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QUASI-DIAGONAL FLOWS II

A. KISHIMOTO

Abstract

Two similar notions defined for flows, quasi-diagonality and pseudo-diagonality, are shown to
be equivalent; so approximately inner flows on a quasi-diagonal C*-algebra are quasi-diagonal
(not just pseudo-diagonal). We define a notion of MF flow which is weaker than quasi-diagonality
and study equivalent conditions following Blackadar and Kirchberg’s results on MF algebras
and we characterize the dual flow of such on the crossed product as a dual MF flow. In the
same spirit we introduce a notion of NF flow and show that NF flows are MF flows on nuclear C*-
algebras, or equivalently, quasi-diagonal flows on nuclear C*-algebras. We also introduce a notion
of strong quasi-diagonality (in parallel with strong quasi-diagonality versus quasi-diagonality for
C*-algebras), whose examples contain AF flows.

1. Introduction

We mean by a flow a strongly continuous one-parameter automorphism group
of a C*-algebra. We refer to [4], [14] for some background on flows. We
are particularly interested in approximately inner flows since they have close
relevance to applications to physics and were a cause for C*-algebras to have
been introduced. But we are still trying to understand the situations surrounding
approximately inner flows (see, e.g., [3], [8]).

We have defined two similar notions for flows on C*-algebras: pseudo-
diagonality and quasi-diagonality, in [11], which are naturally derived from
the notion of quasi-diagonality for C*-algebras (e.g., [15], [16]). But as we
shall see in this note they are in fact equivalent. Thus quasi-diagonality holds
for approximately inner flows on quasi-diagonal C*-algebras. For example if
« is an approximately inner flow on an AF algebra A then there is a covariant
representation (7, U) of (A, ) such that r is faithful and (w(A), U) is quasi-
diagonal, i.e., ||[E,, m(x)]]| = O for x € A and sup{||/[E,. U]l | =1 <
t < 1} — 0 for some increasing sequence (E,) of finite-rank projections on
H, with lim,, E,, = 1. Note also that for any covariant representation (7, U)
there is an increasing sequence (E,) of finite-rank projections on 7, with
lim, E, = 1 and a sequence (V,,) of unitary flows such that V,, , E,, = V,, , and
I[En, ()]l — Oand [|E oy (X)Ey — Vo En(x)E, V) || — 0 uniformly
in ¢t on every compact subset of R for any x € A. If a covariant representation
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(r, U) induces a faithful representation of the crossed product then (7w (A), U)
is quasi-diagonal by Voiculescu’s theorem (Theorem 3.1 of [11]). Thus an
approximately inner flow on an AF algebra can be approximated by flows on
finite-dimensional C*-algebras in a sense.

‘We have also noted in [11] we could define a notion of MF flows when the
C*-algebra is separable, which is derived from pseudo-diagonality, following
the notion of MF algebras introduced and studied by Blackadar and Kirchberg
[1]. We will examine this notion closely following [1]. See Theorem 3.10 for
equivalent conditions.

Letus be specific about the definition of MF flows. Let M,, be the C*-algebra
of n x n matrices. Any flow on M,, is given as t — Ad e withh = h* € M,,.
Let (k,) be a sequence of natural numbers and let B = [’ My, be the C*-
algebra consisting of bounded sequences (x,) with x, € My, . Let 8, be a flow
on My, and let B, = [[B.:, t € R as automorphisms of B. Since 1 — p;
is not continuous on B in general, we let Bg be the maximal C*-subalgebra
of B on which ¢ — p; is continuous. Thus g restricts to a flow on Bg. Let
I =@, My, be the C*-algebra consisting of sequences converging to zero,
which is an ideal of B contained in Bg and is left invariant under 8. We denote
by the same symbol g the flow on Bg/I induced from § on Bg.

When « is a flow on a separable C*-algebra A we consider the following
conditions:

(1) There is an isomorphism ¢ of A into Bg/I such that ¢o; = B;¢ (for
some B = [[02, My, and B =[], Bn).
(2) There is a completely positive (CP) contraction ¢ of A into Bg such that

Q¢ is an isomorphism and Q¢«o; = B; Q¢, where Q is the quotient map
of Bg onto Bg/I.

(3) There is an isomorphism ¢ of A into Bg such that ¢o; = B,¢.

We will call @ an MF flow if it satisfies the first condition. The second condition
on « is equivalent to «’s being quasi-diagonal (by Theorem 2.3), which is
stronger than the first in general (if A is not nuclear). We will call « an RF flow
if it satisfies the third condition. In this case A is residually finite-dimensional
as a C*-algebra. This is stronger than the second because, if Q¢ is not an
injection or ¢ (A) N I is non-zero, there is another (B, B), where B may be
obtained by repeating an infinite copies of each Mj, from the original B, and
an isomorphism 1 of A into this new Bg such that Qv is an isomorphism and
Ova; = B, Q. We note in 3.5 that we may replace all (M, , B,) by a single
(J7, Ad A) in the definition of MF flows, where J¢" is the C*-algebra of compact
operators on L?(R) and A is the unitary flow defined by (1,£)(s) = &(s — t).
We also note in 3.12 that an MF flow is obtained as a quotient of an RF
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flow. As in the case of pseudo-diagonal flows, if « is an MF flow on a unital
C*-algebra, it has KMS states for all inverse temperatures as shown in 3.14.
This is what motivates us to introduce MF flows. We shall also introduce a
notion of dual MF flows; « is a dual MF flow on A if (A, ) is realized in
(MM, ® CO(R))V/@ My, ® Co(R), y) for some (k,) where y =[] y, and
v, 1s the flow induced from translations on R. It follows in 3.19 that « is an
MEF flow (resp. a dual MF flow) if and only if & is a dual MF flow (resp. a MF
flow) on the crossed product A x, R.

We will also define a notion of NF flows following [1] and study some
equivalent conditions in Theorem 4.7. It will turn out that an NF flow is
an MF flow on a nuclear C*-algebra as expected and has a characterization
in terms of CP contractions through finite-dimensional C*-algebras as fol-
lows: There is a sequence of flows (B,, 8,) with B, finite-dimensional and
CP contractions 0, : A — B, and 7, : B, — A such that 7,0, — id,
l[on(xy) — on(x)au ()| — O forall x,y € A, and |loye; — Busoull — 0O
uniformly in ¢ on every compact subset of R. By the way quasi-diagonality
is characterized without t, in the above condition replacing 7,0, — id by
lo, ()] = llx|l, x € A (see Theorem 1.5 of [11]).

We will also define a notion of strongly quasi-diagonal flows, which is
naturally stronger than quasi-diagonality, and note that such a flow on a sep-
arable C*-algebra is obtained as the limit of a canonical increasing sequence
of RF flows after a cocycle perturbation (see 5.9 for details). An AF flow is
strongly quasi-diagonal (see 5.6), where an AF flow is defined as the limit of an
increasing sequence of FD flows (i.e., flows on finite-dimensional algebras).

I would like to express my gratitude to Ola Bratteli for inviting me to
Oslo in October 2010 and giving me an opportunity to present a seminar talk
on the topic dealt in this note. This was undoubtedly inspired by long-term
collaboration with him and another co-author Derek Robinson who was in the
audience. I would also like to record my gratitude to all the participants.

2. Quasi-diagonal flows
First we note the following result, which we should have noticed before.

ProPOSITION 2.1. Pseudo-digonality and quasi-diagonaliy for flows are
equivalent.

PrOOF. We shall show that the condition (2) of Theorem 1.6 of [11] implies
the condition (2) of Theorem 1.5 of [11]. The converse is trivial.

Let o be a pseudo-diagonal flow on A. Hence « satisfies the following
condition: For any finite subset # of A, T > 0, and § > O there is a finite-
dimensional C*-algebra B, a flow 8 on B and a CP map ¢ of A into B such
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that |¢]] < L, o)l = (1 = &)Ix|l forx € F and [|p(x)$p(y) — p(xy)| <
Slxllyll for x,y € &, and [|Bi¢(x) — pa ()| < €llx|| for x € F and
t € [—T, T]. This is slightly different from the condition (2) of 1.6 of [11] but
they are equivalent as we can see easily. Especially we have allowed T to be
arbitrarily large instead of fixing it to be 1.

Let € > 0 be smaller than 1. We define a CP map 1 of A into B by

= %/e_emﬂ—t(pat dr.

For x € &% we compute

¥ (x) — @) < %/e‘”'llﬂ_taﬁoe,(x) — ()| dt
T
< 5/ e~ |x | dr + €]x]| e "y
2 ) [t11>T
<@ +2e x|

Thusifweset§ = €/2and T = ¢! log(4/¢), we obtain that ||/ (x) —¢ (x)|| <
€llx|l, x € %. Hence we have that ||y (x)| > (1 — 2¢)|x]|| for x € & and

1Y )Y () —d )l < 3elx|liyll + @)@ (y) —d(xy) || < 4ellx]|lly]l for
X, yEZF.
Since

poven =5 / 1B pa ds

and |s| < |s —¢|+ |t| and |s — | < |s| + |¢|, we obtain that ||S_ Yo, — Y| <
el — 1 or ||BY — Yray|| < e — 1 fort e [—1, 1]. Thus the condition (2) of
Theorem 1.5 of [11] is satisfied with ¢ in place of ¢ starting with a smaller €.

REMARK 2.2. Suppose that « is an approximately inner flow on a quasi-
diagonal C*-algebra A. Then (;r(A), U) is pseudo-diagonal for any covariant
representation (7, U) of (A, ) (see the proof of Proposition 2.17 of [11]). It
follows from the above proof that for any covariant representation (ir, U) there
is a covariant representation (o, W) such that Ker p = Kerz and (p(A), W)
is quasi-diagonal.

THEOREM 2.3. Let o be a flow on a separable C*-algebra A. Then the
following conditions are equivalent.

(1) « is quasi-diagonal.

(2) « is pseudo-diagonal.

(3) There is a CP contraction ¢ of A into (]_[:O:l Mkn)ﬂ such that Q¢ is
an isomorphism and Q¢a, = B,Q¢ with B = ]_[,filﬂn for some
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(k,) and some (By,), where Q is the quotient map of (]_[ Mkn) g onto
(1_[ Mkn)ﬁ/@ Mkn'

PrROOF. We have already shown that the first two conditions are equivalent.

Suppose « is pseudo-diagonal. Let (x,) be a dense sequence in A. We
choose My, and a flow §, on M;, and a CP contraction ¢, : A — M,
such that [|¢, (x|l = (1 — 1/m) x|l |@n (i) Pn(xe) — @ (xixxe) || < 1/n, and
1Bn.c® (xp) — Py (xp)|| < 1/n,t € [—1, 1] forall k, £ < n. (As easily shown
we may assume the target algebra for ¢, is a full matrix algebra.) We define
a CP contraction ¢ of A into ]_[zozl My, by ¢(x) = (¢,(x)),. Then one can
show that Q¢ is an isomorphism and Q¢o; = B; Q¢. One can also show that
t = B (x) = (Bn.rdn(x)), is continuous since B¢ (x) — o, (x) € P My, .
That is, we have that ¢ (A) C ([] Mk”)ﬂ.

