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QUASI-DIAGONAL FLOWS II

A. KISHIMOTO

Abstract
Two similar notions defined for flows, quasi-diagonality and pseudo-diagonality, are shown to
be equivalent; so approximately inner flows on a quasi-diagonal C∗-algebra are quasi-diagonal
(not just pseudo-diagonal). We define a notion of MF flow which is weaker than quasi-diagonality
and study equivalent conditions following Blackadar and Kirchberg’s results on MF algebras
and we characterize the dual flow of such on the crossed product as a dual MF flow. In the
same spirit we introduce a notion of NF flow and show that NF flows are MF flows on nuclearC∗-
algebras, or equivalently, quasi-diagonal flows on nuclearC∗-algebras. We also introduce a notion
of strong quasi-diagonality (in parallel with strong quasi-diagonality versus quasi-diagonality for
C∗-algebras), whose examples contain AF flows.

1. Introduction

We mean by a flow a strongly continuous one-parameter automorphism group
of a C∗-algebra. We refer to [4], [14] for some background on flows. We
are particularly interested in approximately inner flows since they have close
relevance to applications to physics and were a cause for C∗-algebras to have
been introduced. But we are still trying to understand the situations surrounding
approximately inner flows (see, e.g., [3], [8]).

We have defined two similar notions for flows on C∗-algebras: pseudo-
diagonality and quasi-diagonality, in [11], which are naturally derived from
the notion of quasi-diagonality for C∗-algebras (e.g., [15], [16]). But as we
shall see in this note they are in fact equivalent. Thus quasi-diagonality holds
for approximately inner flows on quasi-diagonal C∗-algebras. For example if
α is an approximately inner flow on an AF algebra A then there is a covariant
representation (π,U) of (A, α) such that π is faithful and (π(A),U) is quasi-
diagonal, i.e., ‖[En, π(x)]‖ → 0 for x ∈ A and sup{‖[En,Ut ]‖ | −1 ≤
t ≤ 1} → 0 for some increasing sequence (En) of finite-rank projections on
Hπ with limn En = 1. Note also that for any covariant representation (π,U)
there is an increasing sequence (En) of finite-rank projections on Hπ with
limn En = 1 and a sequence (Vn) of unitary flows such that Vn,tEn = Vn,t and
‖[En, π(x)]‖ → 0 and ‖Enπαt(x)En − Vn,tEnπ(x)EnV

∗
n,t‖ → 0 uniformly

in t on every compact subset of R for any x ∈ A. If a covariant representation

Received 25 October 2010.



262 a. kishimoto

(π,U) induces a faithful representation of the crossed product then (π(A),U)
is quasi-diagonal by Voiculescu’s theorem (Theorem 3.1 of [11]). Thus an
approximately inner flow on an AF algebra can be approximated by flows on
finite-dimensional C∗-algebras in a sense.

We have also noted in [11] we could define a notion of MF flows when the
C∗-algebra is separable, which is derived from pseudo-diagonality, following
the notion of MF algebras introduced and studied by Blackadar and Kirchberg
[1]. We will examine this notion closely following [1]. See Theorem 3.10 for
equivalent conditions.

Let us be specific about the definition of MF flows. LetMn be theC∗-algebra
of n×nmatrices. Any flow onMn is given as t �→ Ad eith with h = h∗ ∈ Mn.
Let (kn) be a sequence of natural numbers and let B = ∏∞

n=1Mkn be the C∗-
algebra consisting of bounded sequences (xn) with xn ∈ Mkn . Let βn be a flow
on Mkn and let βt = ∏

βn,t , t ∈ R as automorphisms of B. Since t �→ βt
is not continuous on B in general, we let Bβ be the maximal C∗-subalgebra
of B on which t �→ βt is continuous. Thus β restricts to a flow on Bβ . Let
I = ⊕∞

n=1Mkn be the C∗-algebra consisting of sequences converging to zero,
which is an ideal of B contained in Bβ and is left invariant under β. We denote
by the same symbol β the flow on Bβ/I induced from β on Bβ .

When α is a flow on a separable C∗-algebra A we consider the following
conditions:

(1) There is an isomorphism φ of A into Bβ/I such that φαt = βtφ (for
some B = ∏∞

n=1Mkn and β = ∏∞
n=1 βn).

(2) There is a completely positive (CP) contraction φ ofA into Bβ such that
Qφ is an isomorphism andQφαt = βtQφ, whereQ is the quotient map
of Bβ onto Bβ/I .

(3) There is an isomorphism φ of A into Bβ such that φαt = βtφ.

We will call α an MF flow if it satisfies the first condition. The second condition
on α is equivalent to α’s being quasi-diagonal (by Theorem 2.3), which is
stronger than the first in general (ifA is not nuclear). We will call α an RF flow
if it satisfies the third condition. In this case A is residually finite-dimensional
as a C∗-algebra. This is stronger than the second because, if Qφ is not an
injection or φ(A) ∩ I is non-zero, there is another (B, β), where B may be
obtained by repeating an infinite copies of each Mkn from the original B, and
an isomorphism ψ ofA into this new Bβ such thatQψ is an isomorphism and
Qψαt = βtQψ . We note in 3.5 that we may replace all (Mkn, βn) by a single
(K ,Ad λ) in the definition of MF flows, where K is theC∗-algebra of compact
operators on L2(R) and λ is the unitary flow defined by (λtξ)(s) = ξ(s − t).
We also note in 3.12 that an MF flow is obtained as a quotient of an RF
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flow. As in the case of pseudo-diagonal flows, if α is an MF flow on a unital
C∗-algebra, it has KMS states for all inverse temperatures as shown in 3.14.
This is what motivates us to introduce MF flows. We shall also introduce a
notion of dual MF flows; α is a dual MF flow on A if (A, α) is realized in((∏

Mkn ⊗C0(R)
)
γ

/⊕
Mkn ⊗C0(R), γ

)
for some (kn) where γ = ∏

γn and
γn is the flow induced from translations on R. It follows in 3.19 that α is an
MF flow (resp. a dual MF flow) if and only if α̂ is a dual MF flow (resp. a MF
flow) on the crossed product A×α R.

We will also define a notion of NF flows following [1] and study some
equivalent conditions in Theorem 4.7. It will turn out that an NF flow is
an MF flow on a nuclear C∗-algebra as expected and has a characterization
in terms of CP contractions through finite-dimensional C∗-algebras as fol-
lows: There is a sequence of flows (Bn, βn) with Bn finite-dimensional and
CP contractions σn : A → Bn and τn : Bn → A such that τnσn → id,
‖σn(xy) − σn(x)σn(y)‖ → 0 for all x, y ∈ A, and ‖σnαt − βn,tσn‖ → 0
uniformly in t on every compact subset of R. By the way quasi-diagonality
is characterized without τn in the above condition replacing τnσn → id by
‖σn(x)‖ → ‖x‖, x ∈ A (see Theorem 1.5 of [11]).

We will also define a notion of strongly quasi-diagonal flows, which is
naturally stronger than quasi-diagonality, and note that such a flow on a sep-
arable C∗-algebra is obtained as the limit of a canonical increasing sequence
of RF flows after a cocycle perturbation (see 5.9 for details). An AF flow is
strongly quasi-diagonal (see 5.6), where an AF flow is defined as the limit of an
increasing sequence of FD flows (i.e., flows on finite-dimensional algebras).

I would like to express my gratitude to Ola Bratteli for inviting me to
Oslo in October 2010 and giving me an opportunity to present a seminar talk
on the topic dealt in this note. This was undoubtedly inspired by long-term
collaboration with him and another co-author Derek Robinson who was in the
audience. I would also like to record my gratitude to all the participants.

2. Quasi-diagonal flows

First we note the following result, which we should have noticed before.

Proposition 2.1. Pseudo-digonality and quasi-diagonaliy for flows are
equivalent.

Proof. We shall show that the condition (2) of Theorem 1.6 of [11] implies
the condition (2) of Theorem 1.5 of [11]. The converse is trivial.

Let α be a pseudo-diagonal flow on A. Hence α satisfies the following
condition: For any finite subset F of A, T > 0, and δ > 0 there is a finite-
dimensional C∗-algebra B, a flow β on B and a CP map φ of A into B such
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that ‖φ‖ ≤ 1, ‖φ(x)‖ ≥ (1 − δ)‖x‖ for x ∈ F and ‖φ(x)φ(y) − φ(xy)‖ ≤
δ‖x‖‖y‖ for x, y ∈ F , and ‖βtφ(x) − φαt(x)‖ ≤ ε‖x‖ for x ∈ F and
t ∈ [−T , T ]. This is slightly different from the condition (2) of 1.6 of [11] but
they are equivalent as we can see easily. Especially we have allowed T to be
arbitrarily large instead of fixing it to be 1.

Let ε > 0 be smaller than 1. We define a CP map ψ of A into B by

ψ = ε

2

∫
e−ε|t |β−tφαt dt.

For x ∈ F we compute

‖ψ(x)− φ(x)‖ ≤ ε

2

∫
e−ε|t |‖β−tφαt (x)− φ(x)‖ dt

≤ ε

2

∫ T

−T
e−ε|t |δ‖x‖ dt + ε‖x‖

∫
|t |≥T

e−ε|t | dt

≤ (δ + 2e−εT )‖x‖.
Thus if we set δ = ε/2 and T = ε−1 log(4/ε), we obtain that ‖ψ(x)−φ(x)‖ ≤
ε‖x‖, x ∈ F . Hence we have that ‖ψ(x)‖ ≥ (1 − 2ε)‖x‖ for x ∈ F and
‖ψ(x)ψ(y)−ψ(xy)‖ ≤ 3ε‖x‖‖y‖ + ‖φ(x)φ(y)−φ(xy)‖ ≤ 4ε‖x‖‖y‖ for
x, y ∈ F .

Since
β−tψαt = ε

2

∫
e−ε|s−t |β−sφαs ds

and |s| ≤ |s − t | + |t | and |s − t | ≤ |s| + |t |, we obtain that ‖β−tψαt −ψ‖ ≤
eε|t | − 1 or ‖βtψ − ψαt‖ ≤ eε − 1 for t ∈ [−1, 1]. Thus the condition (2) of
Theorem 1.5 of [11] is satisfied with ψ in place of φ starting with a smaller ε.

Remark 2.2. Suppose that α is an approximately inner flow on a quasi-
diagonal C∗-algebra A. Then (π(A),U) is pseudo-diagonal for any covariant
representation (π,U) of (A, α) (see the proof of Proposition 2.17 of [11]). It
follows from the above proof that for any covariant representation (π,U) there
is a covariant representation (ρ,W) such that Ker ρ = Ker π and (ρ(A),W)
is quasi-diagonal.

Theorem 2.3. Let α be a flow on a separable C∗-algebra A. Then the
following conditions are equivalent.

(1) α is quasi-diagonal.

(2) α is pseudo-diagonal.

(3) There is a CP contraction φ of A into
(∏∞

n=1Mkn

)
β

such that Qφ is

an isomorphism and Qφαt = βtQφ with β = ∏∞
n=1 βn for some
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(kn) and some (βn), where Q is the quotient map of
(∏

Mkn

)
β

onto(∏
Mkn

)
β

/⊕
Mkn .

Proof. We have already shown that the first two conditions are equivalent.
Suppose α is pseudo-diagonal. Let (xn) be a dense sequence in A. We

choose Mkn and a flow βn on Mkn and a CP contraction φn : A → Mkn

such that ‖φn(xk)‖ ≥ (1 − 1/n)‖xk‖, ‖φn(xk)φn(x�)− φ(xkx�)‖ ≤ 1/n, and
‖βn,tφ(xk)− φnαt (xk)‖ < 1/n, t ∈ [−1, 1] for all k, � ≤ n. (As easily shown
we may assume the target algebra for φn is a full matrix algebra.) We define
a CP contraction φ of A into

∏∞
n=1Mkn by φ(x) = (φn(x))n. Then one can

show that Qφ is an isomorphism and Qφαt = βtQφ. One can also show that
t �→ βtφ(x) = (βn,tφn(x))n is continuous since βtφ(x) − φαt(x) ∈ ⊕

Mkn .
That is, we have that φ(A) ⊂ (∏

Mkn

)
β
.

Suppose (3). Let φ be a CP contraction of A into
(∏

Mkn

)
β

as given there.
Let φn denote the component of φ mapping A into Mkn . Then for any finite
subset F of A \ {0} and ε > 0 there is an n ∈ N such that for φ(n) = ∏∞

k=n φk
the conditions ‖φ(n)(x)φ(n)(y) − φ(n)(xy)‖ ≤ ε‖x‖‖y‖, and ‖βtφ(n)(x) −
φ(n)αt (x)‖ ≤ ε‖x‖, t ∈ [−1, 1] are satisfied for all x, y ∈ F . We then find
m > n such that

∏m
k=n φk instead of φ(n) still satisfies the above conditions

together with
∥∥∏m

k=n φk(x)
∥∥ ≥ (1 − ε)‖x‖ for x ∈ F . This implies that α is

pseudo-diagonal.

