalizing the study in this
paper, we define the “rule” of constructing the operations ∗i to define Jordan
analogues of Loday algebras as follows: the 2n+1 operations give a natural
bimodule structure of an algebra with the 2n operations on the underlying vec-
tor space of the algebra itself, which is the beauty of such algebra structures.
That is, by induction, for the algebra (A, ∗i )1≤i≤2n , besides the natural (reg-
ular) bimodule of A on the underlying vector space of A itself given by the
left and right multiplication operators, one can introduce the 2n+1 operations
{∗i1 , ∗i2}1≤i≤2n such that

(6.3) x ∗i y = x ∗i1 y + y ∗i2 x, ∀x, y ∈ A, 1 ≤ i ≤ 2n,

and their left or right multiplication operators can give a bimodule of
(A, ∗i )1≤i≤2n by acting on the underlying vector space of A itself.

In particular, when N = 1, the corresponding algebra (A, ∗) according to
the above rule is exactly a pre-Jordan algebra. Note that for n ≥ 1 (N ≥ 2),
in order to make Eq. (6.2) be satisfied, there is an alternative (sum) form of
Eq. (6.3)

(6.4) x ∗i y = x ∗i1 y + x ∗′i2
y, ∀x, y ∈ A, 1 ≤ i ≤ 2n,

by letting x ∗′i2
y = y ∗i2 x for any x, y ∈ A. In particular, in such a situation,

it can be regarded as an operation ∗ of a pre-Jordan algebra that splits into the
N = 2n (n = 1, 2, . . .) operations ∗1, . . . , ∗N (pre-Jordan analogues of Loday
algebras). That is, a Jordan algebra is given by

(6.5) x ◦ y = x ∗ y + y ∗ x, ∀x, y ∈ A,

where (A, ∗) is a pre-Jordan algebra satisfying Eq. (6.1). In this sense, Jordan
analogues of Loday algebras are exactly pre-Jordan analogues of Loday al-
gebras with the form (6.1).
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Therefore it is certainly natural to continue and extend the study in the
previous Sections to the algebra systems with more operations as Jordan ana-
logues of Loday algebras. In fact, an outline of such a study of Loday algebras
by induction was given in [9]. On the other hand, it is also natural to consider
the Lie analogues of Loday algebras as the “opposite” of the above Jordan
analogues of Loday algebras. In fact, a notion of L-dendriform algebra was
introduced in [10] as a Lie algebraic analogue of dendriform algebra.
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