Suppose (3). Let ¢ be a CP contraction of A into (]_[ Mk”) 5 as given there.
Let ¢, denote the component of ¢ mapping A into M, . Then for any finite
subset # of A\ {0} and € > O there is an n € N such that for ¢ = []72, ¢
the conditions ¢ (x)¢™ (y) — ™ Wl < ellx|llIvll, and [IB¢™ (x) —
dMa,(x)|| < €|lx|l, t € [—1, 1] are satisfied for all x, y € F. We then find
m > n such that [];_, ¢x instead of ¢™ still satisfies the above conditions
together with || [T, ¢k(x)|| > (1 — €)||x|| for x € %. This implies that « is
pseudo-diagonal.

3. MF flows and dual MF flows

DerINITION 3.1. Let (k,) be a sequence of positive integers and let §, be a
flow on My, . Let B, = ]_[f;l Bn.+ which forms a (non-continuous) flow on
102, My,. Let (o2, My,)p denote the maximal C*-subalgebra of [~ M,
on which g is continuous. A flow « on a separable C*-algebra A is called an
MF flow if there is an embedding of A into ([To2; My,) p /P2, My, for some

(k,) and (B,,) such that ;¢ = ¢a;.

We first state a technical lemma.

LEMMA 3.2. There is a constant C > 0 satisfying: Let o be a flow on a
C*-algebra A. If e € A is a projection such that maxy < |lo;(e) —el| = & is
sufficiently small, there is an a-cocycle u in A (orin A+ Clif A 3 1) such
that Ad u,a, () = e and maxy < |lu, — 1]| < C§'2.

PrOOF. Let §, denote the generator of «. If ¢ € D(§,) then ed,(e)e =
(1—e)6y(e)(1 —e) =0.Thus [ih, e] = —6,(e) forh = i(84(e)e —ed,(e)) =
i(1—e)dy(e)e+ied,(e)(1 —e), which is a self-adjoint element of A of norm
less than or equal to ||§,(e)||. Thus the differentiable «-cocycle u defined
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by du,/dt = u,a,(ih) satisfies the conditions that Ad u,«,(e¢) = e and that
maxi<i u; — 1| < [8a(e)].

If we only assume that max;<; || (e) — el is small, we have to resort to
the above situation. Namely we find a projection ¢’ € A such that ||5,(e)| is
small and ¢’ is close to e. Then finding a unitary w ~ 1 such that w*ew = ¢’
and an «-cocycle v such that Ad v, (¢)) = ¢’ and |lv, — 1| = 0, ¢ € [—1, 1],
we would obtain the desired «-cocycle 1 — wv,o (w™).

The following arguments are standard and mostly found in [4], but we shall
give out some details (see the proof of Proposition 1.3 of [11]).

Let e € A be a projection and let § = maxy<; |la;(e) — 1| > 0.

Let g be a non-negative C*°-function on R such that g has compact support
and [ g(r) dr = 1. We define

q= / 528" (e) dt,
which satisfies that 0 < g < 1. Since ||o;(e) —e]| < §(1 + |¢]), we deduce that
lg —ell < fa‘/2g<8‘/2t>||a,<e> —elldt <5+ C18"% < (143872,

where C; = fg(t)ltl dt. We assume that (1 + C;)8'/? < 1/8, which insures
that Sp(g) C [0, 1/8] U [7/8, 1]. Note that ¢ € D(4,) and

18a (@)l = H —/ 8¢' (8?1 (e) dt| < C28'2,

where C;, = [ |g/(1)|dt.

Let f be a non-negative C°°-function on R such that supp(f) C [1/2, 3/2]
and f(r) = 1 on [7/8, 1]. Define f by f(p) = 2x)~! [ e~ f(r) dr and set
Cs = [ |t f ()| dt. We define

e = f(q) :/f(z)e"’q dt,

which is a projection such that |le’ — g| < (1 4+ C;)8'/2. By Theorem 3.2.32
of [4] it follows that ¢’ € D(8,) and

13 ()l < C3lI8a (@)l < C2C38'2.

Hence there is an a-cocycle v such that Ad v, (¢') = ¢’ and maxy, < [lv, —
1| < 18 (eNl < C2C38'2.

Note that |[e — €'|| < |le — gl + llg — €'|| < 2(1 4+ C1)8§'/? < 1/4. Since
llee’ + (1 —e)(1 —¢') — 1] <2|le —¢€'|| < 1/2, the unitary w obtained by the
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polar decomposition of ee’ + (1 —e) (1 —¢’) satisfies that ||w — 1| < 4|le—¢’||.
Since we'w* = e, we conclude that the a-cocycle u : t — wv,a, (w)* satisfies
that Ad u, o, (e) = e. Note thatif || < 1, then |ju,—1]| < 2|lw—1]+]v,—1]| <
(164+16C; +C>C3)8/>. Thus if § < 872(1+C;)~? then we obtain the desired
cocycle u for the constant C = 16 + 16C; + C,Cs.

LEmMMA 3.3. Let o be an MF flow on a unital separable C*-algebra A. Then
there is a unital embedding ¢ of A into (]_[ Mkn)ﬂ /@ M, suchthat po, = B¢

with B = || B, for some sequence (k) in N and (8,).

PROOF. Suppose that A is embedded into ([To—; My,) 8 /P, My, as in
the definition. Let (p,) € [| My, be a representative of the unit of A. We may
suppose that p’ = p,. Since || p2 — p,|| — 0 we may also suppose that each p,
is a projection by functional calculus. Since || 8, ;(pn) — pn |l converges to zero
uniformly in t € [—1, 1], there is a sequence (u,, ;) of cocycles by Lemma 3.2
suchthatu, ,isa f8,-cocyclein My, , Ad u, (B,.:(pn) = pn,and ||u,—1]| = 0
uniformly in ¢t € [—1, 1]. Thus we can replace My, by p, My p, and B, by
Aduy, ;B | pn My, pn and obtain the desired unital embedding.

Let % = J/(L*(R)), the compact operators on L?(R), and define a unitary
flow A on L?(R) by (A&)(s) = &(s — t), £ € L*(R). We denote by Ad A the
flow on J7 defined by ¢t — Ad A,. The following proposition shows that there
is a universal flow (on a non-separable C*-algebra) for MF flows in the sense
that the flow is MF if and only if it is realized as a subflow of the universal one.

The following is a technical lemma about almost commuting pairs of self-
adjoint operators, one compact and the other possibly unbounded (cf. [12]).

LEMMA 3.4. For every € > 0 there is a v > 0 satisfying the following
condition: Let a € (¥ (H))sqa and H a self-adjoint operator (which may be
unbounded) on # such that ||a|| < 1 and ||[a, H]|| < v. Then there is an
ay € (K (I))sa and a self-adjoint operator H, on ¢ such that a, is of finite
rank, |la —a|| <€, |H — H{|| <€, H— Hy € (), and [a,, H ] = 0.

Proor. This follows from Theorem 3.1 of [2], where this is stated as a
result valid for ¢ and H on an arbitrary finite-dimensional space # without
depending on the dimensionality.

PrROPOSITION 3.5. Let o be a flow on a separable C*-algebra. Then the
Jollowing conditions are equivalent.
(1) «ais an MF flow.

(2) (A, @) can be embedded into ((]_[ !%1))//@ T, y), where J, =
andy = [[AdA.
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PrOOF. Suppose (1), i.e., suppose that (A, «) can be embedded into

(TTw), /@ w.

with B = [] B, for some (k,) and (B,). Let v, be a unitary flow in M, such
that B,; = Adwv,,. Then, since the spectrum of X is R, by using the Weyl-
von Neumann theorem one can obtain a sequence of A-cocycles u,, in % + Cl
and a sequence of finite-rank projections e, € J such that u,, , — 1 is compact,
llup.s — 1|l = O uniformly int € [—1,1] as n — oo, Ad(u, A;)(e,) = ey,
and the spectrum of t +— u,,A.e, is equal to that of v, with multiplicity
included. Then there is an embedding of M}, into e, /e, C JZ, such that v,
is mapped to u,Ae,. Thus one can embed ((]_[ Mkn)ﬁ, ,3) into ((]_[ 71,’,1)6, o)
with o = [[(u,A). Since u,, , — 1 uniformly in 7 on any bounded set of R and
u,; — 1 € J,, one derives that [ [u,, € @ ¥, + Cl; thuso and y = [[ 1
are equal on the quotient [ %, /@ %,. Thus (A, a) can be embedded into
((T196), /@ . v).

Suppose (2). If A is unital, this follows from the proof of Lemma 3.3.
Suppose that A is not unital. Let (p;) be an approximate identity for A and
let (pxn)n € (]_[ 7{,1)y be a sequence representing p; with 0 < pr, < 1.
Let f be a smooth non-negative function on R such that f f@)dt =1 and
[ 1/ @) dt is small. Note that ([ () Ad A (p.n) dt)n represents o/ (py) =
ff(t)oc,(pk) dt and that ||6, (or (pr))ll < flf’(t)ldt etc., where §, is the
generator of «. By using these facts we obtain a sequence (e;) in A with
0<er <land(exn), € (]_[ %1))/ representing e; with 0 < e, < 1 such that
llexx —x|| — Oforany x € A, ||84(ex)|| — Oask — ooand ||[[H, ex,]]| = O
uniformly in n as k — oo, where H is the self-adjoint generator of A.

Let (xz) be a dense sequence in the unit ball of A, and let (x4 ,), be a
sequence of self-adjoint elements in the unit ball of (]_[ Y[n)y representing xy.
Letn € N. We choose v > 0 for ¢ = 27" as in Lemma 3.4. We choose k € N
such that ||exx; — x;|| < € forany i < n and ||[H, ex ]|l < v forall m € N.
We choose M,, € N such that ||eg ,X;m — Xim| < € for all m > M,. Then
by Lemma 3.4 we choose a self-adjoint H,, on L?(R) and a finite-rank self-
adjoint operator e,’(,m form > M, suchthat[H,,, e,’(’m] =0, H,,— H is compact,
|Hy, — H|| < €, and |lex, — e,’(’m|| < €. Let P, be the support projection of
€y - Then P, is a finite-rank projection commuting with H,, and satisfies that
”mei,m - xi,m” = 2e + ”Pme]/{,mxi,m - xi,m” = 2¢ + ”e]/(,mxi,m - xi,m” =
4e = 272 for i < n. We may suppose that (M,,) is strictly increasing and we
make such a choice for M,, <m < M, and set B,, = P, % P,, and B,,; =
Ad e | B, . Then it follows that (P,,x; ,, P,,) is equal to (x; ,) modulo € %,
foralli and ¥/ = [ Ad e’ = Adu,y, for some y-cocycle u withu, — 1 €
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@ .. Hence (A, &) can be embedded into ([ B) P /€ B equipped with

B = [1Bn which is embedded into (] .%fm)y,/@ I = (1 7{,,,))//@ /-
equipped with y such that the composition is the original embedding of (A, «).
This completes the proof.

REMARK 3.6. In the above proposition the property we needed for A is that
its spectrum contains arbitrarily long intervals of R.

PROPOSITION 3.7. The class of MF flows on a separable C*-algebra is closed
under cocycle perturbations.

PrOOF. Let @ be an MF flow on A and let u be an «-cocycle. Let ¢ be an
embedding of A into (]_[ Mkn),g/@ M, such that ¢, = B,¢ for some (k)
and g =[] B,

If A is unital, then u; belongs to A and we may assume that ¢ is unital.
By Lemma 1.1 of [7] it follows that u is given as wu,(h)oz,(w*), where w is a
unitary and u® is the differentiable a-cocycle defined by du,(h) /dt|i—o = ih
with & = h* € A. Then we find a 8-cocycle v in (]_[ Mk”)ﬂ, by lifting w and
h to a unitary and a self-adjoint element respectively, such that v, = [] v,
maps to ¢ (u,) under the quotient map. Hence we obtain that ¢ Ad u,a; = B¢
with B/ = [[ Ad v, B, (regarded as a flow on the quotient).