3. MF flows and dual MF flows

Definition 3.1. Let (kn) be a sequence of positive integers and let βn be a
flow on Mkn . Let βt = ∏∞

n=1 βn,t which forms a (non-continuous) flow on∏∞
n=1Mkn . Let (

∏∞
n=1Mkn)β denote the maximal C∗-subalgebra of

∏∞
n=1Mkn

on which β is continuous. A flow α on a separable C∗-algebra A is called an
MF flow if there is an embedding ofA into

(∏∞
n=1Mkn

)
β

/⊕∞
n=1Mkn for some

(kn) and (βn) such that βtφ = φαt .

We first state a technical lemma.

Lemma 3.2. There is a constant C > 0 satisfying: Let α be a flow on a
C∗-algebra A. If e ∈ A is a projection such that max|t |≤1 ‖αt(e) − e‖ = δ is
sufficiently small, there is an α-cocycle u in A (or in A + C1 if A 
� 1) such
that Ad utαt (e) = e and max|t |≤1 ‖ut − 1‖ ≤ Cδ1/2.

Proof. Let δα denote the generator of α. If e ∈ D(δα) then eδα(e)e =
(1− e)δα(e)(1− e) = 0. Thus [ih, e] = −δα(e) for h = i(δα(e)e− eδα(e)) =
i(1 − e)δα(e)e+ ieδα(e)(1 − e), which is a self-adjoint element of A of norm
less than or equal to ‖δα(e)‖. Thus the differentiable α-cocycle u defined
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by dut/dt = utαt (ih) satisfies the conditions that Ad utαt (e) = e and that
max|t |≤1 ‖ut − 1‖ ≤ ‖δα(e)‖.

If we only assume that max|t |≤1 ‖αt(e) − e‖ is small, we have to resort to
the above situation. Namely we find a projection e′ ∈ A such that ‖δα(e′)‖ is
small and e′ is close to e. Then finding a unitary w ≈ 1 such that w∗ew = e′
and an α-cocycle v such that Ad vtαt (e′) = e′ and ‖vt − 1‖ ≈ 0, t ∈ [−1, 1],
we would obtain the desired α-cocycle t �→ wvtαt (w

∗).
The following arguments are standard and mostly found in [4], but we shall

give out some details (see the proof of Proposition 1.3 of [11]).
Let e ∈ A be a projection and let δ = max|t |≤1 ‖αt(e)− 1‖ > 0.
Let g be a non-negative C∞-function on R such that g has compact support

and
∫
g(t) dt = 1. We define

q =
∫
δ1/2g(δ1/2t)αt (e) dt,

which satisfies that 0 ≤ q ≤ 1. Since ‖αt(e)− e‖ ≤ δ(1+|t |), we deduce that

‖q − e‖ ≤
∫
δ1/2g(δ1/2t)‖αt(e)− e‖ dt ≤ δ + C1δ

1/2 ≤ (1 + C1)δ
1/2,

where C1 = ∫
g(t)|t | dt . We assume that (1 + C1)δ

1/2 < 1/8, which insures
that Sp(q) ⊂ [0, 1/8] ∪ [7/8, 1]. Note that q ∈ D(δα) and

‖δα(q)‖ =
∥∥∥∥−

∫
δg′(δ1/2t)αt (e) dt

∥∥∥∥ ≤ C2δ
1/2,

where C2 = ∫ |g′(t)| dt .
Let f be a non-negative C∞-function on R such that supp(f ) ⊂ [1/2, 3/2]

and f (t) = 1 on [7/8, 1]. Define f̂ by f̂ (p) = (2π)−1
∫
e−iptf (t) dt and set

C3 = ∫ |t f̂ (t)| dt . We define

e′ = f (q) =
∫
f̂ (t)eitq dt,

which is a projection such that ‖e′ − q‖ ≤ (1 + C1)δ
1/2. By Theorem 3.2.32

of [4] it follows that e′ ∈ D(δα) and

‖δα(e′)‖ ≤ C3‖δα(q)‖ ≤ C2C3δ
1/2.

Hence there is an α-cocycle v such that Ad vtαt (e′) = e′ and max|t |≤1 ‖vt −
1‖ ≤ ‖δα(e′)‖ ≤ C2C3δ

1/2.
Note that ‖e − e′‖ ≤ ‖e − q‖ + ‖q − e′‖ ≤ 2(1 + C1)δ

1/2 ≤ 1/4. Since
‖ee′ + (1 − e)(1 − e′)− 1‖ ≤ 2‖e− e′‖ ≤ 1/2, the unitary w obtained by the
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polar decomposition of ee′ +(1−e)(1−e′) satisfies that ‖w−1‖ ≤ 4‖e−e′‖.
Sincewe′w∗ = e, we conclude that the α-cocycle u : t �→ wvtαt (w)

∗ satisfies
that Ad utαt (e) = e. Note that if |t | ≤ 1, then ‖ut−1‖ ≤ 2‖w−1‖+‖vt−1‖ ≤
(16+16C1 +C2C3)δ

1/2. Thus if δ < 8−2(1+C1)
−2 then we obtain the desired

cocycle u for the constant C = 16 + 16C1 + C2C3.

Lemma 3.3. Let α be an MF flow on a unital separableC∗-algebraA. Then
there is a unital embeddingφ ofA into

(∏
Mkn

)
β

/⊕
Mkn such thatφαt = βtφ

with β = ∏
βn for some sequence (kn) in N and (βn).

Proof. Suppose that A is embedded into
(∏∞

n=1Mkn

)
β

/⊕∞
n=1Mkn as in

the definition. Let (pn) ∈ ∏
Mkn be a representative of the unit of A. We may

suppose thatp∗
n = pn. Since ‖p2

n−pn‖ → 0 we may also suppose that eachpn
is a projection by functional calculus. Since ‖βn,t (pn)−pn‖ converges to zero
uniformly in t ∈ [−1, 1], there is a sequence (un,t ) of cocycles by Lemma 3.2
such thatun,t is aβn-cocycle inMkn , Ad un,tβn,t (pn) = pn, and ‖un,t−1‖ → 0
uniformly in t ∈ [−1, 1]. Thus we can replace Mkn by pnMknpn and βn by
Ad un,tβn,t |pnMknpn and obtain the desired unital embedding.

Let K = K (L2(R)), the compact operators on L2(R), and define a unitary
flow λ on L2(R) by (λt ξ)(s) = ξ(s − t), ξ ∈ L2(R). We denote by Ad λ the
flow on K defined by t �→ Ad λt . The following proposition shows that there
is a universal flow (on a non-separable C∗-algebra) for MF flows in the sense
that the flow is MF if and only if it is realized as a subflow of the universal one.

The following is a technical lemma about almost commuting pairs of self-
adjoint operators, one compact and the other possibly unbounded (cf. [12]).

Lemma 3.4. For every ε > 0 there is a ν > 0 satisfying the following
condition: Let a ∈ (K (H ))sa and H a self-adjoint operator (which may be
unbounded) on H such that ‖a‖ ≤ 1 and ‖[a,H ]‖ < ν. Then there is an
a1 ∈ (K (H ))sa and a self-adjoint operator H1 on H such that a1 is of finite
rank, ‖a − a1‖ < ε, ‖H −H1‖ < ε, H −H1 ∈ K (H ), and [a1, H1] = 0.

Proof. This follows from Theorem 3.1 of [2], where this is stated as a
result valid for a and H on an arbitrary finite-dimensional space H without
depending on the dimensionality.

Proposition 3.5. Let α be a flow on a separable C∗-algebra. Then the
following conditions are equivalent.

(1) α is an MF flow.

(2) (A, α) can be embedded into
((∏

Kn

)
γ

/⊕
Kn, γ

)
, where Kn = K

and γ = ∏
Ad λ.
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Proof. Suppose (1), i.e., suppose that (A, α) can be embedded into
(∏

Mkn

)
β

/⊕
Mkn

with β = ∏
βn for some (kn) and (βn). Let vn be a unitary flow in Mkn such

that βn,t = Ad vn,t . Then, since the spectrum of λ is R, by using the Weyl-
von Neumann theorem one can obtain a sequence of λ-cocycles un in K + C1
and a sequence of finite-rank projections en ∈ K such that un,t −1 is compact,
‖un,t − 1‖ → 0 uniformly in t ∈ [−1, 1] as n → ∞, Ad(un,tλt )(en) = en,
and the spectrum of t �→ un,tλt en is equal to that of vn with multiplicity
included. Then there is an embedding of Mkn into enKnen ⊂ Kn such that vn
is mapped to unλen. Thus one can embed

((∏
Mkn

)
β
, β

)
into

((∏
Kn

)
σ
, σ

)
with σ = ∏

(unλ). Since un,t → 1 uniformly in t on any bounded set of R and
un,t − 1 ∈ Kn, one derives that

∏
un,t ∈ ⊕

Kn + C1; thus σ and γ = ∏
λ

are equal on the quotient
∏

Kn

/⊕
Kn. Thus (A, α) can be embedded into((∏

Kn

)
γ

/⊕
Kn, γ

)
.

Suppose (2). If A is unital, this follows from the proof of Lemma 3.3.
Suppose that A is not unital. Let (pk) be an approximate identity for A and
let (pk,n)n ∈ (∏

Kn

)
γ

be a sequence representing pk with 0 ≤ pk,n ≤ 1.

Let f be a smooth non-negative function on R such that
∫
f (t) dt = 1 and∫ |f ′(t)| dt is small. Note that

(∫
f (t)Ad λt (pk,n) dt

)
n

represents αf (pk) =∫
f (t)αt (pk) dt and that ‖δα(αf (pk))‖ ≤ ∫ |f ′(t)| dt etc., where δα is the

generator of α. By using these facts we obtain a sequence (ek) in A with
0 ≤ ek ≤ 1 and (ek,n)n ∈ (∏

Kn

)
γ

representing ek with 0 ≤ ek,n ≤ 1 such that
‖ekx−x‖ → 0 for any x ∈ A, ‖δα(ek)‖ → 0 as k → ∞ and ‖[H, ek,n]‖ → 0
uniformly in n as k → ∞, where H is the self-adjoint generator of λ.

Let (xk) be a dense sequence in the unit ball of Asa and let (xk,n)n be a
sequence of self-adjoint elements in the unit ball of

(∏
Kn

)
γ

representing xk .

Let n ∈ N. We choose ν > 0 for ε = 2−n as in Lemma 3.4. We choose k ∈ N
such that ‖ekxi − xi‖ < ε for any i ≤ n and ‖[H, ek,m]‖ < ν for all m ∈ N.
We choose Mn ∈ N such that ‖ek,mxi,m − xi,m‖ < ε for all m ≥ Mn. Then
by Lemma 3.4 we choose a self-adjoint Hm on L2(R) and a finite-rank self-
adjoint operator e′k,m form ≥ Mn such that [Hm, e′k,m] = 0,Hm−H is compact,
‖Hm − H‖ < ε, and ‖ek,m − e′k,m‖ < ε. Let Pm be the support projection of
e′k,m. Then Pm is a finite-rank projection commuting withHm and satisfies that
‖Pmxi,m − xi,m‖ ≤ 2ε + ‖Pme′k,mxi,m − xi,m‖ = 2ε + ‖e′k,mxi,m − xi,m‖ ≤
4ε = 2−n+2 for i ≤ n. We may suppose that (Mn) is strictly increasing and we
make such a choice for Mn ≤ m < Mn+1 and set Bm = PmK Pm and βm,t =
Ad eitHm |Bm. Then it follows that (Pmxi,mPm) is equal to (xi,m)modulo

⊕
Km

for all i and γ ′
t = ∏

Ad eitHm = Ad utγt for some γ -cocycle u with ut − 1 ∈
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⊕
Km. Hence (A, α) can be embedded into

(∏
Bm

)
β

/⊕
Bm equipped with

β = ∏
βm which is embedded into

(∏
Km

)
γ ′

/⊕
Km = (∏

Km

)
γ

/⊕
Km

equipped with γ such that the composition is the original embedding of (A, α).
This completes the proof.

Remark 3.6. In the above proposition the property we needed for λ is that
its spectrum contains arbitrarily long intervals of R.

Proposition 3.7. The class of MF flows on a separableC∗-algebra is closed
under cocycle perturbations.

Proof. Let α be an MF flow on A and let u be an α-cocycle. Let φ be an
embedding of A into

(∏
Mkn

)
β

/⊕
Mkn such that φαt = βtφ for some (kn)

and β = ∏
βn.