If A is not unital and u is an a-cocycle in the multiplier algebra M (A) of
A, we approximate u by a-cocycles in A 4 C1 [9]. More precisely let (x;) be
a dense sequence in A and let (1) be a sequence of a-cocycles in A + Cl
such that

Gt —u™)xel < 27" xell, tel=1,1]
for i = 1,2,...,n. We extend ¢ to a CP map from A + Cl into
(IT Mkn)ﬂ/@ M,, by setting ¢ (1) = 1. We then lift each ¢ (u™) to an B-
cocycle v™ in ([T My,) g as stated above. We also fix a lifting y; € ([] Mk”) p
of each ¢ (x;). We then have fori < n

10" — vyl < @ +27" Dxill,  tel[-1,1],

where Q is the quotient map onto (]_[ Mk,,) 5 / P M, . Hence one can choose
a sequence (K,,) of integers such that Ko =0, K,, > K,,_;, and

1 _
sup (0" — o yyisl < 27" M xll,  te[—1, 1]

kZK)l

fori < n. We define a 8-cocycle w € ([] Mk”)ﬁ by wi, = v,i"t) for K, <k <
Kyy1. If m > nand K,, <k < K,,1| then the norm of the k’th coordinate of

(w = vy is (m) (n) —nt2
lve: Yik — v, Vil < 2777 lx |l
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for i < n. Hence it follows that ||Q(w)¢ (x;)) — ¢’ x)|| = ||Q(w,y; —
v yi) | < 27"2||x; | fori < n, whichimplies that || @ (w,)$ (x;)—¢ (u,x;)|| <
273 x;||. Since n is arbitrary, we can conclude that Q(w,)¢ (a) = ¢ (u,a)
for any a € A. We replace the flow g8, on M, by t — Adw, B, . Then it
follows that ¢ Ad u,o; = B;¢.

A x-linear generalized inductive system of flows is a sequence of flows
(A,, o) together with x-linear maps ¢, : Ay — A, for m < n with
Om.n®rm = ¢rn forall k < m < n such that for all k and all x, y € A4 and
€ > Othereisan K > k suchthatforalln >m > K andt € [—1, 1]

(D) 11,0 (Dr,m () Prm (¥)) — Pren ()P (W < €,
(2) ||¢m,nam,t¢k,m(x) - an,l(pk,n(x)” <E§€,
(3) sup,—, 1dmr | L{otm, Prm ()] || <SP < 00,

for some 6 > 0, where L(S) is the linear span of S.

This notion and the following consequences are adapted from Section 2 of
[1]. The above condition 3 replaces sup,..; [|¢x,-(x)|| < oo there.

For such a system one defines the inductive limit C*-algebra A and the flow
o on A, which may be realized as follows. Let ]_[floz1 A,, be the full C*-direct
product of the A,’s and let B, = []2, a.,. Let @, A, be the C*-direct
sum, the ideal of [}~ A, consisting of sequences converging to zero in norm.
Define a map ¢,, of A,, into [[ A, by ¢ (x)n = @m.n(x) for n > m and 0 for
n < m. Since ¢, (x) — PuPm.n(x) € P A, one can define a x-linear map ¢
of [ JA, into [T A, / P A, by ¢|A,, = O, where Q is the quotient map of
[ My, onto ] Mkn/@ My, . Since ¢ (x)p(y) = Q(dm(x)Pm(y)) is the limit
of ¢(Pm.n(X)Pm.n(y)) asn — ocoforx, y € Ay, ¢ extends to an isomorphism
of the inductive limit A of the system (A, ¢y,,) into [[ A, / P A,. Now we
could identify the inductive limit A with the closure of ¢ (| A,,).

Since OB pm(x) = Q((tn,1Pm.n(x))n) is the limit of oy 1P (x) as n —
oo for x € A, B, induces an automorphism of A which we denote by «;.

We shall show that t — o,;¢(x) is continuous for x € A,,. Let ¢ > 0.
Then there is M > m such that forn > £ > M and ¢t € [—1,1] we
have that @, te.sbm.e(X) — Qs ()]l < €. Hence Jlayp(x) — ¢ ()| <
b (@e.s@Pm.e(x) — Pm.e(x))|| + €. Fixing £ > M thereisa 1 > § > 0 such that
if |#] < & then |l ;@m e (x) — dm.e(x)]| < €. Hence we obtain that if |¢] < §
then |lo; ¢ (x) — ¢p(x)|| < 2¢. Thus « is a (continuous) flow. Note that « is
realized as the restriction of 8 = [ .

Let ([TA,) 4 be the maximal C*-subalgebra of [TA, on which 8 is con-

tinuous. We note that the image of ¢,, is contained in (]_[ An) 5 Suppose that
there are a sequence (¢;) in R, a sequence (n;) in N, x € A,,andaéd > 0
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such that lim; t; = 0 and ||ay, 1, @m.n, (X) — @y, (x)]| > 5. Since each «,, is
continuous we must have that n; — oo. Note that there is £ > m such that
”¢€,naﬁ,t¢m,€(x) - ail,t¢n1,n(x)|| < 8/2 for ¢ € [—1, 1] and

sup llépe. - |L({ete, i Ppm e (x) | 1] < s} < 00

r>40
for some s > 0. Since ||@¢.n, (r.1, Pm.e(X) — P e (x))]| > §/2 for n; > £, this
contradicts that t + «,, is continuous. Hence one concludes that ¢ embeds

Ainto ([TA) /€ An.

LEMMA 3.8. Suppose that (A, «) can be embedded into ([ My, )ﬂ/@ M,

/3) with B = [ | Bn. Then there exist a (separable) C*-algebra B on a separable
Hilbert space ' and a unitary flow U on J such that B includes F (),
t — Ad U, (x) defines a flow on B, there is an isomorphism ¢ of B/ ()
onto A such that $Q AdU,(x) = ;¢ Q(x) for x € B, and (B, U) is quasi-
diagonal, where Q is the quotient map of B onto B/ (). Conversely if there
is such (B, U) then (A, &) can be embedded into (([] Mkn)ﬂ/@ My,, B) for
some (k,) and (B,,).

PrOOF. Let # be an infinite-dimensional separable Hilbert space and let
(E,) be a sequence of projections on # such that E,# is k,-dimensional,
E,E, =0form #n,and ) - | E, = 1. Let o be a map of A into (]_[ Mk")ﬂ
such that Q'c is the given embedding of A into ([T My,) 5 /D My, where Q' is
the quotient map of [ ] My, onto [ My, /@D My,. We identify E, B(¥)E, with
M, and denote by ¢ the embedding of [] M, into B(H) by t(x) = Y oo | x,
for x = (x,),. Note that ¢ induces the embedding of [[ My,/ & My, into
B(I) ) () since ([T My,) N FH () = (B My,). We let ¥ = 1o, which
is a map of A into B(¥).

Let B = ¢ (A) + J (), which is a quasi-diagonal C*-algebra such that
Q1 is an isomorphism of A onto B/J/ (7). Thus ¢ is obtained as the inverse
of Q.

Let U, be a unitary flow in My, = E,B(¥)E, such that AdU,, = B,
and let U, = ¢((U,;),) which is a unitary flow in #(#’) such that t — U; is
strongly continuous. Note that ¢ — Ad U, (x) is norm-continuous for x € B.
Then we have for x € A that Q AdU, ¥ (x) = QB0 (x) = Qvra,(x), where
weuse Q'B,0 = Q'oa; and Qt = 0 on Ker Q'. Since ¢ = (Q¥)~!, we obtain
that pQ Ad U, (x) = a,(x). For y = ¥ (x) + ¢ with ¢ € J/ () we obtain
that pQ Ad U,(y) = ¢ AdU, ¥ (x) = a,(x) = ;¢ Q(y). This concludes the
proof of the first part.

Conversely if there is such a (B, U) then there is an increasing sequence
(P,) of finite-rank projections on # such that lim, P, = 1, ||[P,, U;]|| — O
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uniformly in ¢ € [—1, 1], and ||[ P, b]|| — O for b € B. We may suppose that
[P, U;] = 0 by perturbing of U by compacts and passing to a subsequence
of (P,). Set E, = P, — P,_; and k, = rank E,, with Py = 0. Identifying
E,B(I)E, with M, wedefineamap¢ : B — [[ My, by ¢ (x) = (E,xEp),.
This drops to a *-homomorphism of B into ([T Mx,) p /D My, intertwining
a with 8, whose kernel is exactly J7 ().

A continuous field of flows over N U {oo} is a continuous field of C*-
algebras A,, n € N U {oo} and flows «, on A, such that if n — x, is a
continuous field so is n — oy, ,(x,) for all ¢ € R. Since |x, — on(x,)]]
converges to [|Xeo — Uoo,r(Xoo)|l @s m — oo in N, it follows that t — o, ,(x,,)
is continuous uniformly in n € N U {oo}. Hence if n — x, is a continuous
field then so is n — f Sy, (x,)dt for f € L'(R). Note also that the flow
o = [[02; an X ao defined on the C*-algebra generated by the continuous
fields is strongly continuous.

We will present a version of Proposition 2.2.3 of [1] by borrowing the
terminology there; a finite product ]_[f,:, (A,,ay) forl <r <s < ooiscalled
a segment of [ |72 (A,, a,) and two segments are disjoint if their intersection
is zero when they are naturally regarded as subsystems of ]_[;’Q=1 (A, o).

LEMMA 3.9. Let o, be a flow on a separable C*-algebra A, and B =
HZ‘; 1 . Let (A, a) be a flow with A separable. Then the following are equi-
valent:

(1) (A, o) can be embedded into ((]_[ An)ﬂ/@ A, ,3).

(2) There is a continuous field of flows (B,, B,) over N U {oco} such that
(By, Bn) is a segment of | [(An, ) for n € N with disjoint segments for
different n and such that (B, Bso) = (A, @).

(3) (A, a) can be embedded into ((]_[ B,,)y/@ B,, y), where (B, B,) is a
segment of [ [(An, an) for n € N with disjoint segments for different n
and y =[] B, such that ||x|| = lim,, ||x,|| holds for every x € A and
sequence (x,) representing x.

Proor. We follow the proof of Proposition 2.2.3 of [1].

We shall prove (1) = (2) as follows: Let (x;) be a dense sequence in A
with (x;,), € (]_[ A,,) p representing x; and let (#;) be an enumeration of the
rationals. For7, j andn € NU{oo} we sety; ;j(n) = a,,(xj,) € A, forn € N
and y; j(00) = @, (x;) € A = A. Let P be the set of all polynomials in non-
commuting variables Y; ;,7, j € N and their formal adjoints Y;‘ D i, j € Nwith
coefficients in Q + iQ. Since P is countable, let (f;) be a fixed enumeration
of P.Forn € N U {oo} we set f;(n) to be the element in A,, obtained from f;
substituting ¥; ; = y; j(n) forall i, j.
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There are disjoint segments [r,,, S;,,] in N such that fori =1,2,...,m

‘Ilﬁ(OO)II— e

n=ry

< 1/m.

Set B(m) = ]_[i:r A, and B, = H;”’Zrm . Weset Fi(m) = [, fi(n) €
B(m) and F;(c0) = f;(00). Then the function n + || F;(n)]| is continuous on
N U {oo} and the set of F;’s, together with the sequences converging to zero,
forms a x-algebra &/ over Q 4 iQ invariant under ]_[f:l Bm: X o, t € Q.
Since (x;,), € (]_[ A,,)ﬂ, m > B Fi(m) — Fi(m) € &/ converges to zero
uniformly in m € N as ; — 0. Hence the closure of .« is a C*-algebra
invariant under [] B,, X o on which 7 + [] B, X &, is continuous. Thus the
continuous fields are invariant under the flow.

For the other implications see the proof of Proposition 2.2.3 in [1].

The following result will be proved by mimicking the proof of Theo-
rem 3.2.2 of [1].

THEOREM 3.10. Let o be a flow on a separable C*-algebra A. Then the
following conditions are equivalent:

(1) (A, a) is obtained as the inductive limit of a x-linear generalized induct-
ive system of flows on finite-dimensional C*-algebras.

2) o is an MF flow.

(3) There is an essential quasi-diagonal extension B of A by the compact
operators J and a unitary flow U € M(JF) such that AdU,(B) = B
fort € R, t — AdU,(x) is norm-continuous for x € B, (B,U) is
quasi-diagonal and Q Ad U; = o; Q where Q is the quotient map of B
onto A.

(4) There is a continuous field of flows (A,, a,) over N U {oo} such that A,
is finite-dimensional for n € N and (Aso, 0x0) = (A, ).

(5) There is a continuous field of flows (A,, a,) over N U {oo} such that
A, = My, for some k, for eachn € N and (Ao, 0tso) = (A, o).

Proor. We proved (1) = (2) before Lemma 3.8 and (2) < (3) in Lemma 3.8
and (2) < (4) in Lemma 3.9. (5) = (4) is trivial and (4) = (5) is easy since the
fibres at any isolated points may be enlarged.

It remains to show (2) = (1). Suppose that (A, «) is embedded into

(T, /@ w.

with B = [] B, for some (My,, B,). For x € A let Sp,(x) denote the «-
spectrum of x and let A“(F) = {x € A | Sp,(x) C F} for a closed set
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F of R. Let Ac = Uf,ozl A%[—n, n], which is a dense *-subalgebra of A.
.. B

Similarly let ([TMy,). = ((I1 Mkn),g)c = UpZi (ITMw,)" [—n, nl, where

(]_[ Mkn)ﬁ[—n, n] = ((]_[ Mkn)ﬂ)ﬂ[—n, n]. For each x € Ac thereis a (x,) €

(]_[ Mk”) P representing x. If f € L'(R) has Fourier transform with compact

support and is 1 on the a-spectrum of x then we have that [ f (t)e, (x) df = x,
which implies that f f(@®)B:((x,)) dt also represents x. In this way we deduce
that A%[—n, n] is embedded into (]_[ Mkn)ﬁ[—n —1,n+ 1]/@ M. Note
that A*[—n, n] etc. are self-adjoint. We choose a *-linear map o of A¢ into
(]_[ Mkn)c such that Qo = id on A¢ and o (A%[—n, n]) C (]_[ Mkn)ﬂ[—n —
1, n 4 1]. We also choose a dense sequence (x,) in Ac.

We shall define finite-dimensional C*-algebras A, with flows «,, on A, and
x-linear maps y,, : A, = Ac C Aand§, : A — A,+ such that the sequence
(Ay, o) of flows with maps ¢, nr1 = ¢ = 8,¥n : Ay — Ay is @ #-linear
generalized inductive system of flows with the desired properties, appearing
as the upper sequence of the commutative diagram:

Al b1 A2 b2 A3
o| o e 7
A A A

In particular our system will satisfy the following conditions:

n41(xy) = @ns1 ()Pt NI = 27" Ix Iyl

forall x,y € ¢,(A,) C A,y and

[ nt10n41,0(X) = Q21D (O = 27" | x]]

for all x € ¢,(A,) and ¢ € [—1, 1], which is enough to imply that the system
has the desired properties together with the condition sup,,.; |||l < oo for
k € N.

On the other hand the lower sequence of copies of (A, @) of the above
commutative diagram with maps y,+16, : A — A defines (A, «), which
follows from: (y,,(A,)) is increasing with dense union in A, y,115,(x) = x
for x € y,(A,), and

[Vt 1800 (%) = @ Y182 (0) | < 2771 |Ix |

for x € y,(A,) and ¢t € [—1, 1]. We shall require the intertwining properties
for §,, and y,, with o, and «, which will imply that both the upper and lower
sequences define the same object, i.e., (A, «).
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In the course of the inductive construction below we shall define a finite-
dimensional x-subspace V,, of Ac C A depending on y, which is a vital
ingredient for constructing A, 1, 8, and then ¥, such that (V,,) forms an
increasing sequence with dense union in A. In particular the norms of §,, and
Yu+1 Will be almost dominated by (dim V,,)!/? and V,, will equal y,41 (A, 11).
To obtain the above inequalities we shall require the following properties for
v» and &, with n > 2. The first two are discussed in the proof of Theorem 3.2.2
of [1] and the second two are new being concerned with the flows:

18, (xy) = 8, ()8, (M < 27"~ (dim V,) "2 |lx ]y

forall x,y € y,(A,),
Vn+]8n(x) =X

forall x € y,(Ay) - ¥u(Ay) or x € v, (Ay),
1,060 (X) — Spatr (X) || < 27" 1 x]|
for x € y,(A,), and

oty Vas1(X) = Vup 101 Ol < 27" x|

for x € ¢, (A,).
Weset Ay = Cand y; : A| — Ac be an arbitrary *-linear map. Suppose
that
Az, 81,72, A3, 82, V3, -+« An, Sp—1s Y

are constructed so that y (Ax—1) C v(Ay) and x3_; € yi(Ag) fork < n as
well as the above inequalities, where (x,,) was chosen as a dense sequence in
Ac. We shall define A,,1,and §, : A — A, 41, and 41 : A = Ac.

Let d be the dimension of A,. Let E € N be such that Sp,(x) C [-E, E]
and Spﬁ o(x) C[—E, E]forall x € y,(A,), which exists by the assumption

on y, and 0. We choose N € N such that E\/d(ZN +1)+d?*+2/N <
27773, Let V, be the x-subspace of A generated by y,(A4,) - vu(An), Xn, X
and oy v (Y (An)) withk =0, £1, £2, ..., £N. Note that V,, C Ac and the
dim(V,) < d(2N + 1) + d*> + 2. Note also that o, (x) with x € y,(A,), t €
[—1, 1] is almost contained in V,,; more precisely, there is a y € V,, such that
lo (x) — ¥l < (E/N)|lx||. This follows by setting y = a/n (x) for some k
due to the estimate: |, (x) — o, (x)|| < E|s — t|||x]|, which is derived from
Sp,(x) C [-E, E].

Since Qo = id and QB,0 = «, we will then choose r, < s, such that
the linear map p, : A — A,y1 = [[j~, My, defined by x — [[;~, 0i(x)
satisfies the following conditions: p, |V, is almost isometric and p, |y, (A,) is
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almost multiplicative and o410, = ]_[f.":rn Bi.1pn 1s nearly equal to p,o; on
Vu+1(V), 1.e., for any prescribed € > 0,

loalVall < 1 +e,
1(oal Vi)l < 1+,

”pn(x)lon(Y) - ,On(x)’)” =< €||x||||y||, X,y € Vn(An)»
”anJrl,k/an(x) - pnak/N(x)” = E”X”, X € Vn(An)» k= Oa xI1,...,£N.

Let P, be a projection from A onto V, such that || P,|| < +/dim V,, (see 1.14 of
[13]; we need this stronger estimate rather than || P,|| < dim V,,). We set §,, =
onP, i A — A,.1. Let R, be a projection from A, onto 6,(A) = p, (V)
such that | R, || < +/dim V,, and set ¥,+1 = (0n|Vy) 'R, : Apy1 — Ac. Then
it is immediate that y,+16,|V, = id. We set

€ =27"3(dim V,) /2,

which assures the first inequalities on &,,.
Note that y,411(A,r1) = (0a|V) ' (0a(V,)) = V,, which implies that

Va1 (Ang1) D vu(Ay) and y, 41 (Apyp1) 3 Xy
We have defined ¢, = §,,y, : A, = A,41. Since

Vnan—l = (pn—l|Vn—1)_1Rn—1pn—1Pn—l =P,

is a projection onto V,_; and the range of y,, is V,,_;, we obtain that ¢, , =
¢n71¢n72 e ¢m = anfl)/m = Pn71(0m71|Vm71)71Rm71, i-e-’ ”¢m,n” <
4./dim V,,_, forall n > m.

Let us repeat here the proof from [1] for ¢, being approximately mul-
tiplicative. For x,y € A,, since ¢, 12 = Snt1Van> |Pnt1(dn(x),(¥)) —
¢n,n+2(x)¢n,n+2(y) ” is less than or equal to

||6n+1{yn+l(6nyn(x)8nyn(y)) - Vn(x)yn(y)}”
+ 18741V () ¥Ya () — Sn1 ¥V () Sng1 ¥ Wl

Substituting Y, (X)Yn (¥) = Yu+16: (¥ (x) ¥ (y)) the first term is less than or

equal to
1841Vt 1 1180V ()80 ¥ (v) — 8 (Y () Ve (W)

which is roughly smaller than 27"y, (x)||ll¥»(»)|l. The second term is
roughly smaller than 27"2(dim V,,)~"/?||3, (x)||l¥x(¥)|l. Thus one can es-
timate that

141 (@0 (X)Pn(¥)) = Gnnr2(X)Pnns2 M = 27" 1n ) 1 n (M-
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Now we come to the proof of the intertwining properties of 6, and y,4,
with oy, ;41

Letx € y,(A,). Fort € [—1,1] we wantto estimate || 8,0, (X) =0t 11,¢6, (X) ||
First assume that t = k/N with k € [—N, N]. Since «;(x), x € V,, we have

800t (X)) — ng1,680 O I| = Nl pnots (X) — w1 on ()| < €llx|l. If 2 € [-1, 1]
in general there is k/N such that |t —k/N| < 1/N. Since

l8ncte (x) = Snote/n GO < N8 llllete (x) — oty (X) ]
< (1 +¢€)y/dimV,EN"||x||
and
ot 11,682 (%) = g1y nSa ()| < E/Npa(x)| < (1 +€)EN"||x|
and 4/dim V,EN~! < 27773, we obtain that
1850t (x) = tns 1,180 ()| < (€ +27"2(1 4+ €))x]| < 27"|x]l.

Letx € V,andt = k/N. Since y,,+10,(x) = x and Y41 0,0 (X)) = o (x),
we have

||051Vn+1,0n(x) - y11+1an+l,tpn(x)|| = ||yn+l(/0nat(x) - O{n—b—l,tpn(x))”

which is less than or equal to €|y, ||lIx]| < (1 + €)%e/dim V, || o, (x)]|. If
t € [—1, 1] in general there is k such that |t — k/N| < 1/N. Since

et Y100 (X) = iyn Va1 Pn || = lloe (x) — /v (O |

is less than or equal to (1 + €)EN [ p, (x)|| < (1 4+ €)27" 3| p,(x)]| and

1 Vn19n41.000(X) — V101,678 P (X)) ||

is less than or equal to ||V, 41 [|EN || 0, ()| < (14€)+/dim V,EN || o, (x) ],
we obtain that

lot: Vit 100 (X) = Vir10ng1,0 00 (X)) ||
< 21+ 027" + (1 + e e/dim V, ) [ 0, ),
which is less than or equal to 27"~ || p, (x)||. This completes the proof.