If A is unital, then ut belongs to A and we may assume that φ is unital.
By Lemma 1.1 of [7] it follows that u is given as wu(h)t αt (w

∗), where w is a
unitary and u(h) is the differentiable α-cocycle defined by du(h)t /dt |t=0 = ih

with h = h∗ ∈ A. Then we find a β-cocycle v in
(∏

Mkn

)
β
, by lifting w and

h to a unitary and a self-adjoint element respectively, such that vt = ∏
vn,t

maps to φ(ut ) under the quotient map. Hence we obtain that φ Ad utαt = β ′
tφ

with β ′
t = ∏

Ad vn,tβn,t (regarded as a flow on the quotient).
If A is not unital and u is an α-cocycle in the multiplier algebra M(A) of

A, we approximate u by α-cocycles in A+ C1 [9]. More precisely let (xi) be
a dense sequence in A and let (u(n)) be a sequence of α-cocycles in A + C1
such that ‖(ut − u

(n)
t )xi‖ ≤ 2−n‖xi‖, t ∈ [−1, 1]

for i = 1, 2, . . . , n. We extend φ to a CP map from A + C1 into(∏
Mkn

)
β

/⊕
Mkn by setting φ(1) = 1. We then lift each φ(u(n)) to an β-

cocycle v(n) in
(∏

Mkn

)
β

as stated above. We also fix a lifting yi ∈ (∏
Mkn

)
β

of each φ(xi). We then have for i ≤ n

‖Q((v(n)t − v
(n+1)
t )yi)‖ ≤ (2−n + 2−n−1)‖xi‖, t ∈ [−1, 1],

where Q is the quotient map onto
(∏

Mkn

)
β

/⊕
Mkn . Hence one can choose

a sequence (Kn) of integers such that K0 = 0, Kn > Kn−1, and

sup
k≥Kn

‖(v(n)k,t − v
(n+1)
k,t )yi,k‖ ≤ 2−n+1‖xi‖, t ∈ [−1, 1]

for i ≤ n. We define a β-cocycle w ∈ (∏
Mkn

)
β

by wk,t = v
(n)
k,t for Kn ≤ k <

Kn+1. If m > n and Km ≤ k < Km+1 then the norm of the k’th coordinate of
(wt − v

(n)
t )yi is ‖v(m)k,t yi,k − v

(n)
k,t yi,k‖ ≤ 2−n+2‖xi‖
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for i ≤ n. Hence it follows that ‖Q(wt)φ(xi) − φ(u
(n)
t xi)‖ = ‖Q(wtyi −

v
(n)
t yi)‖ ≤ 2−n+2‖xi‖ for i ≤ n, which implies that ‖Q(wt)φ(xi)−φ(utxi)‖ ≤

2−n+3‖xi‖. Since n is arbitrary, we can conclude that Q(wt)φ(a) = φ(uta)

for any a ∈ A. We replace the flow βn on Mkn by t �→ Adwn,tβn,t . Then it
follows that φ Ad utαt = βtφ.

A ∗-linear generalized inductive system of flows is a sequence of flows
(An, αn) together with ∗-linear maps φm,n : Am → An for m < n with
φm,nφk,m = φk,n for all k < m < n such that for all k and all x, y ∈ Ak and
ε > 0 there is an K > k such that for all n > m ≥ K and t ∈ [−1, 1]

(1) ‖φm,n(φk,m(x)φk,m(y))− φk,n(x)φk,n(y)‖ < ε,

(2) ‖φm,nαm,tφk,m(x)− αn,tφk,n(x)‖ < ε,

(3) supr>m ‖φmr |L({αm,tφkm(x)| |t | < δ})‖ < ∞,

for some δ > 0, where L(S) is the linear span of S.
This notion and the following consequences are adapted from Section 2 of

[1]. The above condition 3 replaces supr>k ‖φk,r (x)‖ < ∞ there.
For such a system one defines the inductive limitC∗-algebraA and the flow

α on A, which may be realized as follows. Let
∏∞
n=1An be the full C∗-direct

product of the An’s and let βt = ∏∞
n=1 αn,t . Let

⊕∞
n=1An be the C∗-direct

sum, the ideal of
∏∞
n=1An consisting of sequences converging to zero in norm.

Define a map φm of Am into
∏
An by φm(x)n = φm,n(x) for n ≥ m and 0 for

n < m. Since φm(x) − φnφm,n(x) ∈ ⊕
An one can define a ∗-linear map φ

of
⋃
An into

∏
An

/⊕
An by φ|Am = Qφm, where Q is the quotient map of∏

Mkn onto
∏
Mkn

/⊕
Mkn . Since φ(x)φ(y) = Q(φm(x)φm(y)) is the limit

of φ(φm,n(x)φm,n(y)) as n → ∞ for x, y ∈ Am, φ extends to an isomorphism
of the inductive limit A of the system (An, φmn) into

∏
An

/⊕
An. Now we

could identify the inductive limit A with the closure of φ
(⋃

An
)
.

Since Qβtφm(x) = Q((αn,tφm,n(x))n) is the limit of φαn,tφm,n(x) as n →
∞ for x ∈ Am, βt induces an automorphism of A which we denote by αt .

We shall show that t �→ αtφ(x) is continuous for x ∈ Am. Let ε > 0.
Then there is M > m such that for n > � ≥ M and t ∈ [−1, 1] we
have that ‖φ�,nα�,tφm,�(x) − αn,tφm,n(x)‖ < ε. Hence ‖αtφ(x) − φ(x)‖ ≤
‖φ(α�,tφm,�(x)− φm,�(x))‖ + ε. Fixing � ≥ M there is a 1 > δ > 0 such that
if |t | < δ then ‖α�,tφm,�(x) − φm,�(x)‖ < ε. Hence we obtain that if |t | < δ

then ‖αtφ(x) − φ(x)‖ < 2ε. Thus α is a (continuous) flow. Note that α is
realized as the restriction of β = ∏

αn.
Let

(∏
An

)
β

be the maximal C∗-subalgebra of
∏
An on which β is con-

tinuous. We note that the image of φm is contained in
(∏

An
)
β
. Suppose that

there are a sequence (ti) in R, a sequence (ni) in N, x ∈ Am, and a δ > 0
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such that limi ti = 0 and ‖αni,ti φm,ni (x) − φm,ni (x)‖ > δ. Since each αn is
continuous we must have that ni → ∞. Note that there is � > m such that
‖φ�,nα�,tφm,�(x)− αn,tφm,n(x)‖ < δ/2 for t ∈ [−1, 1] and

sup
r>�

‖φ�,r |L({α�,tφm,�(x) | |t | < s}‖ < ∞

for some s > 0. Since ‖φ�,ni (α�,ti φm,�(x) − φm,�(x))‖ > δ/2 for ni > �, this
contradicts that t �→ α�,t is continuous. Hence one concludes that φ embeds
A into

(∏
An

)
β

/⊕
An.

Lemma 3.8. Suppose that (A, α) can be embedded into
((∏

Mkn

)
β

/⊕
Mkn,

β
)

with β = ∏
βn. Then there exist a (separable)C∗-algebraB on a separable

Hilbert space H and a unitary flow U on H such that B includes K (H ),
t �→ AdUt(x) defines a flow on B, there is an isomorphism φ of B/K (H )

onto A such that φQAdUt(x) = αtφQ(x) for x ∈ B, and (B,U) is quasi-
diagonal, whereQ is the quotient map ofB ontoB/K (H ). Conversely if there
is such (B,U) then (A, α) can be embedded into

((∏
Mkn

)
β

/⊕
Mkn, β

)
for

some (kn) and (βn).

Proof. Let H be an infinite-dimensional separable Hilbert space and let
(En) be a sequence of projections on H such that EnH is kn-dimensional,
EmEn = 0 form 
= n, and

∑∞
n=1 En = 1. Let σ be a map of A into

(∏
Mkn

)
β

such thatQ′σ is the given embedding ofA into
(∏

Mkn

)
β

/⊕
Mkn , whereQ′ is

the quotient map of
∏
Mkn onto

∏
Mkn

/⊕
Mkn . We identifyEnB(H )En with

Mkn and denote by ι the embedding of
∏
Mkn into B(H ) by ι(x) = ∑∞

n=1 xn
for x = (xn)n. Note that ι induces the embedding of

∏
Mkn/

⊕
Mkn into

B(H )/K (H ) since ι
(∏

Mkn

) ∩ K (H ) = ι
(⊕

Mkn

)
. We let ψ = ισ , which

is a map of A into B(H ).
Let B = ψ(A) + K (H ), which is a quasi-diagonal C∗-algebra such that

Qψ is an isomorphism of A onto B/K (H ). Thus φ is obtained as the inverse
of Qψ .

Let Un be a unitary flow in Mkn = EnB(H )En such that AdUn,t = βn,t
and let Ut = ι((Un,t )n) which is a unitary flow in B(H ) such that t �→ Ut is
strongly continuous. Note that t �→ AdUt(x) is norm-continuous for x ∈ B.
Then we have for x ∈ A that QAdUtψ(x) = Qιβtσ (x) = Qψαt(x), where
we useQ′βtσ = Q′σαt andQι = 0 on KerQ′. Since φ = (Qψ)−1, we obtain
that φQAdUtψ(x) = αt(x). For y = ψ(x) + c with c ∈ K (H ) we obtain
that φQAdUt(y) = φ AdUtψ(x) = αt(x) = αtφQ(y). This concludes the
proof of the first part.

Conversely if there is such a (B,U) then there is an increasing sequence
(Pn) of finite-rank projections on H such that limn Pn = 1, ‖[Pn,Ut ]‖ → 0
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uniformly in t ∈ [−1, 1], and ‖[Pn, b]‖ → 0 for b ∈ B. We may suppose that
[Pn,Ut ] = 0 by perturbing of U by compacts and passing to a subsequence
of (Pn). Set En = Pn − Pn−1 and kn = rankEn with P0 = 0. Identifying
EnB(H )En withMkn we define a map φ : B → ∏

Mkn byφ(x) = (EnxEn)n.
This drops to a ∗-homomorphism of B into

(∏
Mkn

)
β

/⊕
Mkn , intertwining

α with β, whose kernel is exactly K (H ).

A continuous field of flows over N ∪ {∞} is a continuous field of C∗-
algebras An, n ∈ N ∪ {∞} and flows αn on An such that if n �→ xn is a
continuous field so is n �→ αn,t (xn) for all t ∈ R. Since ‖xn − αn,t (xn)‖
converges to ‖x∞ − α∞,t (x∞)‖ as n → ∞ in N, it follows that t �→ αn,t (xn)

is continuous uniformly in n ∈ N ∪ {∞}. Hence if n �→ xn is a continuous
field then so is n �→ ∫

f (t)αn,t (xn) dt for f ∈ L1(R). Note also that the flow
α = ∏∞

n=1 αn × α∞ defined on the C∗-algebra generated by the continuous
fields is strongly continuous.

We will present a version of Proposition 2.2.3 of [1] by borrowing the
terminology there; a finite product

∏s
n=r (An, αn) for 1 ≤ r ≤ s < ∞ is called

a segment of
∏∞
n=1(An, αn) and two segments are disjoint if their intersection

is zero when they are naturally regarded as subsystems of
∏∞
n=1(An, αn).

Lemma 3.9. Let αn be a flow on a separable C∗-algebra An and β =∏∞
n=1 αn. Let (A, α) be a flow with A separable. Then the following are equi-

valent:

(1) (A, α) can be embedded into
((∏

An
)
β

/⊕
An, β

)
.

(2) There is a continuous field of flows (Bn, βn) over N ∪ {∞} such that
(Bn, βn) is a segment of

∏
(An, αn) for n ∈ N with disjoint segments for

different n and such that (B∞, β∞) ∼= (A, α).

(3) (A, α) can be embedded into
((∏

Bn
)
γ

/⊕
Bn, γ

)
, where (Bn, βn) is a

segment of
∏
(An, αn) for n ∈ N with disjoint segments for different n

and γ = ∏
βn, such that ‖x‖ = limn ‖xn‖ holds for every x ∈ A and

sequence (xn) representing x.

Proof. We follow the proof of Proposition 2.2.3 of [1].
We shall prove (1) ⇒ (2) as follows: Let (xi) be a dense sequence in A

with (xin)n ∈ (∏
An

)
β

representing xi and let (tj ) be an enumeration of the
rationals. For i, j and n ∈ N∪{∞} we set yi,j (n) = αn,ti (xj,n) ∈ An for n ∈ N
and yi,j (∞) = αti (xj ) ∈ A∞ = A. Let P be the set of all polynomials in non-
commuting variables Yi,j , i, j ∈ N and their formal adjoints Y ∗

i,j , i, j ∈ N with
coefficients in Q + iQ. Since P is countable, let (fi) be a fixed enumeration
of P . For n ∈ N ∪ {∞} we set fi(n) to be the element in An obtained from fi
substituting Yi,j = yi,j (n) for all i, j .
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There are disjoint segments [rm, sm] in N such that for i = 1, 2, . . . , m
∣∣∣∣‖fi(∞)‖ −

∥∥∥
sm∏
n=rm

fi(n)

∥∥∥
∣∣∣∣ < 1/m.

SetB(m) = ∏sm
n=rm An andβm,t = ∏sm

n=rm αn,t . We setFi(m) = ∏sm
n=rm fi(n) ∈

B(m) and Fi(∞) = fi(∞). Then the function n �→ ‖Fi(n)‖ is continuous on
N ∪ {∞} and the set of Fi’s, together with the sequences converging to zero,
forms a ∗-algebra A over Q + iQ invariant under

∏∞
m=1 βm,t × αt , t ∈ Q.

Since (xin)n ∈ (∏
An

)
β
, m �→ βm,tj Fi(m) − Fi(m) ∈ A converges to zero

uniformly in m ∈ N as tj → 0. Hence the closure of A is a C∗-algebra
invariant under

∏
βm × α on which t �→ ∏

βm,t × αt is continuous. Thus the
continuous fields are invariant under the flow.

For the other implications see the proof of Proposition 2.2.3 in [1].

The following result will be proved by mimicking the proof of Theo-
rem 3.2.2 of [1].