REMARK 3.11. In the above proof (2) = (1) of the theorem we have chosen
a lifting o of A C ([TMy,),/€ My, such that o(Ac) C ([]My,). and
constructed V,, in A¢. (We actually defined o only on Ac.) We could have
chosen a o such that o (D(8,)) C D(8g), where g is the generator of f
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(on (]_[ Mkn) ﬁ), and constructed V,, in D(§,). Because what we needed was
Lipschitz continuity of t — «,(x) and ¢ — B;0(x) of x € y,(A,) = V,—1.

COROLLARY 3.12. Let a be an MF flow on a separable C*-algebra A. Then
there is an RF flow (B, B) and a B-invariant ideal 1 such that the quotient of
(B, B) by I is isomorphic to (A, ).

ProOF. Let B be the C*-algebra generated by the continuous fields as in
Condition (5) of Theorem 3.10 applied to (A, o), which has the flow g de-
termined by «,, n € N U {oo}. Let m, be the representation of B which picks
up the fiber M, at n € N. Then the family ,, n € N is faithful and each 7,
is B-covariant, i.e., 8 is an RF flow. Let I be the ideal of B generated by the
fields n — a, with a,, = 0. (Note that I = @2021 M;, is B-invaraint.) Then
the quotient of (B, ) by I is isomorphic to (A, «).

The following is about KMS states.

PROPOSITION 3.13. Let B = [[02, My, and 1 = @ My, for some (k,) and
B: = [1 B The flow B on Bg /I has KMS states for all inverse temperatures.

Proor. Fix an inverse temperature. Then each 8, has a unique KMS state
wy, on My, . Let % be an ultra filter on N and define a state w on Bg by w((x,)) =
lim,, . ¢, , (x,), which is a KMS state and satisfies that w|/ = 0. Thus we may
regard w as a state of Bg/I.

COROLLARY 3.14. Let o be an MF flow on a unital separable C*-algebra.
Then o has KMS states for all inverse temperatures.

ProoF. There is a unital embedding of (A, «) into ([T My,), /@ My, by
3.3. Hence this follows from the previous proposition.

From now on we are concerned with the dual object of MF flows.

LeEMMA 3.15. If there is a continuous field of flows (B,,, B,) over N U {oco}
then there is a continuous field of flows (B, % g, R, Bn) over NU{oo} such that if
n > x, is a continuous field for the former and f € L'(R) thenn > x,A,(f)
is a continuous field for the latter, where A, is the natural embedding of L' (R)
into M(B, xg, R).

PrROOF. Let x; € By and f; € L'(R) fori = 1,2,...,k. Let (xin) be a
continuous field with x; . = x;. We shall show that H Zle Xinhn (fi) || con-
verges to H Zle xiM(fy) || asn — 00, where A = A,. Since Bn,,,(x,-n)»,,(ﬁ)) =
Xinkn (Xp fi) With x,(t) = €'?', this suffices to conclude the proof.

Let p(Xh_, x:A(f)) = limsup,, | 3F_, Xinhn (f3)- Since

k
p(Zx,»Mf,-)) < [| s
i=1
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p is well-defined on the L'-closure of the linear span of xA(f), x € By,
f € L'R). Since (X xinka (1)) (X xinhn (1)) = Xoij S Burms (xin) (1)
An()* dtA(f;) can be approximated in L' norm by Zi’j Y Bt (X7, Xin)
A(fjAe)*A(f;) uniformly in n, where A,’s are non-negative functions sup-
ported around —#, such that (Ze Ag) fi = fjin L' norm for all j, one can
conclude that

o((Zwrn) (T wrim)) = (T wrim)

Hence p is a C*-semi-norm. Since pﬁoo, » = p, if p is not a norm it vanishes
on the ideal generated by a non-zero ideal of Bo,. If x is a non-zero element
of that ideal and (x,,) is a continuous field with x,, = x, then it should follow
that lim,, ||x,A,(f)|| = O for any f € L'(R). Since ¢ > Bn.1(x,) 1s continu-
ous uniformly in n we may suppose that the §,-spectrum of x, is contained
in (=1, 1) for all n. If f is 1 on [0, 1] one deduces ||x,A(f)] = llx.ll/3,
which contradicts that x # 0. (Assuming B, xg, R is faithfully represen-
ted, let E be the spectral measure of t — A, and set P, = E(Gi — 1,i].
Since x, = Zi PixP+ ) Pix,Pi + Zi P;_1x, P; one deduces that one
of the three terms has at least norm ||x,||/3. Note that the norm of the first
term is sup || Piw1x, P;|| = || Pix, Poll < ||xn Poll using the fact that the norm
is invariant under the dual flow. With similar formulas for other terms one
reaches the conclusion.) Thus one can conclude that p is the C*-norm on
By, x g R. Since the same arguments apply to any subsequence one concludes

that lim, || Y- xi, A(f) | = | X %A ()]

DEerFINITION 3.16. Let (k,) be a sequence of positive integers and let y, be
the flow on My, ® Cy(R) induced from translations, i.e., (¥, f)(s) = f(s —1)
for f € My, ® Co(R) = Co(R, My,). A flow « on a separable C*-algebra is
called a dual MF flow if there is such a sequence (k,) and an embedding of
(A, o) into ([To2; My, ® Co(R)), /€D My, ® Co(R) equipped with y = [T y,.

PRrOPOSITION 3.17. The class of dual MF flows on a separable C*-algebra
is closed under cocycle perturbations.

Proor. This is proved in the same way as Proposition 3.7 once we notice
the following: Any y-cocycle u in M (M; ® Cy(R)) is a coboundary. In fact if
we set w(s) = uy(s) for such a y-cocycle u then w € M(M; ® Cy(R)) and
wy;(w*)(s) = ws)w(s — 1" = ug(s)us— (s — 1)* = u; (s).

We provide some details. Let (A, «) be a dual MF flow and ¢ an embedding
of (A, a) into ([T;2; Mk, ® Co(R)),, /D My, ® Co(R). Note that A is non-
unital (see 3.21 below) and let # be an a-cocycle in M(A). If (x;) is a dense
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sequence in A there is a sequence (™) of a-cocycles in A + C1 [9] such that
I —uf)xill <27"xill, rel[-11] i=1.2,....n.

There are self-adjoint /,,, b, € A+ Cl such that u™ = ety "y, (e=itn) (see
Lemma 1.1 of [7]). By lifting ¢ (h,,), ¢(b,) to self-adjoint elements in

(]‘[ Mkn) ® Co(R) + Cl,
n=1 4

where ¢ is the unitization of ¢, we obtain a y-cocycle v™ in ([T52, Mkr,)y ®

Co(R) + C1 such that Q(v™) = u™, where Q is the quotient map. We write
™ = (v,(("’t)), where v,(cn) is a y,-cocycle in My, ® Cy(R) + Cl. By patching

up these v,&") we can construct a y-cocycle w in []o- (M, ® Co(R) + Cl)

such that Q(w,)¢(a) = ¢(u,a) for all a € A (see the proof of 3.6 for de-
tails). Then we conclude that (Ad w,y;)"¢(a) = ¢(Adu,o;(a)), a € A,
where (Ad w;y;)~ is the flow on the quotient induced by Ad w;y;. Since wy; is
given as Uy, (U)* with a unitary U in ]_[f;o:1 M (M, ® Cy(R)), it follows that
(y)" AdQU*¢(a) = Ad Q(U*¢(Adu,a,(a)), a € A. Thus the embed-
ding Ad Q (U*)¢ intertwines Ad u,«; with y; concluding the proof that Ad ucx
is a dual MF flow.

LEmMmaA 3.18. Let « be a flow on a separable C*-algebra A.
(1) If a is an MF flow, then & is a dual MF flow on A x4 R.
(2) If « is a dual MF flow, then & is an MF flow on A x4 R.

ProoF. By Theorem 3.10 if « is an MF flow then there is a continuous
field of flows (A,, @,) over N U {oo} such that A, = M, forn € N and
(Ao, @) = (A, o). Hence by Lemma 3.15 there is a continuous field of flows
(A, Xq, R, @y). Since (A, X4, R, &,) = (M, ® Co(R), y,) one concludes that
(A x4 R, @) is a dual MF flow, where y, is induced from translations.

If « is a dual MF flow then there is a continuous field of flows (B,,, y,,) over
N U {oo} such that B, = My, ® Cy(R) and y,, is induced from translations for
n € Nand (B, Yoo) = (A, ). Then by Lemma 3.15 we obtain a continuous
field of flows (B, x,, R, ¥,). Note that B, x,, R = M;, ® % and y, = id ® Ad A
for n € N. Hence by Proposition 3.5 (and the remark after that) we conclude
that (A x4 R, &) is MF.

PROPOSITION 3.19. Let o be a flow on a separable C*-algebra. Then o is
an MF flow (resp. a dual MF flow) if and only if & is a dual MF flow (resp. an
MF flow).
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PrOOF. The “only if” part is shown in the above lemma. Suppose that & is
a dual MF flow. Then & is an MF flow by the above lemma, i.e., we conclude
that « ® Ad A is an MF flow on A ® J7 by the Takesaki-Takai duality. Hence
a ® id is also an MF flow on A ® J by 3.7; thus « is because A ® e is an
a ® id-invariant C*-subalgebra of A ® J7, where e is a minimal projection in
K.

Suppose that & is an MF flow. Then & = « ® Ad A is a dual MF flow on
A ® J¢. Then one concludes that « is a dual MF flow just as above.

ProOPOSITION 3.20. Let o be a flow on a separable C*-algebra A. Then the
following conditions are equivalent.

(1) «is a dual MF flow.
(2) (A, @) canbe embedded into (([T,2, % ®Co(R)),, /D H, ®Co(R), ),
where F, = JH,y =[] vn, and y, is the flow induced by translations.

PrOOF. (1)=>(2) is easy. Suppose (2). Then one derives that (A x4 R, &)
satisfies the condition (2) in Proposition 3.5 since the crossed product of Cy(R)
by translations is J¢'. Hence & is an MF flow. Thus « is a dual MF flow.

REMARK 3.21. If « is a dual MF flow on A, then A has no non-zero pro-
jections because J7° ® Co(R) has no non-zero projections. In particular A has
no unit. If « is a dual MF flow then no «; # id is approximately inner (i.e., no
sequence of unitaries in A 4+ Cl approximates ¢, by adjoint action).

Here we give some examples. The flow y on J ® Co(R) induced by trans-
lations is not a MF flow (see Example 2.10 in [11]) but of course it is a dual
MF flow. The flow Ad A on J7 is an MF flow but not a dual MF flow. (By
the duality given in 3.19 these two statements are equivalent, giving another
proof of Example 2.10 quoted above.) The identity flow on ¥ ® Cy(R) is both
an MF flow and a dual MF flow. (It is quasi-diagonal. To see that it is a dual
MF flow define an isomorphism ¢ of 7" ® Cy(R) into ]_[zozl Ky ® Co(R) by
¢(f) = (fi, f2,..) with f,(t) = f(t/n) for f € I, @ Co(R) = Co(R, ).
Then ¢ embeds (% ® Co(R), id) into ([T, ® Co(R)/@ I, ® Co(R), y).
From this it follows that id ® id ®y on 7% ® Cy(R) ® Cy(R) is both an MF
flow and a dual MF flow.

4. NF flows

The condition in the following lemma is a flow version of (vi) of Theorem 5.2.2
of [1].

LEMMA 4.1. Let A be a nuclear C*-algebra and a a quasi-diagonal flow on
A. Then for any finite subset & of A and € > 0 there is a flow B on a finite-
dimensional C*-algebra B and completely positive contractions o : A — B
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and t : B — A such that

lx —to(x)]| <€, xXeF,
lo(xy) —o(x)o()ll <€,  x,y€ZF,
”O.at - ﬂt0|l < €, t e [_11 1]

Proor. Since A is nuclear and quasi-diagonal, for any finite subset % and
€ > 0 there is a triple (B, o, 7) which satisfies the first two conditions in the
lemma (see (iv) of Theorem 5.2.2 of [1]). Though this o has nothing to do
with «, one can approximate o by a CP contraction ¢’ : A — B which is
a-covariant, i.e., the representation of A induced by o’ is a-covariant. More
specifically we take a large y > 0 such that

%/ g (x) — x| dt 20, xe€FU(F-F)

where # - &% = {xy | x, y € #} and set

o' = Z/ o, dt.
2

Then it follows that ¢’ is a CP contraction of A into B such that | (x) —
o' (x)|| = 0forx € #F U (F - F). Thus one may assume that o’ also satisfies
the first two conditions. Note ¢’ has the following property: o’a, < e"Vlo”,
i.e., e”¥lo’ —o’a, is CP, which implies that ¢’ is a-covariant. This fact follows
from Lemma 4.2 below, a version of Stinespring’s theorem.

Assume that B acts on a finite-dimensional Hilbert space 7 such that the
commutant of B is abelian. There is a covariant representation (7, U) and an
isometry V from 7 into 7, such that o’(x) = V*m(x)V for x € A. By
adding another covariant representation to (77, U) we may suppose that w x U
is a faithful representation of A x, R. Since « is quasi-diagonal it follows from
Theorem 1.4 of [11] that (w(A), U) is quasi-diagonal. Hence there is a finite-
rank projection F on 7, suchthat F > VV* [F,n(x)] ~ 0 forx € &% and
IILF, Ul = Ofort € [—1, 1]. By Lemma 3.2 applied to the compact operators
H () and F € F (H;) thereis an Ad U-cocycle Z in 7 (#)+Cl C B ()
such that Z, ~ 1 fort € [—1, 1] and [F, Z,;U,] = 0. Define B = FB(#,)F
and B, = Ad(Z,U;) on B; and let oy = Fn(-)F, a CP contraction from
A to Bj. Then since (8,01 — o10)(x) = F{(Ad(Z,U,) — Ad(U,))mt(x)}F
for x € A, we have that ||8;01 — o1;]| = O for t € [—1, 1]. Note also that
o1(xy) = Frn(xy)F =~ Fr(x)Fr(y)F = o1(x)oi(y) for x,y € &%. Let
71(T) = tPg(V*TV), T € B;, where Py is a norm-one projection from
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PB(FHp) onto B. Then t101(x) = tPg(V*Fr(x)FV) = 10'(x) =~ t0(x) for
x € & . Thus one can conclude that (B;, 8, 01, 1) has the required properties.

The following is taken from Section 4 of [11] (see also the proof of Propos-
ition 2 of [10]).

LEMMA 4.2. Let a be a flow on a C*-algebra A and let B be a C*-algebra
acting on Hg and Z a unitary flow on Hp such that t — Ad Z, defines a
flow on B. Let y be a CP contraction from A into B and y > 0 such that
AdZ_ya; < e’y fort € R. Let (r, V) denote the Stinespring pair for v,
i.e.,  is a representation of A and V is an isometry from Hp into #, such
that Y (x) = V*r(x)V, x € A and Pt is cyclic for m(A) with P = VV*,
Then there is a unitary flow U = ' on 9%, such that AdU,m = mwo, and
ILH, Pl < y/2.

Proor. We replace A by the unitization of A and assume ¥ (1) = 1. On
the algebraic tensor product A ® # we define a quasi-inner product by

(x @& y®@n = O0E N0,
and a representation  of A by
T@)x ®E =ax RE.

We define a linear map V from #p into A ® #p by VE = 1 ® &. Then we
obtain the pair (7, V) in the statement by the usual procedure.
We define a linear operator W; on A ® #3 by

Wix®&=o,(x)®ZE.

We compute for a finite sum ¢ = ), x; ® §;

IWI? =) (Yo (57 x) ZiEj, Zi&i)
iJ
<MY (i x)E, &)
iJ
=e""g I,
This implies that W, is a well-defined bounded operator in 7, such that

(W)*W, < e”!"l1. Moreover the family W;, t € R satisfies that W, W, = W,
Wo = 1,t — W, is strongly continuous, and W, (x) = o, (x)W;, x € A.
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Let W, = e/, ie., iL is the generator of W. Since (W,)*W, < el it
follows that for any £ € D(L)

IWENI* — 1€ - (e’ —1)|&1?
lt] - It '

By taking the limits # | O and # 1 0 we derive

—yI§I1? < (L&, &) + (5,iL§) < ylI§I%,

which implies that Z(L*) D P(L) and —y1 < iL —iL* < y1 as a sesqui-
linear form on D(L). Let C be the closure of i (L — L*)/2. Then ||C|| < y/2
and C = C*, and L +iC is a symmetric operator because L+iC = L—L/2+
L*/2 = (L4 L*)/2 on D(L). Since L + iC generates a strongly continuous
one-parameter group of bounded operators, L + i C must be self-adjoint with
D(L*) = D(L).

Since W, (x)W_; = ma;(x), x € A, it follows that (W;)*W; € 7 (A)’ and
hence C € m(A). Let U, = ¢/C+ ! which is a unitary flow implementing
o. We assert that H = L + i C has the required property.

By the definition of W; we deduce W,V = V Z;, which implies that W, P =
VZ,V* is a unitary on P, with P = VV*. Hence W,PW; = P. Since
W, —D)PW+P(W;—1)=W,PW—P = 0,itfollowsthat LP—PL* =0
on D(L). Using H = L +iC = L* — iC we deduce that [H, P] = (L +
iC)P—P(L*—iC)=i(CP+ PC)on D(L). Namely [H, P] is bounded by
ICP + PC]||. On the other hand PW;W, P = P, which implies PCP = 0.
Hence |CP + PC| = ||(1 — P)CP| < y/2.This completes the proof.

We prepare three technical lemmas which can be derived by using standard
techniques which may be found in [4].

LEMMA 4.3. There exists a constant C > 0 satisfying: Let y be a flow on
a C*-algebra A and let 8, be the generator of y. If x € D(8,) is such that
Sp(x*x) C {0} U[1/2, 1] then the partial isometry w obtained from the polar
decomposition of x belongs to D(8,,) and satisfies that ||6, (w)|| < C||5, (x)].

PrOOF. Let f be a C*-function on R with compact support such that
f() =0and f(r) = t72,t € [1/2, 1]. Then w is obtained as xf (x*x).
We use the formula:

fx*x) = / f()e™ ™ dt
where f(1) = 1/27 [ f(s)e™™" ds, to derive f(x*x) € D(8,) and

18, (f (Fe)) I S/Itf([)|dt||8y(X*x)||-
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Thus C = V2 + 2f |tf(t)| dt will do. See Section 3.2.2 of [4] for details.

LEMMA 4.4. There exists a constant C > 0 satisfying: Let y be a flow on
a C*-algebra A. Let p € A be a projection in D(§,) such that §,(p) = 0
and let e € D(8,) be a projection such that ||pe — p|| < 1/8. Then there is
a projection e’ € D(8,) such that pe’ = p, |le — €| < 12||pe — pl|, and
18, ()l < ClI8, @l

PrOOF. Since ||pep — pl|l = ||p(ep — p)|| < 1/8, it follows that Sp(epe) =
{0} U [7/8, 1]. Let w be the partial isometry obtained from the polar decom-
position of pe. Note that |w — p|| < [[w —w]|pelll + ||pe — pll < 2|pe— pll.
Note also, from Lemma 4.3, that [|§, (w)|| < C|§,(e)|l, where C is the
universal constant there. Since ||[(1 — p)(1 — w*w)(1 — p) — (1 — p)|| <
(1 —ww)(1 = p) = A= pl = [lww—wwp| and [|[w*'w — p|| <
[w*(w — p)lIl + [(w* = p)pll = 2|lw — pll < 4llpe — pl|, it follows that the
spectrum of (I — w*w)(1 — p)(1 — ww*) is contained in {0} U [1/2, 1]. Let
w’ be the partial isometry obtained from (1 — p)(1 — w*w) (in A + Clif A
is not unital). Then ||w' — (1 — p)|| < 2|1 — p)A — w*w) — (1 — p)|| <
2lw*w — pw*wl| = ||(1 — p)w*w]| < 4| pe — p||. From Lemma 4.3 it fol-
lows that [|8, (w)|| < ClI8, (w*w)|| < 2C||é,(w)|. We set u = w + w’,
which is a unitary such that lu — 1| < ||lw — p|l + lw' = (1 = p)|| <
6lpe — pll and |18, )| < 18, (w)|l + I8, (w")]| < 2C* + C)|[|8,(e)]|. We
set ¢ = wueu*, which is a projection such that ¢ > wew* = ww* = p.
Note that ||/ — e| = |lueu™ —e|| < 2|ju — 1| < 12||pe — p| and that
18, )l < 2118, @)l + 118, ()| < (4C* 4 2C + 1)[18, (e)||. This completes
the proof.

LEMMA 4.5. Let 7 = J7 () be the compact operators on a Hilbert space
I and H a self-adjoint operator on I which definesaflowy : t — Ad e on
J.. Then the domain D(8,) is the set of operators x € J such that x D(H) C
D(H) and [iH, x] on D(H) extends to a compact operator, which is 8, (x).
If x € J is of finite rank and xD(H) C D(H) and [iH, x] is bounded
on D(H) then the closure of [iH, x] is compact and thus x € D(8,) and
8, (x) =1[iH, x].

PrROOF. Lety; = Ad e on the bounded operators B(J'). Then y is a one-
parameter group of automorphisms of the type I factor B(#) and t — y(Q)
is continuous in the strong operator topology for Q € B(J). Let L be the
generator of y. Then D(L) consists of Q € B(#) suchthat QD(H) C D(H)
and [i H, Q] is bounded on D(H) and if Q € D(L) then L(Q) is the closure
of [i H, Q]. (See Proposition 3.2.55 of [4].) Thus if x € D(8,,) then it follows
that xD(H) C D(H) and [i H, x] on D(H) extends to a compact operator.
Conversely if x € J satisfies the latter conditions, then it follows that ¢ —
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iHe'"" xe~"" ¢ is continuous for & € D(H). Hence if f € L'(R) is such that
f has compact support then the closure of [i H, yy(x)] is equal to

/ fe™iH, x]e " dr,

where yr(x) = f f(@®)y:(x) dt belongs to D(8,) as having compact y-spec-
trum. Since [i H, yr(x)] = 8, (yr(x)) and §, is closed it follows that x € D(§,)
and §, (x) = [iH, x].