Theorem 3.10. Let α be a flow on a separable C∗-algebra A. Then the
following conditions are equivalent:

(1) (A, α) is obtained as the inductive limit of a ∗-linear generalized induct-
ive system of flows on finite-dimensional C∗-algebras.

(2) α is an MF flow.

(3) There is an essential quasi-diagonal extension B of A by the compact
operators K and a unitary flow U ∈ M(K ) such that AdUt(B) = B

for t ∈ R, t �→ AdUt(x) is norm-continuous for x ∈ B, (B,U) is
quasi-diagonal and QAdUt = αtQ where Q is the quotient map of B
onto A.

(4) There is a continuous field of flows (An, αn) over N ∪ {∞} such that An
is finite-dimensional for n ∈ N and (A∞, α∞) ∼= (A, α).

(5) There is a continuous field of flows (An, αn) over N ∪ {∞} such that
An ∼= Mkn for some kn for each n ∈ N and (A∞, α∞) ∼= (A, α).

Proof. We proved (1) ⇒ (2) before Lemma 3.8 and (2) ⇔ (3) in Lemma 3.8
and (2) ⇔ (4) in Lemma 3.9. (5) ⇒ (4) is trivial and (4) ⇒ (5) is easy since the
fibres at any isolated points may be enlarged.

It remains to show (2) ⇒ (1). Suppose that (A, α) is embedded into(∏
Mkn

)
β

/⊕
Mkn

with β = ∏
βn for some (Mkn, βn). For x ∈ A let Spα(x) denote the α-

spectrum of x and let Aα(F ) = {x ∈ A | Spα(x) ⊂ F } for a closed set
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F of R. Let AC = ⋃∞
n=1A

α[−n, n], which is a dense ∗-subalgebra of A.

Similarly let
(∏

Mkn

)
C

= ((∏
Mkn

)
β

)
C

= ⋃∞
n=1

(∏
Mkn

)β
[−n, n], where(∏

Mkn

)β
[−n, n] = ((∏

Mkn

)
β

)β
[−n, n]. For each x ∈ AC there is a (xn) ∈(∏

Mkn

)
β

representing x. If f ∈ L1(R) has Fourier transform with compact

support and is 1 on the α-spectrum of x then we have that
∫
f (t)αt (x) dt = x,

which implies that
∫
f (t)βt ((xn)) dt also represents x. In this way we deduce

that Aα[−n, n] is embedded into
(∏

Mkn

)β
[−n − 1, n + 1]

/⊕
Mkn . Note

that Aα[−n, n] etc. are self-adjoint. We choose a ∗-linear map σ of AC into(∏
Mkn

)
C

such that Qσ = id on AC and σ(Aα[−n, n]) ⊂ (∏
Mkn

)β
[−n −

1, n+ 1]. We also choose a dense sequence (xn) in AC .
We shall define finite-dimensionalC∗-algebrasAn with flows αn onAn and

∗-linear maps γn : An → AC ⊂ A and δn : A → An+1 such that the sequence
(An, αn) of flows with maps φn,n+1 ≡ φn = δnγn : An → An+1 is a ∗-linear
generalized inductive system of flows with the desired properties, appearing
as the upper sequence of the commutative diagram:

A1
φ1

A2
φ2

A3 . . .

γ1
δ1 γ2

δ2

A A A . . .

In particular our system will satisfy the following conditions:

‖φn+1(xy)− φn+1(x)φn+1(y)‖ ≤ 2−n‖x‖‖y‖
for all x, y ∈ φn(An) ⊂ An+1 and

‖φn+1αn+1,t (x)− αn+2,tφn+1(x)‖ ≤ 2−n‖x‖
for all x ∈ φn(An) and t ∈ [−1, 1], which is enough to imply that the system
has the desired properties together with the condition supn>k ‖φk,n‖ < ∞ for
k ∈ N.

On the other hand the lower sequence of copies of (A, α) of the above
commutative diagram with maps γn+1δn : A → A defines (A, α), which
follows from: (γn(An)) is increasing with dense union in A, γn+1δn(x) = x

for x ∈ γn(An), and

‖γn+1δnαt (x)− αtγn+1δn(x)‖ ≤ 2−n+1‖x‖
for x ∈ γn(An) and t ∈ [−1, 1]. We shall require the intertwining properties
for δn and γn with αn and α, which will imply that both the upper and lower
sequences define the same object, i.e., (A, α).
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In the course of the inductive construction below we shall define a finite-
dimensional ∗-subspace Vn of AC ⊂ A depending on γn which is a vital
ingredient for constructing An+1, δn and then γn+1 such that (Vn) forms an
increasing sequence with dense union in A. In particular the norms of δn and
γn+1 will be almost dominated by (dim Vn)

1/2 and Vn will equal γn+1(An+1).
To obtain the above inequalities we shall require the following properties for
γn and δn with n ≥ 2. The first two are discussed in the proof of Theorem 3.2.2
of [1] and the second two are new being concerned with the flows:

‖δn(xy)− δn(x)δn(y)‖ ≤ 2−n−1(dim Vn)
−1/2‖x‖‖y‖

for all x, y ∈ γn(An),
γn+1δn(x) = x

for all x ∈ γn(An) · γn(An) or x ∈ γn(An),
‖αn+1,t δn(x)− δnαt (x)‖ ≤ 2−n‖x‖

for x ∈ γn(An), and

‖αtγn+1(x)− γn+1αn+1,t (x)‖ ≤ 2−n−1‖x‖
for x ∈ φn(An).

We set A1 = C and γ1 : A1 → AC be an arbitrary ∗-linear map. Suppose
that

A2, δ1, γ2, A3, δ2, γ3, . . . , An, δn−1, γn

are constructed so that γk(Ak−1) ⊂ γk(Ak) and xk−1 ∈ γk(Ak) for k ≤ n as
well as the above inequalities, where (xn) was chosen as a dense sequence in
AC . We shall define An+1, and δn : A → An+1, and γn+1 : An+1 → AC .

Let d be the dimension of An. Let E ∈ N be such that Spα(x) ⊂ [−E,E]
and Spβ σ (x) ⊂ [−E,E] for all x ∈ γn(An), which exists by the assumption

on γn and σ . We choose N ∈ N such that E
√
d(2N + 1)+ d2 + 2/N <

2−n−3. Let Vn be the ∗-subspace of A generated by γn(An) · γn(An), xn, x∗
n

and αk/N(γn(An)) with k = 0,±1,±2, . . . ,±N . Note that Vn ⊂ AC and the
dim(Vn) ≤ d(2N + 1) + d2 + 2. Note also that αt(x) with x ∈ γn(An), t ∈
[−1, 1] is almost contained in Vn; more precisely, there is a y ∈ Vn such that
‖αt(x) − y‖ ≤ (E/N)‖x‖. This follows by setting y = αk/N(x) for some k
due to the estimate: ‖αs(x) − αt(x)‖ ≤ E|s − t |‖x‖, which is derived from
Spα(x) ⊂ [−E,E].

Since Qσ = id and Qβtσ = αt we will then choose rn < sn such that
the linear map ρn : A → An+1 ≡ ∏sn

i=rn Mki defined by x �→ ∏sn
i=rn σi(x)

satisfies the following conditions: ρn|Vn is almost isometric and ρn|γn(An) is
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almost multiplicative and αn+1,tρn ≡ ∏sn
i=rn βi,tρn is nearly equal to ρnαt on

γn+1(Vn), i.e., for any prescribed ε > 0,

‖ρn|Vn‖ < 1 + ε,

‖(ρn|Vn)−1‖ < 1 + ε,

‖ρn(x)ρn(y)− ρn(xy)‖ ≤ ε‖x‖‖y‖, x, y ∈ γn(An),
‖αn+1,k/Nρn(x)− ρnαk/N(x)‖ ≤ ε‖x‖, x ∈ γn(An), k = 0,±1, . . . ,±N.
Let Pn be a projection fromA onto Vn such that ‖Pn‖ ≤ √

dim Vn (see 1.14 of
[13]; we need this stronger estimate rather than ‖Pn‖ ≤ dim Vn). We set δn =
ρnPn : A → An+1. Let Rn be a projection from An+1 onto δn(A) = ρn(Vn)

such that ‖Rn‖ ≤ √
dim Vn and set γn+1 = (ρn|Vn)−1Rn : An+1 → AC . Then

it is immediate that γn+1δn|Vn = id. We set

ε = 2−n−3(dim Vn)
−1/2,

which assures the first inequalities on δn.
Note that γn+1(An+1) = (ρn|Vn)−1(ρn(Vn)) = Vn, which implies that

γn+1(An+1) ⊃ γn(An) and γn+1(An+1) � xn.
We have defined φn = δnγn : An → An+1. Since

γnδn−1 = (ρn−1|Vn−1)
−1Rn−1ρn−1Pn−1 = Pn−1

is a projection onto Vn−1 and the range of γm is Vm−1, we obtain that φm,n =
φn−1φn−2 . . . φm = δn−1γm = ρn−1(ρm−1|Vm−1)

−1Rm−1, i.e., ‖φm,n‖ <

4
√

dim Vm−1 for all n > m.
Let us repeat here the proof from [1] for φn+1 being approximately mul-

tiplicative. For x, y ∈ An, since φn,n+2 = δn+1γn, ‖φn+1(φn(x)φn(y)) −
φn,n+2(x)φn,n+2(y)‖ is less than or equal to

‖δn+1{γn+1(δnγn(x)δnγn(y))− γn(x)γn(y)}‖
+ ‖δn+1(γn(x)γn(y))− δn+1γn(x)δn+1γn(y)‖.

Substituting γn(x)γn(y) = γn+1δn(γn(x)γn(y)) the first term is less than or
equal to ‖δn+1γn+1‖‖δnγn(x)δnγn(y)− δn(γn(x)γn(y))‖
which is roughly smaller than 2−n−1‖γn(x)‖‖γn(y)‖. The second term is
roughly smaller than 2−n−2(dim Vn)

−1/2‖γn(x)‖‖γn(y)‖. Thus one can es-
timate that

‖φn+1(φn(x)φn(y))− φn,n+2(x)φn,n+2(y)‖ ≤ 2−n‖φn(x)‖‖φn(y)‖.
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Now we come to the proof of the intertwining properties of δn and γn+1

with αt , αn+1,t .
Letx ∈ γn(An). For t ∈ [−1,1] we want to estimate‖δnαt (x)−αn+1,t δn(x)‖.

First assume that t = k/N with k ∈ [−N,N ]. Since αt(x), x ∈ Vn we have
‖δnαt (x) − αn+1,t δn(x)‖ = ‖ρnαt (x) − αn+1,tρn(x)‖ ≤ ε‖x‖. If t ∈ [−1, 1]
in general there is k/N such that |t − k/N | < 1/N . Since

‖δnαt (x)− δnαk/N(x)‖ ≤ ‖δn‖‖αt(x)− αk/N(x)‖
≤ (1 + ε)

√
dim VnEN

−1‖x‖
and

‖αn+1,t δn(x)− αn+1,k/Nδn(x)‖ ≤ E/N‖ρn(x)‖ ≤ (1 + ε)EN−1‖x‖
and

√
dim VnEN

−1 < 2−n−3, we obtain that

‖δnαt (x)− αn+1,t δn(x)‖ ≤ (ε + 2−n−2(1 + ε))‖x‖ ≤ 2−n‖x‖.
Let x ∈ Vn and t = k/N . Since γn+1ρn(x) = x and γn+1ρnαt (x) = αt(x),

we have

‖αtγn+1ρn(x)− γn+1αn+1,tρn(x)‖ = ‖γn+1(ρnαt (x)− αn+1,tρn(x))‖
which is less than or equal to ε‖γn+1‖‖x‖ ≤ (1 + ε)2ε

√
dim Vn‖ρn(x)‖. If

t ∈ [−1, 1] in general there is k such that |t − k/N | < 1/N . Since

‖αtγn+1ρn(x)− αk/Nγn+1ρn(x)‖ = ‖αt(x)− αk/N(x)‖
is less than or equal to (1 + ε)EN−1‖ρn(x)‖ ≤ (1 + ε)2−n−3‖ρn(x)‖ and

‖γn+1αn+1,tρn(x)− γn+1αn+1,k/Nρn(x)‖
is less than or equal to ‖γn+1‖EN−1‖ρn(x)‖ ≤ (1+ε)√dim VnEN

−1‖ρn(x)‖,
we obtain that

‖αtγn+1ρn(x)− γn+1αn+1,tρn(x)‖
≤ (

2(1 + ε)2−n−3 + (1 + ε)2ε
√

dim Vn
)‖ρn(x)‖,

which is less than or equal to 2−n−1‖ρn(x)‖. This completes the proof.

Remark 3.11. In the above proof (2) ⇒ (1) of the theorem we have chosen
a lifting σ of A ⊂ (∏

Mkn

)
β

/⊕
Mkn such that σ(AC) ⊂ (∏

Mkn

)
C

and
constructed Vn in AC . (We actually defined σ only on AC .) We could have
chosen a σ such that σ(D(δα)) ⊂ D(δβ), where δβ is the generator of β
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(on
(∏

Mkn

)
β
), and constructed Vn in D(δα). Because what we needed was

Lipschitz continuity of t �→ αt(x) and t �→ βtσ (x) of x ∈ γn(An) = Vn−1.