Let x € J7 be of finite rank. Since the range V of x is finite-dimensional
and contained in D(H) it follows that H|V is bounded. If (§,) is a bounded
sequence in D(H) then there is a subsequence (£,) of (§,) such that x&,
converges; so i Hx&, converges. Since (xi H,) is a bounded sequence in V
we can choose a subsequence (£,) of (£,) such that xi H§, converges. Thus
[i H, x]& converges and [i H, x] is compact. By the way in general we have
to require [i H, x] to be compact (not just bounded) to ensure x € D(§,).

We will apply Lemma 4.4 to the situation described in Lemma 4.5 in the
proof of the following lemma.

LEMMA 4.6. Let B be a separable nuclear C*-algebra on a Hilbert space
I and U a unitary flow on # such that B D (), t — Ad U, (x) defines a
norm-continuous flow on B. Let a denote the flowon A = B /¢ () induced by
t — Ad U;|B. Thenif (B, U) is quasi-diagonal then (A, @) is quasi-diagonal.

ProoOF. Under the assumption we shall prove the condition (2) of The-
orem 1.5 of [11]. Namely for any finite subset & of A and € > 0 we
shall construct a finite-dimensional C*-algebra D, a flow 8 on D, and a
CP map ¢ of A into D such that ||¢] < 1, [¢(x)|| = (1 — €)|lx|| and
lo()p(y) — )l < elxlllyll for x,y € F, and |8 — poill < €
fort € [—1, 1].

Since (B, U) is quasi-diagonal there is an increasing sequence (P, ) of finite-
rank projections on J# such that lim, P, = 1, ||[P,, a]|| — Oforalla € B,
and ||[P,, H]|| < 27" where H is the self-adjoint generator of U. Note that the
last condition means that P, Y (H) C Y (H) and ||[P,, H]|Z(H)| < 27". Let
Py=0andletHy =Y o2, (P, — P,—1)H(P, — P,_1), which is a well-defined
self-adjoint operator. Since H — Hy on & (H) is compact, we may take the
unitary flow generated by Hj instead of U, which still leaves B invariant and
defines a flow on B dropping to the same flow « on the quotient A = B/ ().
Thus we assume now that [P,, H] = O for all n.

The existence of the above (P,) follows by the following arguments. Sup-
pose that P, was chosen. We have to define P, ;. The main difficulty lies in
finding one strictly bigger than P,. Firstleth = —(1—P,)H P,— P, H(1—P,),
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which is a compact operator with norm less than or equal to ||[[H, P,]||. We
choose a constant C > 0 asin Lemma 4.4. Let € > 0 be sufficiently small and
set 8 = €¢/C. Then we find a sufficiently large finite-rank projection E such
that | P,E — P,|| <6, |hE — h| < /4, |I[H, E]|| < §/2,and ||[E,a]|| <§
for a finite number of a € B prescribed. Note that [H + h, P,] = 0 and
ILH + h, E]|| < 6. By applying Lemma 4.4 to the pair P,, E with the deriva-
tioni[H +h, -]on the compact operators, we obtain a finite-rank projection E’
suchthat P, < E’, ||[E — E'|| < €,and ||[H + h, E']|| < €. Since ||[k, E']|| <
2¢||h|| + |I[k, E]|| < 2€ + 8/2, we deduce that ||[H, E']|| < 3+ 2C) Me.
Thus for a sufficiently small € > 0 we can set P,.| = E’.

Since A is nuclear there is a completely positive (CP) contraction ¢ of A into
B such that Q¢ = id, where Q is the quotient map of B onto A = B/ (¥)
[5]. Let ¢, = Ad U_;¢a; fort € R, which is also a CP map. Since Q¢, = id, it
follows that ¢, (a) — ¢ (a) € (). Since t — ¢, (a) is norm-continuous one
deduces that ||(1 — P,)(¢:(a) — ¢p(a))(1 — P,)|| — 0 as n — oo uniformly
in ¢ on every compact subset of R for all a € A.

Let & be a finite subset of A and € > 0. Let

V= %/e‘“'q&, dt

which is a CP map of A into B such that Qv = id. Sincee~“'lyy < Ad U_, ¥,
< e€ltlyr it follows that || Yo, — Ad U || < el — 1.

Since ¥ (x)y¥ (y) — v (xy) € J(H) there is an N € N such that ||(1 —
Py ()Y () — ¥ (xy)(1 — Py) Il < ellxlllyll/2 forx, y € &. There exists
an n > N such that for any m > n ||[[P,, ¥ (x)]]| < €/4 for x € &. Since
Oy = id we have that ||(1 — P)Y¥(x)(1 — P,)|| > x| for x € A. We
then choose m > n such that |(P, — P)Y (x)(Py — Pl = (1 — €)|lx]|
forx € #.Let E = P, — P,. Since ||[[E, v (x)]|| < €]|x||/2 for x € &, we
obtain that || EY (x) EY (V) E—EY (xy)E|l < €llx[lIyll/2+IEY ()Y (»)E—
Ey(xy)E| < €llx||llyll. By setting D = ERB(H)E, B, = AdU,;|D, and
¢(x) = EY(x)E, x € A, we obtain the desired triple (D, 8, ¢).

The following result is proved by mimicking the proof of Theorem 5.2.2 of
[1].

THEOREM 4.7. Let o be a flow on a separable C*-algebra. Then the following
conditions are equivalent:

(1) (A, a) is obtained as the inductive limit of a x-linear generalized induct-
ive system of flows on finite-dimensional C*-algebras where the coherent
maps are all completely positive contractions.

(2) A is nuclear and a is an MF flow.
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(3) A is nuclear and there is an essential quasi-diagonal extension B of
A by the compact operators J and a unitary flow U € M (J¥') such
that t — Ad U, defines a flow on B, (B, U) is quasi-diagonal, and
O Ad U, = a,Q, where Q is the quotient map of B onto A.

(4) A is nuclear and « is quasi-diagonal.

(5) For any finite subset & of A and € > 0 there is a flow B on a finite-
dimensional C*-algebra B and completely positive contractions o :
A — Bandt : B — A such that

lx — to(x)]| < e, x €%,
loxy) —ox)oW <€,  x,y€F,
”UO[I - ﬂlUH <E€, t e [_17 1]

(6) Aisnuclear andthere is a continuous field of flows (A,,, &) over NU{oo}
such that A,, is finite-dimensional for n € N and (A, 0x) = (A, @).

(7) Aisnuclear andthere is a continuous field of flows (A, a,,) over NU{oo}
such that A, = My, for some k, forn € N and (A, ttoo) = (A, ).

PrOOF. (1)=>(2): That A is nuclear follows from Proposition 5.1.3 of [1]
and that « is an MF flow follows from Theorem 3.10.

(2) = (3): This follows from (2) = (3) of Theorem 3.10.

(3) = (4): This follows from Lemma 4.6.

(4) = (5): This follows from Lemma 4.1.

The equivalences between (2), (6), and (7) follow from those between (2),
(4), and (5) in Theorem 3.10.

It remains to prove (5) = (1). We define a sequence (A,, «;) of flows on
finite-dimensional C*-algebras and sequences of CP contractions 0, : A —
A, and T, : A, — A as follows. Let (x,) be a dense sequence in A. We
choose (A, o;) and CP contractions oy : A — Ajand 1 : A; — A such that
lx1 — o1 (x1)|| < 1/2 and |lo1o; — oy 401]| < 1/2 fort € [—1, 1]. Suppose
that (A, &y, Om, Tyy) 1s defined up to m = n. Let N € N be such that if
[t] < 1/N then |lo;(x) — x| < 27" for all x in the unit ball of 7,(A,). Let
V,, be the finite-dimensional subspace generated by oy, (x) with x € 7,(A,),
k=0,%1,...,£N, and xy with x, y € 7,(A,) and V,,_; U {x,,}. We choose
(Ant1, %nt1, Ongls Toy1) such that

[ = Tur 1041 GO < 27" Hx]l, x eV,
0041 ()0 1(Y) = Gt GV < 27" M xNlllyll,  x,y € Vi,

—n—1
||Gn+1at - an+1,to—n+1” <27 ) re [_17 1]

Note that (V,,) is increasing with dense union in A.
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Let ¢, = oy417: : Ay — A,11, a CP contraction. We can show that
¢, is almost multiplicative on ¢,_1(A,—1) as follows. If x € A,_;, then

¢n (¢n71 (x)¢n7] (x)) is apprOXimately equal to On4+1TnOn (Tnf] (X)Tnfl (Y))
(since o, is approximately multiplicative) and then to

O'n+1(fn—l(x)fn—l()7)) ~ O'n+lfn—l(x)o'n+lfn—l(y) ~ ¢n¢n—1(x)¢n¢n—l(y),

where the error is up to 5 - 27" ||x||||y||. We can show that &, 41 $, — Pnttn,
is almost equal to zero on ¢, (A,—1). If x € A,_; and ¢t € [—1, 1], then

(an+1,t¢n - d’nan,t)d)n—l(x) - (an-i-l,to'n—ﬁ—lfn - Gn+lfnan,t)0nfn—l(x) is ap-
proximately equal to

On+10:TpOpTy—1 ()C) — Op4+1Tn0n0; Ty—| (x)

R Opg 10 Ty (X) — 0pp 104 T (x) =0,

where the errorisup to 6 - 27" || x||.
Now we have the following commutative diagram:

Aq Ay Aj
o| e
A A A

where the arrows represent CP contractions. Hence the upper sequence and
the lower sequence define the same object as Banach spaces (at least). Let

Wm,n = Tn—-10n—-1Tn-20n-2 " " * Tn+10m+1

for n > m, a CP contraction from the m’th A into n’th A. Since (¥, 1 (X)) n>m
is a Cauchy sequence for each x € A we denote the limit by W,, (x). Then (¥,,)
defines a sequence of CP contractions from A into A and satisfies WV, ¥, , =
W, forn > m. Since | J, ¥, (A) is dense in A it follows that the lower sequence
defines A as a Banach space. From the way to define product in the inductive
limit, one concludes that the lower sequence defines A as a C*-algebra. Since
W, 0, (x) converges to o, W, (x) as n — 00, the lower sequence defines
(A, o) as a flow. Then one argues the upper sequence defines (A, ) as well.

We will call @ an NF flow if it satisfies the conditions described in the above
theorem. Since quasi-diagonality is preserved under cocycle perturbations (2.2
of [4]), a cocycle perturbation of an NF flow is also an NF flow.
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5. Strongly quasi-diagonal flows

DEFINITION 5.1. Let A be a C*-algebra and let o be a flow on A. We call
a strongly quasi-diagonal if (w(A), U) is quasi-diagonal for any covariant
representation (m, U).

Note that the C*-algebra A is called strongly quasi-diagonal if w(A) is
quasi-diagonal for any representation 7w of A.

A quasi-diagonal flow need not be strongly quasi-diagonal. If « is an arbit-
rary flow on a quasi-diagonal C*-algebra A, the flow B on B = A ® CJ[O0, 1]
defined by B;(x)(s) = a4 (x(s)) is quasi-diagonal and has (A, «) as a quo-
tient (see Proposition 2.15 of [11]). Hence if (A, «) is not quasi-diagonal then
(B, B) is not strongly quasi-diagonal.