Corollary 3.12. Let α be an MF flow on a separable C∗-algebraA. Then
there is an RF flow (B, β) and a β-invariant ideal I such that the quotient of
(B, β) by I is isomorphic to (A, α).

Proof. Let B be the C∗-algebra generated by the continuous fields as in
Condition (5) of Theorem 3.10 applied to (A, α), which has the flow β de-
termined by αn, n ∈ N ∪ {∞}. Let πn be the representation of B which picks
up the fiber Mkn at n ∈ N. Then the family πn, n ∈ N is faithful and each πn
is β-covariant, i.e., β is an RF flow. Let I be the ideal of B generated by the
fields n �→ an with a∞ = 0. (Note that I = ⊕∞

n=1Mkn is β-invaraint.) Then
the quotient of (B, β) by I is isomorphic to (A, α).

The following is about KMS states.

Proposition 3.13. Let B = ∏∞
n=1Mkn and I = ⊕

Mkn for some (kn) and
βt = ∏

βn,t . The flow β on Bβ/I has KMS states for all inverse temperatures.

Proof. Fix an inverse temperature. Then each βn has a unique KMS state
ωn onMkn . Let U be an ultra filter on N and define a stateω onBβ byω((xn)) =
limn→U ωn(xn), which is a KMS state and satisfies thatω|I = 0. Thus we may
regard ω as a state of Bβ/I .

Corollary 3.14. Let α be an MF flow on a unital separable C∗-algebra.
Then α has KMS states for all inverse temperatures.

Proof. There is a unital embedding of (A, α) into
(∏

Mkn

)
β

/⊕
Mkn by

3.3. Hence this follows from the previous proposition.

From now on we are concerned with the dual object of MF flows.

Lemma 3.15. If there is a continuous field of flows (Bn, βn) over N ∪ {∞}
then there is a continuous field of flows (Bn×βn R, β̂n) over N∪{∞} such that if
n �→ xn is a continuous field for the former and f ∈ L1(R) then n �→ xnλn(f )

is a continuous field for the latter, where λn is the natural embedding of L1(R)
into M(Bn ×βn R).

Proof. Let xi ∈ B∞ and fi ∈ L1(R) for i = 1, 2, . . . , k. Let (xi,n) be a
continuous field with xi,∞ = xi . We shall show that

∥∥∑k
i=1 xi,nλn(fi)

∥∥ con-

verges to
∥∥∑k

i=1 xiλ(fi)
∥∥ as n → ∞, where λ = λ∞. Since β̂n,p(xinλn(fi)) =

xinλn(χpfi) with χp(t) = eipt , this suffices to conclude the proof.
Let ρ

(∑k
i=1 xiλ(fi)

) = lim supn
∥∥∑k

i=1 xinλn(fi)
∥∥. Since

ρ

( k∑
i=1

xiλ(fi)

)
≤

∫ ∥∥∥∑
xifi(t)

∥∥∥ dt,
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ρ is well-defined on the L1-closure of the linear span of xλ(f ), x ∈ B∞,
f ∈ L1(R). Since

(∑
xinλn(fi)

)∗(∑
xinλn(fi)

) = ∑
i,j

∫
βn,−t (x∗

jnxin)f̄j (t)

λn(t)
∗ dtλ(fi) can be approximated in L1 norm by

∑
i,j

∑
� βn,−t� (x

∗
jnxin)

λ(fj��)
∗λ(fi) uniformly in n, where ��’s are non-negative functions sup-

ported around −t� such that
(∑

� ��

)
fj ≈ fj in L1 norm for all j , one can

conclude that

ρ
((∑

xiλ(f )
)∗(∑

xiλ(fi)
))

= ρ
(∑

xiλ(fi)
)2
.

Hence ρ is a C∗-semi-norm. Since ρβ̂∞,p = ρ, if ρ is not a norm it vanishes
on the ideal generated by a non-zero ideal of B∞. If x is a non-zero element
of that ideal and (xn) is a continuous field with x∞ = x, then it should follow
that limn ‖xnλn(f )‖ = 0 for any f ∈ L1(R). Since t �→ βn,t (xn) is continu-
ous uniformly in n we may suppose that the βn-spectrum of xn is contained
in (−1, 1) for all n. If f̂ is 1 on [0, 1] one deduces ‖xnλ(f )‖ ≥ ‖xn‖/3,
which contradicts that x 
= 0. (Assuming Bn ×βn R is faithfully represen-
ted, let E be the spectral measure of t �→ λt and set Pi = E(i − 1, i].
Since xn = ∑

i Pi+1xPi + ∑
i PixnPi + ∑

i Pi−1xnPi one deduces that one
of the three terms has at least norm ‖xn‖/3. Note that the norm of the first
term is sup ‖Pi+1xnPi‖ = ‖P1xnP0‖ ≤ ‖xnP0‖ using the fact that the norm
is invariant under the dual flow. With similar formulas for other terms one
reaches the conclusion.) Thus one can conclude that ρ is the C∗-norm on
B∞ ×β∞ R. Since the same arguments apply to any subsequence one concludes
that limn

∥∥∑
xinλ(fi)

∥∥ = ∥∥∑
xiλ(fi)

∥∥.

Definition 3.16. Let (kn) be a sequence of positive integers and let γn be
the flow onMkn ⊗C0(R) induced from translations, i.e., (γn,tf )(s) = f (s− t)
for f ∈ Mkn ⊗ C0(R) = C0(R,Mkn). A flow α on a separable C∗-algebra is
called a dual MF flow if there is such a sequence (kn) and an embedding of
(A, α) into

(∏∞
n=1Mkn ⊗C0(R)

)
γ

/⊕
Mkn ⊗C0(R) equipped with γ = ∏

γn.

Proposition 3.17. The class of dual MF flows on a separable C∗-algebra
is closed under cocycle perturbations.

Proof. This is proved in the same way as Proposition 3.7 once we notice
the following: Any γ -cocycle u in M(Mk ⊗C0(R)) is a coboundary. In fact if
we set w(s) = us(s) for such a γ -cocycle u then w ∈ M(Mk ⊗ C0(R)) and
wγt(w

∗)(s) = w(s)w(s − t)∗ = us(s)us−t (s − t)∗ = ut (s).
We provide some details. Let (A, α) be a dual MF flow and φ an embedding

of (A, α) into
(∏∞

n=1Mkn ⊗ C0(R)
)
γ

/⊕
Mkn ⊗ C0(R). Note that A is non-

unital (see 3.21 below) and let u be an α-cocycle in M(A). If (xi) is a dense
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sequence in A there is a sequence (u(n)) of α-cocycles in A+ C1 [9] such that

‖(ut − u
(n)
t )xi‖ ≤ 2−n‖xi‖, t ∈ [−1, 1], i = 1, 2, . . . , n.

There are self-adjoint hn, bn ∈ A+ C1 such that u(n)t = eibnu
(hn)
t αt (e

−ibn ) (see
Lemma 1.1 of [7]). By lifting φ̃(hn), φ̃(bn) to self-adjoint elements in

( ∞∏
n=1

Mkn

)
γ

⊗ C0(R)+ C1,

where φ̃ is the unitization of φ, we obtain a γ -cocycle v(n) in
(∏∞

n=1Mkn

)
γ

⊗
C0(R)+ C1 such that Q(v(n)t ) = u

(n)
t , where Q is the quotient map. We write

v
(n)
t = (v

(n)
k,t ), where v(n)k is a γn-cocycle in Mkn ⊗ C0(R) + C1. By patching

up these v(n)k we can construct a γ -cocycle w in
∏∞
n=1(Mkn ⊗ C0(R) + C1)

such that Q(wt)φ(a) = φ(uta) for all a ∈ A (see the proof of 3.6 for de-
tails). Then we conclude that (Adwtγt )−φ(a) = φ(Ad utαt (a)), a ∈ A,
where (Adwtγt )− is the flow on the quotient induced by Adwtγt . Since wt is
given as Uγt(U)∗ with a unitary U in

∏∞
n=1M(Mkn ⊗ C0(R)), it follows that

(γt )
− AdQ(U ∗)φ(a) = AdQ(U ∗)φ(Ad utαt (a)), a ∈ A. Thus the embed-

ding AdQ(U ∗)φ intertwines Ad utαt with γt concluding the proof that Ad uα
is a dual MF flow.

Lemma 3.18. Let α be a flow on a separable C∗-algebra A.

(1) If α is an MF flow, then α̂ is a dual MF flow on A×α R.

(2) If α is a dual MF flow, then α̂ is an MF flow on A×α R.

Proof. By Theorem 3.10 if α is an MF flow then there is a continuous
field of flows (An, αn) over N ∪ {∞} such that An = Mkn for n ∈ N and
(A∞, α∞) ∼= (A, α). Hence by Lemma 3.15 there is a continuous field of flows
(An ×αn R, α̂n). Since (An ×αn R, α̂n) ∼= (Mkn ⊗C0(R), γn) one concludes that
(A×α R, α̂) is a dual MF flow, where γn is induced from translations.

If α is a dual MF flow then there is a continuous field of flows (Bn, γn) over
N ∪ {∞} such that Bn = Mkn ⊗ C0(R) and γn is induced from translations for
n ∈ N and (B∞, γ∞) ∼= (A, α). Then by Lemma 3.15 we obtain a continuous
field of flows (Bn×γnR, γ̂n). Note thatBn×γnR ∼= Mkn⊗K and γ̂n = id ⊗ Ad λ
for n ∈ N. Hence by Proposition 3.5 (and the remark after that) we conclude
that (A×α R, α̂) is MF.

Proposition 3.19. Let α be a flow on a separable C∗-algebra. Then α is
an MF flow (resp. a dual MF flow) if and only if α̂ is a dual MF flow (resp. an
MF flow).
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Proof. The “only if” part is shown in the above lemma. Suppose that α̂ is
a dual MF flow. Then ˆ̂α is an MF flow by the above lemma, i.e., we conclude
that α ⊗ Ad λ is an MF flow on A⊗ K by the Takesaki-Takai duality. Hence
α ⊗ id is also an MF flow on A ⊗ K by 3.7; thus α is because A ⊗ e is an
α⊗ id-invariant C∗-subalgebra of A⊗ K , where e is a minimal projection in
K .

Suppose that α̂ is an MF flow. Then ˆ̂α = α ⊗ Ad λ is a dual MF flow on
A⊗ K . Then one concludes that α is a dual MF flow just as above.

Proposition 3.20. Let α be a flow on a separable C∗-algebra A. Then the
following conditions are equivalent.

(1) α is a dual MF flow.

(2) (A, α) can be embedded into
((∏∞

n=1 Kn⊗C0(R)
)
γ

/⊕
Kn⊗C0(R), γ

)
,

where Kn = K , γ = ∏
γn, and γn is the flow induced by translations.

Proof. (1) ⇒ (2) is easy. Suppose (2). Then one derives that (A ×α R, α̂)
satisfies the condition (2) in Proposition 3.5 since the crossed product ofC0(R)
by translations is K . Hence α̂ is an MF flow. Thus α is a dual MF flow.

Remark 3.21. If α is a dual MF flow on A, then A has no non-zero pro-
jections because K ⊗ C0(R) has no non-zero projections. In particular A has
no unit. If α is a dual MF flow then no αt 
= id is approximately inner (i.e., no
sequence of unitaries in A+ C1 approximates αt by adjoint action).

Here we give some examples. The flow γ on K ⊗C0(R) induced by trans-
lations is not a MF flow (see Example 2.10 in [11]) but of course it is a dual
MF flow. The flow Ad λ on K is an MF flow but not a dual MF flow. (By
the duality given in 3.19 these two statements are equivalent, giving another
proof of Example 2.10 quoted above.) The identity flow on K ⊗C0(R) is both
an MF flow and a dual MF flow. (It is quasi-diagonal. To see that it is a dual
MF flow define an isomorphism φ of K ⊗ C0(R) into

∏∞
n=1 Kn ⊗ C0(R) by

φ(f ) = (f1, f2, . . .) with fn(t) = f (t/n) for f ∈ Kn ⊗ C0(R) ∼= C0(R,K ).
Then φ embeds (K ⊗ C0(R), id) into

(∏
Kn ⊗ C0(R)

/⊕
Kn ⊗ C0(R), γ

)
.

From this it follows that id ⊗ id ⊗γ on K ⊗ C0(R) ⊗ C0(R) is both an MF
flow and a dual MF flow.

4. NF flows

The condition in the following lemma is a flow version of (vi) of Theorem 5.2.2
of [1].

Lemma 4.1. LetA be a nuclear C∗-algebra and α a quasi-diagonal flow on
A. Then for any finite subset F of A and ε > 0 there is a flow β on a finite-
dimensional C∗-algebra B and completely positive contractions σ : A → B
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and τ : B → A such that

‖x − τσ (x)‖ < ε, x ∈ F ,

‖σ(xy)− σ(x)σ (y)‖ < ε, x, y ∈ F ,

‖σαt − βtσ‖ < ε, t ∈ [−1, 1].

Proof. Since A is nuclear and quasi-diagonal, for any finite subset F and
ε > 0 there is a triple (B, σ, τ ) which satisfies the first two conditions in the
lemma (see (iv) of Theorem 5.2.2 of [1]). Though this σ has nothing to do
with α, one can approximate σ by a CP contraction σ ′ : A → B which is
α-covariant, i.e., the representation of A induced by σ ′ is α-covariant. More
specifically we take a large γ > 0 such that

γ

2

∫
e−γ |t |‖αt(x)− x‖ dt ≈ 0, x ∈ F ∪ (F · F )

where F · F = {xy | x, y ∈ F } and set

σ ′ = γ

2

∫
e−γ |t |σαt dt.

Then it follows that σ ′ is a CP contraction of A into B such that ‖σ(x) −
σ ′(x)‖ ≈ 0 for x ∈ F ∪ (F · F ). Thus one may assume that σ ′ also satisfies
the first two conditions. Note σ ′ has the following property: σ ′αs ≤ eγ |s|σ ′,
i.e., eγ |s|σ ′ −σ ′αs is CP, which implies that σ ′ is α-covariant. This fact follows
from Lemma 4.2 below, a version of Stinespring’s theorem.

Assume that B acts on a finite-dimensional Hilbert space HB such that the
commutant of B is abelian. There is a covariant representation (π,U) and an
isometry V from HB into Hπ such that σ ′(x) = V ∗π(x)V for x ∈ A. By
adding another covariant representation to (π,U)we may suppose that π ×U
is a faithful representation ofA×α R. Since α is quasi-diagonal it follows from
Theorem 1.4 of [11] that (π(A),U) is quasi-diagonal. Hence there is a finite-
rank projection F on Hπ such that F ≥ VV ∗, [F, π(x)] ≈ 0 for x ∈ F and
‖[F,Ut ]‖ ≈ 0 for t ∈ [−1, 1]. By Lemma 3.2 applied to the compact operators
K (Hπ ) andF ∈ K (Hπ ) there is an AdU -cocycleZ in K (H )+C1 ⊂ B(Hπ )

such that Zt ≈ 1 for t ∈ [−1, 1] and [F,ZtUt ] = 0. Define B1 = FB(Hπ )F

and βt = Ad(ZtUt ) on B1 and let σ1 = Fπ( · )F , a CP contraction from
A to B1. Then since (βtσ1 − σ1αt)(x) = F {(Ad(ZtUt ) − Ad(Ut ))π(x)}F
for x ∈ A, we have that ‖βtσ1 − σ1αt‖ ≈ 0 for t ∈ [−1, 1]. Note also that
σ1(xy) = Fπ(xy)F ≈ Fπ(x)Fπ(y)F = σ1(x)σ1(y) for x, y ∈ F . Let
τ1(T ) = τPB(V

∗T V ), T ∈ B1, where PB is a norm-one projection from
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B(HB) onto B. Then τ1σ1(x) = τPB(V
∗Fπ(x)FV ) = τσ ′(x) ≈ τσ (x) for

x ∈ F . Thus one can conclude that (B1, β, σ1, τ1) has the required properties.

The following is taken from Section 4 of [11] (see also the proof of Propos-
ition 2 of [10]).

Lemma 4.2. Let α be a flow on a C∗-algebra A and let B be a C∗-algebra
acting on HB and Z a unitary flow on HB such that t �→ AdZt defines a
flow on B. Let ψ be a CP contraction from A into B and γ > 0 such that
AdZ−tψαt ≤ eγ |t |ψ for t ∈ R. Let (π, V ) denote the Stinespring pair for ψ ,
i.e., π is a representation of A and V is an isometry from HB into Hπ such
that ψ(x) = V ∗π(x)V , x ∈ A and PHπ is cyclic for π(A) with P = VV ∗.
Then there is a unitary flow U = eitH on Hπ such that AdUtπ = παt and
‖[H,P ]‖ ≤ γ /2.

Proof. We replace A by the unitization of A and assume ψ(1) = 1. On
the algebraic tensor product A⊗ HB we define a quasi-inner product by

〈x ⊗ ξ, y ⊗ η〉 = 〈ψ(y∗x)ξ, η〉HB
,

and a representation π of A by

π(a)x ⊗ ξ = ax ⊗ ξ.

We define a linear map V from HB into A ⊗ HB by V ξ = 1 ⊗ ξ . Then we
obtain the pair (π, V ) in the statement by the usual procedure.

We define a linear operator Wt on A⊗ HB by

Wtx ⊗ ξ = αt(x)⊗ Ztξ.

We compute for a finite sum ζ = ∑
i xi ⊗ ξi

‖Wtζ‖2 =
∑
i,j

〈ψαt(x∗
i xj )Ztξj , Ztξi〉

≤ eγ |t | ∑
i,j

〈ψ(x∗
i xj )ξj , ξi〉

= eγ |t |‖ζ‖2.

This implies that Wt is a well-defined bounded operator in Hπ such that
(Wt)

∗Wt ≤ eγ |t |1. Moreover the familyWt , t ∈ R satisfies thatWsWt = Ws+t ,
W0 = 1, t �→ Wt is strongly continuous, and Wtπ(x) = παt(x)Wt , x ∈ A.
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Let Wt = eiLt , i.e., iL is the generator of W . Since (Wt)
∗Wt ≤ eγ |t | it

follows that for any ξ ∈ D(L)
‖Wtξ‖2 − ‖ξ‖2

|t | ≤ (eγ |t | − 1)‖ξ‖2

|t | .

By taking the limits t ↓ 0 and t ↑ 0 we derive

−γ ‖ξ‖2 ≤ 〈iLξ, ξ〉 + 〈ξ, iLξ〉 ≤ γ ‖ξ‖2,

which implies that D(L∗) ⊃ D(L) and −γ 1 ≤ iL − iL∗ ≤ γ 1 as a sesqui-
linear form on D(L). Let C be the closure of i(L− L∗)/2. Then ‖C‖ ≤ γ /2
andC = C∗, andL+iC is a symmetric operator becauseL+iC = L−L/2+
L∗/2 = (L+ L∗)/2 on D(L). Since L+ iC generates a strongly continuous
one-parameter group of bounded operators, L+ iC must be self-adjoint with
D(L∗) = D(L).

Since Wtπ(x)W−t = παt(x), x ∈ A, it follows that (Wt)
∗Wt ∈ π(A)′ and

hence C ∈ π(A)′. Let Ut = ei(L+iC)t , which is a unitary flow implementing
α. We assert that H = L+ iC has the required property.

By the definition ofWt we deduceWtV = VZt , which implies thatWtP =
VZtV

∗ is a unitary on PHπ with P = VV ∗. Hence WtPW
∗
t = P . Since

(Wt−1)PW ∗
t +P(W ∗

t −1) = WtPW
∗
t −P = 0, it follows thatLP−PL∗ = 0

on D(L). Using H = L + iC = L∗ − iC we deduce that [H,P ] = (L +
iC)P −P(L∗ − iC) = i(CP +PC) onD(L). Namely [H,P ] is bounded by
‖CP + PC‖. On the other hand PW ∗

t WtP = P , which implies PCP = 0.
Hence ‖CP + PC‖ = ‖(1 − P)CP ‖ ≤ γ /2. This completes the proof.

We prepare three technical lemmas which can be derived by using standard
techniques which may be found in [4].

Lemma 4.3. There exists a constant C > 0 satisfying: Let γ be a flow on
a C∗-algebra A and let δγ be the generator of γ . If x ∈ D(δγ ) is such that
Sp(x∗x) ⊂ {0} ∪ [1/2, 1] then the partial isometry w obtained from the polar
decomposition of x belongs toD(δγ ) and satisfies that ‖δγ (w)‖ ≤ C‖δγ (x)‖.

Proof. Let f be a C∞-function on R with compact support such that
f (0) = 0 and f (t) = t−1/2, t ∈ [1/2, 1]. Then w is obtained as xf (x∗x).
We use the formula:

f (x∗x) =
∫
f̂ (t)eitx

∗x dt

where f̂ (t) = 1/2π
∫
f (s)e−ist ds, to derive f (x∗x) ∈ D(δγ ) and

‖δγ (f (x∗x))‖ ≤
∫

|t f̂ (t)| dt‖δγ (x∗x)‖.
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Thus C = √
2 + 2

∫ |t f̂ (t)| dt will do. See Section 3.2.2 of [4] for details.

Lemma 4.4. There exists a constant C > 0 satisfying: Let γ be a flow on
a C∗-algebra A. Let p ∈ A be a projection in D(δγ ) such that δγ (p) = 0
and let e ∈ D(δγ ) be a projection such that ‖pe − p‖ ≤ 1/8. Then there is
a projection e′ ∈ D(δγ ) such that pe′ = p, ‖e − e′‖ ≤ 12‖pe − p‖, and
‖δγ (e′)‖ ≤ C‖δγ (e)‖.

Proof. Since ‖pep−p‖ = ‖p(ep−p)‖ < 1/8, it follows that Sp(epe) =
{0} ∪ [7/8, 1]. Let w be the partial isometry obtained from the polar decom-
position of pe. Note that ‖w−p‖ ≤ ‖w−w|pe|‖+‖pe−p‖ ≤ 2‖pe−p‖.
Note also, from Lemma 4.3, that ‖δγ (w)‖ ≤ C‖δγ (e)‖, where C is the
universal constant there. Since ‖(1 − p)(1 − w∗w)(1 − p) − (1 − p)‖ ≤
‖(1 − w∗w)(1 − p) − (1 − p)‖ = ‖w∗w − w∗wp‖ and ‖w∗w − p‖ ≤
‖w∗(w − p)‖ + ‖(w∗ − p)p‖ ≤ 2‖w − p‖ ≤ 4‖pe− p‖, it follows that the
spectrum of (1 − w∗w)(1 − p)(1 − ww∗) is contained in {0} ∪ [1/2, 1]. Let
w′ be the partial isometry obtained from (1 − p)(1 − w∗w) (in A + C1 if A
is not unital). Then ‖w′ − (1 − p)‖ ≤ 2‖(1 − p)(1 − w∗w) − (1 − p)‖ ≤
2‖w∗w − pw∗w‖ = ‖(1 − p)w∗w‖ ≤ 4‖pe − p‖. From Lemma 4.3 it fol-
lows that ‖δγ (w′)‖ ≤ C‖δγ (w∗w)‖ ≤ 2C‖δγ (w)‖. We set u = w + w′,
which is a unitary such that ‖u − 1‖ ≤ ‖w − p‖ + ‖w′ − (1 − p)‖ ≤
6‖pe − p‖ and ‖δγ (u)‖ ≤ ‖δγ (w)‖ + ‖δγ (w′)‖ ≤ (2C2 + C)‖δγ (e)‖. We
set e′ = ueu∗, which is a projection such that e′ ≥ wew∗ = ww∗ = p.
Note that ‖e′ − e‖ = ‖ueu∗ − e‖ ≤ 2‖u − 1‖ ≤ 12‖pe − p‖ and that
‖δγ (e′)‖ ≤ 2‖δγ (u)‖ + ‖δγ (e)‖ ≤ (4C2 + 2C + 1)‖δγ (e)‖. This completes
the proof.

Lemma 4.5. Let K = K (H ) be the compact operators on a Hilbert space
H andH a self-adjoint operator on H which defines a flowγ : t �→ Ad eitH on
K . Then the domainD(δγ ) is the set of operators x ∈ K such that xD(H) ⊂
D(H) and [iH, x] on D(H) extends to a compact operator, which is δγ (x).
If x ∈ K is of finite rank and xD(H) ⊂ D(H) and [iH, x] is bounded
on D(H) then the closure of [iH, x] is compact and thus x ∈ D(δγ ) and
δγ (x) = [iH, x].

Proof. Let γ̄t = Ad eitH on the bounded operatorsB(H ). Then γ̄ is a one-
parameter group of automorphisms of the type I factor B(H ) and t �→ γ̄ (Q)

is continuous in the strong operator topology for Q ∈ B(H ). Let L be the
generator of γ̄ . ThenD(L) consists ofQ ∈ B(H ) such thatQD(H) ⊂ D(H)

and [iH,Q] is bounded on D(H) and if Q ∈ D(L) then L(Q) is the closure
of [iH,Q]. (See Proposition 3.2.55 of [4].) Thus if x ∈ D(δγ ) then it follows
that xD(H) ⊂ D(H) and [iH, x] on D(H) extends to a compact operator.
Conversely if x ∈ K satisfies the latter conditions, then it follows that t �→
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iHeitH xe−itH ξ is continuous for ξ ∈ D(H). Hence if f ∈ L1(R) is such that
f̂ has compact support then the closure of [iH, γf (x)] is equal to

∫
f (t)eitH [iH, x]e−itH dt,

where γf (x) = ∫
f (t)γt (x) dt belongs to D(δγ ) as having compact γ -spec-

trum. Since [iH, γf (x)] = δγ (γf (x)) and δγ is closed it follows that x ∈ D(δγ )
and δγ (x) = [iH, x].

Let x ∈ K be of finite rank. Since the range V of x is finite-dimensional
and contained in D(H) it follows that H |V is bounded. If (ξn) is a bounded
sequence in D(H) then there is a subsequence (ξ ′

n) of (ξn) such that xξ ′
n

converges; so iHxξ ′
n converges. Since (xiHξ ′

n) is a bounded sequence in V
we can choose a subsequence (ξ ′′

n ) of (ξ ′
n) such that xiHξ ′′

n converges. Thus
[iH, x]ξ ′′

n converges and [iH, x] is compact. By the way in general we have
to require [iH, x] to be compact (not just bounded) to ensure x ∈ D(δγ ).

We will apply Lemma 4.4 to the situation described in Lemma 4.5 in the
proof of the following lemma.

Lemma 4.6. Let B be a separable nuclear C∗-algebra on a Hilbert space
H and U a unitary flow on H such that B ⊃ K (H ), t �→ AdUt(x) defines a
norm-continuous flow onB. Letα denote the flow onA = B/K (H ) induced by
t �→ AdUt |B. Then if (B,U) is quasi-diagonal then (A, α) is quasi-diagonal.

Proof. Under the assumption we shall prove the condition (2) of The-
orem 1.5 of [11]. Namely for any finite subset F of A and ε > 0 we
shall construct a finite-dimensional C∗-algebra D, a flow β on D, and a
CP map φ of A into D such that ‖φ‖ ≤ 1, ‖φ(x)‖ ≥ (1 − ε)‖x‖ and
‖φ(x)φ(y) − φ(xy)‖ ≤ ε‖x‖‖y‖ for x, y ∈ F , and ‖βtφ − φαt‖ < ε

for t ∈ [−1, 1].
Since (B,U) is quasi-diagonal there is an increasing sequence (Pn) of finite-

rank projections on H such that limn Pn = 1, ‖[Pn, a]‖ → 0 for all a ∈ B,
and ‖[Pn,H ]‖ < 2−n whereH is the self-adjoint generator ofU . Note that the
last condition means that PnD(H) ⊂ D(H) and ‖[Pn,H ]|D(H)‖ < 2−n. Let
P0 = 0 and letH0 = ∑∞

n=1(Pn−Pn−1)H(Pn−Pn−1), which is a well-defined
self-adjoint operator. Since H − H0 on D(H) is compact, we may take the
unitary flow generated by H0 instead of U , which still leaves B invariant and
defines a flow onB dropping to the same flowα on the quotientA = B/K (H ).
Thus we assume now that [Pn,H ] = 0 for all n.

The existence of the above (Pn) follows by the following arguments. Sup-
pose that Pn was chosen. We have to define Pn+1. The main difficulty lies in
finding one strictly bigger thanPn. First leth = −(1−Pn)HPn−PnH(1−Pn),
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which is a compact operator with norm less than or equal to ‖[H,Pn]‖. We
choose a constant C > 0 as in Lemma 4.4. Let ε > 0 be sufficiently small and
set δ = ε/C. Then we find a sufficiently large finite-rank projection E such
that ‖PnE − Pn‖ < δ, ‖hE − h‖ < δ/4, ‖[H,E]‖ < δ/2, and ‖[E, a]‖ < δ

for a finite number of a ∈ B prescribed. Note that [H + h, Pn] = 0 and
‖[H + h,E]‖ ≤ δ. By applying Lemma 4.4 to the pair Pn,E with the deriva-
tion i[H+h, · ] on the compact operators, we obtain a finite-rank projectionE′
such that Pn ≤ E′, ‖E−E′‖ < ε, and ‖[H + h,E′]‖ < ε. Since ‖[h,E′]‖ ≤
2ε‖h‖ + ‖[h,E]‖ < 2ε + δ/2, we deduce that ‖[H,E′]‖ ≤ (3 + (2C)−1)ε.
Thus for a sufficiently small ε > 0 we can set Pn+1 = E′.

SinceA is nuclear there is a completely positive (CP) contractionφ ofA into
B such that Qφ = id, where Q is the quotient map of B onto A = B/K (H )

[5]. Let φt = AdU−tφαt for t ∈ R, which is also a CP map. SinceQφt = id, it
follows that φt(a)−φ(a) ∈ K (H ). Since t �→ φt(a) is norm-continuous one
deduces that ‖(1 − Pn)(φt (a) − φ(a))(1 − Pn)‖ → 0 as n → ∞ uniformly
in t on every compact subset of R for all a ∈ A.

Let F be a finite subset of A and ε > 0. Let

ψ = ε

2

∫
e−ε|t |φt dt

which is a CP map ofA intoB such thatQψ = id. Since e−ε|t |ψ ≤ AdU−tψαt
≤ eε|t |ψ it follows that ‖ψαt − AdUtψ‖ ≤ eε|t | − 1.

Since ψ(x)ψ(y) − ψ(xy) ∈ K (H ) there is an N ∈ N such that ‖(1 −
PN)(ψ(x)ψ(y)−ψ(xy))(1−PN)‖ < ε‖x‖‖y‖/2 for x, y ∈ F . There exists
an n ≥ N such that for any m ≥ n ‖[Pm,ψ(x)]‖ < ε/4 for x ∈ F . Since
Qψ = id we have that ‖(1 − Pn)ψ(x)(1 − Pn)‖ ≥ ‖x‖ for x ∈ A. We
then choose m > n such that ‖(Pm − Pn)ψ(x)(Pm − Pn)‖ ≥ (1 − ε)‖x‖
for x ∈ F . Let E = Pm − Pn. Since ‖[E,ψ(x)]‖ ≤ ε‖x‖/2 for x ∈ F , we
obtain that ‖Eψ(x)Eψ(y)E−Eψ(xy)E‖ ≤ ε‖x‖‖y‖/2+‖Eψ(x)ψ(y)E−
Eψ(xy)E‖ ≤ ε‖x‖‖y‖. By setting D = EB(H )E, βt = AdUt |D, and
φ(x) = Eψ(x)E, x ∈ A, we obtain the desired triple (D, β, φ).

The following result is proved by mimicking the proof of Theorem 5.2.2 of
[1].

Theorem 4.7. Letα be a flow on a separableC∗-algebra. Then the following
conditions are equivalent:

(1) (A, α) is obtained as the inductive limit of a ∗-linear generalized induct-
ive system of flows on finite-dimensionalC∗-algebras where the coherent
maps are all completely positive contractions.

(2) A is nuclear and α is an MF flow.
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(3) A is nuclear and there is an essential quasi-diagonal extension B of
A by the compact operators K and a unitary flow U ∈ M(K ) such
that t �→ AdUt defines a flow on B, (B,U) is quasi-diagonal, and
QAdUt = αtQ, where Q is the quotient map of B onto A.

(4) A is nuclear and α is quasi-diagonal.

(5) For any finite subset F of A and ε > 0 there is a flow β on a finite-
dimensional C∗-algebra B and completely positive contractions σ :
A → B and τ : B → A such that

‖x − τσ (x)‖ < ε, x ∈ F ,

‖σ(xy)− σ(x)σ (y)‖ < ε, x, y ∈ F ,

‖σαt − βtσ‖ < ε, t ∈ [−1, 1].

(6) A is nuclear and there is a continuous field of flows (An, αn) over N∪{∞}
such that An is finite-dimensional for n ∈ N and (A∞, α∞) ∼= (A, α).

(7) A is nuclear and there is a continuous field of flows (An, αn) over N∪{∞}
such that An ∼= Mkn for some kn for n ∈ N and (A∞, α∞) ∼= (A, α).

Proof. (1) ⇒ (2): That A is nuclear follows from Proposition 5.1.3 of [1]
and that α is an MF flow follows from Theorem 3.10.

(2) ⇒ (3): This follows from (2) ⇒ (3) of Theorem 3.10.
(3) ⇒ (4): This follows from Lemma 4.6.
(4) ⇒ (5): This follows from Lemma 4.1.
The equivalences between (2), (6), and (7) follow from those between (2),

(4), and (5) in Theorem 3.10.
It remains to prove (5) ⇒ (1). We define a sequence (An, αn) of flows on

finite-dimensional C∗-algebras and sequences of CP contractions σn : A →
An and τn : An → A as follows. Let (xn) be a dense sequence in A. We
choose (A1, α1) and CP contractions σ1 : A → A1 and τ1 : A1 → A such that
‖x1 − τ1σ1(x1)‖ < 1/2 and ‖σ1αt − α1,t σ1‖ < 1/2 for t ∈ [−1, 1]. Suppose
that (Am, αm, σm, τm) is defined up to m = n. Let N ∈ N be such that if
|t | < 1/N then ‖αt(x) − x‖ < 2−n for all x in the unit ball of τn(An). Let
Vn be the finite-dimensional subspace generated by αk/N(x) with x ∈ τn(An),
k = 0,±1, . . . ,±N , and xy with x, y ∈ τn(An) and Vn−1 ∪ {xn}. We choose
(An+1, αn+1, σn+1, τn+1) such that

‖x − τn+1σn+1(x)‖ ≤ 2−n−1‖x‖, x ∈ Vn,
‖σn+1(x)σn+1(y)− σn+1(xy)‖ ≤ 2−n−1‖x‖‖y‖, x, y ∈ Vn,

‖σn+1αt − αn+1,t σn+1‖ < 2−n−1, t ∈ [−1, 1].

Note that (Vn) is increasing with dense union in A.
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Let φn = σn+1τn : An → An+1, a CP contraction. We can show that
φn is almost multiplicative on φn−1(An−1) as follows. If x ∈ An−1, then
φn(φn−1(x)φn−1(x)) is approximately equal to σn+1τnσn(τn−1(x)τn−1(y))

(since σn is approximately multiplicative) and then to

σn+1(τn−1(x)τn−1(y)) ≈ σn+1τn−1(x)σn+1τn−1(y) ≈ φnφn−1(x)φnφn−1(y),

where the error is up to 5 · 2−n‖x‖‖y‖. We can show that αn+1,tφn − φnαn,t
is almost equal to zero on φn−1(An−1). If x ∈ An−1 and t ∈ [−1, 1], then
(αn+1,tφn − φnαn,t )φn−1(x) = (αn+1,t σn+1τn − σn+1τnαn,t )σnτn−1(x) is ap-
proximately equal to

σn+1αtτnσnτn−1(x)− σn+1τnσnαtτn−1(x)

≈ σn+1αtτn−1(x)− σn+1αtτn−1(x) = 0,

where the error is up to 6 · 2−n‖x‖.
Now we have the following commutative diagram:

A1 A2 A3 . . .

τ1
σ2 τ2

σ3

A A A . . .

where the arrows represent CP contractions. Hence the upper sequence and
the lower sequence define the same object as Banach spaces (at least). Let

ψm,n = τn−1σn−1τn−2σn−2 · · · τm+1σm+1

for n > m, a CP contraction from them’th A into n’th A. Since (ψn,m(x))n≥m
is a Cauchy sequence for each x ∈ Awe denote the limit by�m(x). Then (�n)
defines a sequence of CP contractions from A into A and satisfies �nψm,n =
�m for n ≥ m. Since

⋃
n �n(A) is dense inA it follows that the lower sequence

defines A as a Banach space. From the way to define product in the inductive
limit, one concludes that the lower sequence defines A as a C∗-algebra. Since
�nαtψm,n(x) converges to αt�m(x) as n → ∞, the lower sequence defines
(A, α) as a flow. Then one argues the upper sequence defines (A, α) as well.

We will call α an NF flow if it satisfies the conditions described in the above
theorem. Since quasi-diagonality is preserved under cocycle perturbations (2.2
of [4]), a cocycle perturbation of an NF flow is also an NF flow.
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5. Strongly quasi-diagonal flows

Definition 5.1. Let A be a C∗-algebra and let α be a flow on A. We call
α strongly quasi-diagonal if (π(A),U) is quasi-diagonal for any covariant
representation (π,U).

Note that the C∗-algebra A is called strongly quasi-diagonal if π(A) is
quasi-diagonal for any representation π of A.

A quasi-diagonal flow need not be strongly quasi-diagonal. If α is an arbit-
rary flow on a quasi-diagonal C∗-algebra A, the flow β on B = A⊗ C[0, 1]
defined by βt (x)(s) = αst (x(s)) is quasi-diagonal and has (A, α) as a quo-
tient (see Proposition 2.15 of [11]). Hence if (A, α) is not quasi-diagonal then
(B, β) is not strongly quasi-diagonal.

In a similar fashion we can define a notion of strong pseudo-diagonality.
Then it follows that an approximately inner flow on a quasi-diagonal C∗-
algebra is strongly pseudo-diagonal (see the proof of Proposition 2.17 of [11]).
But we do not know if they are strongly quasi-diagonal or not.

The following shows the above definition is not empty.

Lemma 5.2. LetA be a strongly quasi-diagonalC∗-algebra. Then the trivial
flow α = id is strongly quasi-diagonal.

Proof. Let (π,U) be a covariant representation of (A, α), i.e., U is a
unitary flow on Hπ such that Ut ∈ π(A)′. Let H be the self-adjoint generator
of U and E the spectral measure of H .

Let F be a finite subset ofA, let G be a finite subset of Hπ , and let ε > 0. We
may suppose that all ξ ∈ G belong to E(a, b]Hπ for some a < b. Let (ai)Ni=0
be an increasing sequence in R such that a0 = a, aN = b, and ai − ai−1 < ε

for i = 1, 2, . . . , N . Let Gi = {E(ai−1, ai]ξ | ξ ∈ G}. Since π(A)E(ai−1, ai]
is quasi-diagonal on the subspace Hi = E(ai−1, ai]Hπ , there is a finite-rank
operator Ei on Hi such that ‖[Ei, π(x)E(ai−1, ai]]‖ ≤ ε‖x‖ for x ∈ F and
‖(E(ai−1, ai] − Ei)ξ‖ ≤ ε‖ξ‖ for ξ ∈ Gi . Let E = ∑N

i=1 Ei , which is a
finite-rank projection on Hπ . Since [E,π(x)] = ∑

i E(ai−1, ai][Ei, π(x)],
we deduce that

‖[E,π(x)]‖ = max
i

‖E(ai−1, ai][Ei, π(x)]‖ ≤ ε‖x‖

for x ∈ F . Since (1 − E)ξ = ∑
i (E(ai−1, ai] − Ei)E(ai−1, ai]ξ , we deduce

that

‖(1 − E)ξ‖2 =
∑
i

‖(E(ai−1, ai] − Ei)E(ai−1, ai]ξ‖2 ≤ ε2‖ξ‖2
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for ξ ∈ G . Since UtEU ∗
t − E = ∑

i E(ai−1, ai](UtEiU ∗
t − Ei) we deduce

that
‖UtEU ∗

t − E‖ = max
i

‖UtEiU ∗
t − Ei‖ ≤ ε|t |.

This shows that (π(A),U) is quasi-diagonal.

Proposition 5.3. Let α be a strongly quasi-diagonal flow on A and let u
be an α-cocycle. Then Ad uα is also strongly quasi-diagonal.

Proof. Let (π,U) be a covariant representation of (A,Ad uα). Then t �→
Vt = π(u∗

t )Ut is a unitary flow implementing α. Hence by assumption
(π(A), V ) is quasi-diagonal. Then it follows from the proof of Proposition 2.2
of [11] that (π(A),U) is quasi-diagonal.

Corollary 5.4. Let α be a flow on A. Let B be an α-invariant hereditary
C∗-subalgebra of A such that B generates A as a closed ideal. Then α is
strongly quasi-diagonal if and only if α|B is strongly quasi-diagonal.

Proof. Any covariant representation of (B, α|B) extends to a covarint rep-
resentation of (A, α). Hence if (A, α) is strongly quasi-diagonal then so is
(B, α|B).

Suppose that (B, α|B) is strongly quasi-diagonal. Then (B⊗K , α|B⊗id) is
also strongly quasi-diagonal, where K is the C∗-algebra of compact operators
on a separable infinite-dimensional Hilbert space. If A is separable then (A⊗
K , α ⊗ id) is isomorphic to a cocycle perturbation of (B ⊗ K , α|B ⊗ id).
Thus one concludes that (A, α) is strongly quasi-diagonal in this case. One
can reduce the general case to this case (see the proof of 2.7 of [11]).

Proposition 5.5. Let A be a C∗-algebra and let α be a flow on A. Suppose
that there is an increasing sequence (An) of α-invariant C∗-subalgebras of A
with dense union such that An is strongly quasi-diagonal and the restriction
of α toAn is inner, i.e., α|An = Ad ut for some unitary flow u inM(An). Then
α is strongly quasi-diagonal.

Proof. Let (π,U) be a covariant representation of (A, α). Then by as-
sumption (π(An), U) is quasi-diagonal for any n. Hence (π(A),U) is also
quasi-diagonal.

Corollary 5.6. Any AF flow is strongly quasi-diagonal.

Proof. Let α be an AF flow on A. Then A is an AF C∗-algebra and there
is an increasing sequence (An) of finite-dimensional α-invariant C∗-algebras
of A with dense union. Since α|An is inner and An is strongly quasi-diagonal
this follows from the above proposition.
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Lemma 5.7. Letα be a flow on a separableC∗-algebraA. Suppose that there
is a sequence (πi, Ui) of covariant irreducible representations of (A, α) such
that

⊕
i πi is faithful, (πi) are mutually disjoint, and (πi(A), Ui) is quasi-

diagonal for all i. Then there is an α-cocyle u and an increasing sequence
(An) of Ad uα-invariant residually finite-dimensional (RFD) C∗-subalgebras
of A with dense union such that πi |An is equivalent to a direct sum of Ad uα-
covariant finite-dimensional irreducible representations for all i and n.

Proof. Let (xi) be a dense sequence of the unit ball of Asa = {x | x =
x∗ ∈ A}. Let Hi denote the representation Hilbert space for πi and (ξ (i)k ) be an
orthonormal basis of Hi . Let Hi denote the self-adjoint generator of Ui and
ε > 0.

Let E11 be a finite-rank projection on H1 such that ‖(1 −E11)ξ
(1)
1 ‖ < ε/2,

‖[E11, π1(x1)]‖ < ε/2, and ‖[E11, H1]‖ < ε/2.
Let E′

11 be the range projection of (1 − E11)x1E11, which is a finite-rank
projection orthogonal to E11. We apply Kadison’s transitivity theorem to an
operator on the finite-dimensional space (E11 + E′

11)H1 to find a y11 ∈ Asa
such that ‖y11‖ = ‖E′

11π1(x1)E11‖ < ε/2 and

π1(y11)(E11 + E′
11) = E′

11π1(x1)E11 + E11π1(x1)E
′
11.

Note that [E11, π1(x1 − y11)] = 0. Similarly there is an h1 ∈ Asa such that
‖h1‖ < ε/2 and [E11, H1 − π1(h1)] = 0. We set yi1 = 0 for i > 1.

Next we find finite-rank projections E12 in H1 and E22 in H2 such that
E11 ≤ E12, ‖(1 − E12)ξ

(1)
i ‖ < ε/4 and ‖(1 − E22)ξ

(2)
i ‖ < ε/4 for i = 1, 2,

‖[E12, π1(xi − yi1)]‖ < ε/4 and ‖[E22, π2(xi − yi1)]‖ < ε/4 for i = 1, 2,
and ‖[E12, H1 − π1(h1)]‖ < ε/4, and ‖[E22, H2 − π2(h1)]‖ < ε/4. (Since
[E11, H1 − π1(h1)] = 0, we can impose the strict inequality E11 ≤ E12

from an approximate one as follows. If E11 � E12 let F be the projection
obtained fromE12E11E12 ≈ E11 by continuous functional calculus and define
X = E11F + (1 − E11)(E12 − F) ≈ E12 and let X = VE12 be the polar
decomposition of X. We take VE12V

∗ (which dominates E11) instead of E12.
Since ‖[F,H1 −π1(h1)]‖ ≈ 0 and ‖[X,H1 −π1(h1)]‖ ≈ 0 depending only on
‖[E12, H1 −π1(h1)]‖ ≈ 0, we conclude that ‖[VE12V

∗, H1 −π1(h1)]‖ ≈ 0.)
Let E(i)k2 be the range projection of (1 −Ek2)πk(xi − yi1)Ek2 for k = 1, 2 and
i = 1, 2. There is an yi2 ∈ Asa for i = 1, 2 such that ‖yi2‖ < ε/4 and

πk(yi2)(Ek2 + E
(i)
k2 ) = E

(i)
k2πk(xi − yi1)Ek2 + Ek2πk(xi − yi1)E

(i)
k2

for k = 1, 2, where we have used the fact that π1 and π2 are mutually disjoint.
Note that [E12, π(x1 −y11 −y12)] = 0 and [E12, π(x2 −y21 −y22)] = 0. Since
π(y12)E11 = 0 it also follows that [E11, π(x1 − y11 − y12)] = 0. Similarly
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there is an h2 ∈ Asa such that ‖h2‖ < ε/4 and [Ek2, Hk − πk(h1 + h2)] = 0
for k = 1, 2. Note also that [E11, H1 − π1(h1 + h2)] = 0. We set yi2 = 0 for
i > 2. Note that we have defined E11 ≤ E12 on H1 and E22 on H2. We will
set Ekj = 0 for k > j .

We repeat this process. After n steps we find yij ∈ Asa for 1 ≤ j ≤ n and
hi ∈ Asa for 1 ≤ i ≤ n and finite rank projections Ekj in Hk for 1 ≤ j ≤ n

satisfying the following conditions: yij = 0 for i > j , ‖yij‖ < 2−j ε, Ekj = 0
for k > j , (Ekj )j is an increasing sequence of finite-rank projections on Hk

strongly converging to 1, and

[
Ekj , πk

(
xi −

n∑
m=1

yim

)]
= 0, 1 ≤ i ≤ j,

[
Ekj ,Hk −πk

( n∑
m=1

hm

)]
= 0

for k ≤ j ≤ n. Thus by setting yi = xi − ∑∞
m=1 yim and h = ∑∞

m=1 hm
we obtain the following equalities: [Ekj , πk(yi)] = 0 for i ≤ j , [Ekj ,Hk −
πk(h)] = 0, where ‖xi − yi‖ < 2−i+1ε and ‖h‖ < ε.

Let β be the flow generated by δα − ad ih, where δα is the generator of α.
Let Ai be the β-invariant C∗-subalgebra of A generated by y1, . . . , yi .

Then Ai ⊂ Ai+1 and the union of Ai is dense in A. Note that Ekj ∈ πk(Ai)
′

for j ≥ max{k, i}. Since all Ekj are of finite rank and a finite-dimensional
covariant representation is a direct sum of finite-dimensional covariant irre-
ducible representations, one can conclude that πk|Ai is a direct sum of finite-
dimensional covariant irreducible representations for all k, which in particular
implies that Ai is residually finite-dimensional.

When α is a flow on a C∗-algebra A we denote by FR(α) the set of equi-
valence classes of finite-dimensional α-covariant irreducible representations
of A. Thus α is an RF flow if the intersection of all Ker(π), π ∈ FR(α) is
zero. If φ is an injection of (A, α) into (B, β) we denote by φ′(FR(β)) the
set of π ∈ FR(α) which is obtained as a sub-representation of ρφ|A for some
ρ ∈ FR(β). Suppose that we are given an increasing sequence (An, αn) of RF
flows; we denote by φmn the embedding ofAm intoAn form < n intertwining
αm and αn. For eachm ∈ N let FR′

m denote the intersection of all φ′
mn(FR(αn))

with n > m. When the intersection of all Ker(π), π ∈ FR′
m is zero for all m

we say that the increasing sequence (An, αn) of RF flows is canonical.

Lemma 5.8. Let (An, αn) be a canonical increasing sequence of RF flows
and let (A, α) be the inductive limit of (An, αn). There exists a family S of
α-invariant pure states of A such that if φ ∈ S then πφ|An is equivalent to
a direct sum of finite-dimensional covariant irreducible representations of An
for all n ∈ N and such that

⊕
φ∈S πφ is faithful.
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Proof. By using the notation before this lemma one finds, for any m and
π ∈ FR′

m, a sequence (ρn)n≥m such that ρn ∈ FR(αn), ρm = π , and ρn+1|An
contains ρn as a subrepresentation. Fix a αm-invariant pure state φm of Am
which induces ρm as a GNS representation. One then finds a αm+1-invariant
pure state φm+1 of Am+1 which induces ρm+1 and φm+1|Am = φm. (Consider
the embedding of C = Am/Ker ρm+1 ∩ Am into D = Am+1/Ker ρm+1; φm
is an αm-invariant pure state on a factor of the finite-dimensional C∗-algebra
C. We pick up a factor E of D to which the factor of C is mapped and then
find an αm+1-invariant pure state φm+1 of E, which we regard as a pure state
on Am+1.) By repeating this process we find a sequence (φn)n≥m such that
φn is a αn-invariant pure state of An which induces ρn and φn|An−1 = φn−1.
Thus we can define a state φ of A by φ|An = φn. One concludes that φ is
an α-invariant pure state. We denote by U the unitary flow on Hπ defined by
Utπφ(x)�φ = πφ(αt (x))�φ . Note that Hn = πφ(An)�φ is finite-dimensional
and U -invariant. Since (Hn) is increasing and the union of all Hn is dense in
Hφ one concludes that πφ|An is equivalent to a direct sum of covariant finite-
dimensional irreducible representations. Let S denote the set of all φ for all
the choices of m,π ∈ FR′

m. Then the direct sum of πφ is faithful on Am for
any m and thus it is faithful on A.

Proposition 5.9. Let α be a flow on a separable C∗-algebra. Then the
following conditions are equivalent:

(1) There exists a faithful family of covariant irreducible representations of
(A, α) which are quasi-diagonal.

(2) There exists anα-cocycleuand a canonical increasing sequence (An,αn)
of RF flows whose inductive limit is isomorphic to (A,Ad uα).

Proof. SinceA is separable it follows from (1) that there is a countable fam-
ily of covariant irreducible representations; (1) ⇒ (2) follows from Lemma 5.7.
The converse follows from Lemma 5.8.

Let A be a unital separable simple quasi-diagonal C∗-algebra (e.g., a UHF
algebra) and let α be an approximately inner flow on A whose Connes spec-
trum is the whole R. Then one can apply the above proposition to conclude
that there is a α-cocycle u and a canonical increasing sequence (An, αn) of RF
flows whose inductive limit is isomorphic to (A,Ad uα). This is because such a
system has a covariant irreducible representation which induces a faithful rep-
resentation of the crossed product (see [6]) and hence must be quasi-diagonal.
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