In a similar fashion we can define a notion of strong pseudo-diagonality.
Then it follows that an approximately inner flow on a quasi-diagonal C*-
algebra is strongly pseudo-diagonal (see the proof of Proposition 2.17 of [11]).
But we do not know if they are strongly quasi-diagonal or not.

The following shows the above definition is not empty.

LEMMA 5.2. Let A be a strongly quasi-diagonal C*-algebra. Then the trivial
flow a = id is strongly quasi-diagonal.

ProoF. Let (7, U) be a covariant representation of (A, «), i.e., U is a
unitary flow on 7, such that U, € w(A)’. Let H be the self-adjoint generator
of U and E the spectral measure of H.

Let & be afinite subset of A, let & be a finite subset of #, and lete > 0. We
may suppose that all £ € & belong to E(a, b]%, for some a < b. Let (a;)Y.,
be an increasing sequence in R such that ¢y = a,ay = b, anda; —a;_; < €
fori = 1, 2, ..., N. Let fqi = {E(Cll‘,I, a,-]é | S S {9} Since JT(A)E(CZI‘,I, Cli]
is quasi-diagonal on the subspace #; = E(a;_1, a;]17, there is a finite-rank
operator E; on J; such that ||[E;, 7 (x)E(a;_1, a;]]|| < €||x|| for x € & and
I(E(ai—1,a;] — E)E| < €||&]| for & € G;. Let E = ZlN:] E;, which is a
finite-rank projection on #. Since [E, 7(x)] = Y, E(a;i—1, a;1[E;, w(x)],
we deduce that

IE, 7]l = max |E(ai—1, aillEi, m ()] < ellx]|

forx € #. Since (1 — E)§ = ) .(E(a;i_1, a;] — E;)E(a;_1, a;1§, we deduce
that

11— EYEIP =) I(E(ai-1, ai] — ENE(ai—y, ;)& |* < €)1
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for & € ¥.Since U EU — E = ), E(ai—1, a;](U,E; U} — E;) we deduce
that
IU,EU] — E|| = max | U, E;U;" — E;|| < €]t].
l

This shows that (7 (A), U) is quasi-diagonal.

PrROPOSITION 5.3. Let « be a strongly quasi-diagonal flow on A and let u
be an a-cocycle. Then Ad u« is also strongly quasi-diagonal.

ProOOF. Let (7, U) be a covariant representation of (A, Ad u«). Then t —
Vi = w(u))U; is a unitary flow implementing «. Hence by assumption
(w(A), V) is quasi-diagonal. Then it follows from the proof of Proposition 2.2
of [11] that (7 (A), U) is quasi-diagonal.

COROLLARY 5.4. Let « be a flow on A. Let B be an a-invariant hereditary
C*-subalgebra of A such that B generates A as a closed ideal. Then o is
strongly quasi-diagonal if and only if a| B is strongly quasi-diagonal.

PROOF. Any covariant representation of (B, «| B) extends to a covarint rep-
resentation of (A, o). Hence if (A, «) is strongly quasi-diagonal then so is
(B, @|B).

Suppose that (B, «|B) is strongly quasi-diagonal. Then (B®J/, a| BRid) is
also strongly quasi-diagonal, where J7 is the C*-algebra of compact operators
on a separable infinite-dimensional Hilbert space. If A is separable then (A ®
K, a ® id) is isomorphic to a cocycle perturbation of (B ® J7, «|B ® id).
Thus one concludes that (A, «) is strongly quasi-diagonal in this case. One
can reduce the general case to this case (see the proof of 2.7 of [11]).

PROPOSITION 5.5. Let A be a C*-algebra and let o be a flow on A. Suppose
that there is an increasing sequence (A,) of a-invariant C*-subalgebras of A
with dense union such that A, is strongly quasi-diagonal and the restriction
of o to A, is inner, i.e., «|A, = Ad u, for some unitary flow u in M (A,). Then
o is strongly quasi-diagonal.

PrOOF. Let (7, U) be a covariant representation of (A, o). Then by as-
sumption (7 (A,), U) is quasi-diagonal for any n. Hence (7 (A), U) is also
quasi-diagonal.

COROLLARY 5.6. Any AF flow is strongly quasi-diagonal.

PrOOF. Let o be an AF flow on A. Then A is an AF C*-algebra and there
is an increasing sequence (A,) of finite-dimensional «-invariant C*-algebras
of A with dense union. Since «|A,, is inner and A, is strongly quasi-diagonal
this follows from the above proposition.
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LEMMA 5.7. Let o be a flow on a separable C*-algebra A. Suppose that there
is a sequence (7r;, U') of covariant irreducible representations of (A, ) such
that @, m; is faithful, (7r;) are mutually disjoint, and (1;(A), U') is quasi-
diagonal for all i. Then there is an a-cocyle u and an increasing sequence
(A,) of Ad ua-invariant residually finite-dimensional (RFD) C*-subalgebras
of A with dense union such that 7w;|A,, is equivalent to a direct sum of Ad ua-
covariant finite-dimensional irreducible representations for all i and n.

PrOOF. Let (x;) be a dense sequence of the unit ball of Ay, = {x | x =
x* € A}. Let #; denote the representation Hilbert space for z; and (ék(')) be an
orthonormal basis of 7. Let H; denote the self-adjoint generator of U’ and
€ > 0.

Let Eq; be a finite-rank projection on 7 such that || (1 — Ell)fl(l) | <e€/2,
I[E1, mi(x)]ll < €/2,and |[[En, Hill| < €/2.

Let E{, be the range projection of (1 — E;1)x; Ey;, which is a finite-rank
projection orthogonal to E;;. We apply Kadison’s transitivity theorem to an
operator on the finite-dimensional space (E; + E{,)J to find a y;; € Ay,
such that [|yy;|| = [[E};7w1(x) Eq || < €/2 and

() (En + EY) = Eyymi(x)En + Enm () Ey,.

Note that [E;, 71 (x; — y11)] = 0. Similarly there is an #; € Ag, such that
|hi]| < €/2and [E;, H — m(h;)] =0.Weset y;; =0 fori > 1.

Next we find finite-rank projections E1, in #) and Ey, in 7 such that
En < En, (1= ER)EV|| < e/4and (1 — E)§? | < e/4fori = 1,2,
I[Ew2, m1(xi — yiDlll < €/4 and [|[Ex, m2(x; — yiD)]ll < €/4 fori = 1,2,
and [[Er2, Hy — mi(h)]ll < €/4, and [|[Exn, Hy — m2(h1)]|| < €/4. (Since
[E1, H — m(hy)] = 0, we can impose the strict inequality E;; < Epp
from an approximate one as follows. If Ey; é Ey, let F be the projection
obtained from E, E1; E15 & E1; by continuous functional calculus and define
X =E F+0—-E\)(Ep—F)= Ejpandlet X = VE|; be the polar
decomposition of X. We take V Ej, V* (which dominates E1,) instead of E ;.
Since ||[F, Hi—m1(hy)]|| & Oand ||[X, H; —m;(k1)]|| = 0depending only on
ILE 2, Hy—mi(h)]ll ~ 0, we conclude that [[[V Eio V", Hy — i (h)]ll ~ 0.)
Let E,E’z) be the range projection of (1 — Eyp)my (x; — yi1) Exp fork = 1,2 and
i =1,2. Thereis an y;; € A, fori = 1, 2 such that || y;»|| < €/4 and

7 (i2) (Exa + E;EIZ)) = E}Elz)nk(xi — YiEi + Enm(x; — yil)E;Elz)
for k = 1, 2, where we have used the fact that 7r; and 7, are mutually disjoint.
Note that [E12, w(x1 — y11 — y12)] = Oand [E12, (X2 — y21 — y22)] = 0. Since
w(y12)Err = 0 it also follows that [E;, m(x; — y11 — y12)] = 0. Similarly
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there is an h, € Ay, such that ||hy|| < €/4 and [Eyp, Hy — wp(hy + hy)] =0
for k = 1, 2. Note also that [E;, H] — 71(h; + h2)] = 0. We set y;» = O for
i > 2. Note that we have defined E;; < E, on 4 and E», on 7. We will
set £y =0fork > j.

We repeat this process. After n steps we find y;; € Ay, for1 < j < n and
hi € Asq for 1 < i < n and finite rank projections E;; in #; for1 < j <n
satisfying the following conditions: y;; = 0 fori > j, [ly;;|l <2 /€, Ex; =0
for k > j, (Ey;); is an increasing sequence of finite-rank projections on 7
strongly converging to 1, and

[Ekj,ﬂk<xi _Zyim)] =0, 1<i<y, |:Ekj’ Hy _T[k<zhm>j| =0

m=1 m=1

for k < j < n. Thus by setting y; = x; — > o Yim and h = Y | hy,
we obtain the following equalities: [Ey;, mx(y;)] = 0 fori < j, [Ey;, Hy —
m(h)] = 0, where ||x; — y;|| <27 *!e and ||h|| < e.

Let 8 be the flow generated by 6, — ad ik, where §,, is the generator of «.

Let A; be the B-invariant C*-subalgebra of A generated by yi, ..., y;.
Then A; C A;4+1 and the union of A; is dense in A. Note that Ey; € m(A;)
for j > max{k,i}. Since all E}; are of finite rank and a finite-dimensional
covariant representation is a direct sum of finite-dimensional covariant irre-
ducible representations, one can conclude that 77 |A; is a direct sum of finite-
dimensional covariant irreducible representations for all k, which in particular
implies that A; is residually finite-dimensional.

When « is a flow on a C*-algebra A we denote by FR(«) the set of equi-
valence classes of finite-dimensional «-covariant irreducible representations
of A. Thus « is an RF flow if the intersection of all Ker(xr), 7 € FR(«) is
zero. If ¢ is an injection of (A, @) into (B, B) we denote by ¢'(FR(B)) the
set of # € FR(«) which is obtained as a sub-representation of p¢|A for some
p € FR(B). Suppose that we are given an increasing sequence (A, «,) of RF
flows; we denote by ¢,,, the embedding of A,, into A, for m < n intertwining
o, and o, For each m € Nlet FR), denote the intersection of all ¢/, (FR(xy,))
with n > m. When the intersection of all Ker(r), = € FR,, is zero for all m
we say that the increasing sequence (A, «,) of RF flows is canonical.

LEMMA 5.8. Let (A,, o,) be a canonical increasing sequence of RF flows
and let (A, @) be the inductive limit of (A,, ). There exists a family S of
a-invariant pure states of A such that if ¢ € S then m4|A, is equivalent to
a direct sum of finite-dimensional covariant irreducible representations of A,
forall n € N and such that ®¢es 7y is faithful.
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ProOF. By using the notation before this lemma one finds, for any m and
7 € FR),, a sequence (p,),>m such that p, € FR(c,), pn = 7, and p,41|A,
contains p, as a subrepresentation. Fix a «,-invariant pure state ¢,, of A,,
which induces p,, as a GNS representation. One then finds a ¢, 4;-invariant
pure state ¢,,+1 of A1 which induces p,,,+1 and ¢y, 41|A; = ¢ (Consider
the embedding of C = A,,/Ker p,,41 N A,, into D = A,,1/Ker pp11; dm
is an a,,-invariant pure state on a factor of the finite-dimensional C*-algebra
C. We pick up a factor E of D to which the factor of C is mapped and then
find an «,,-invariant pure state ¢,,; of E, which we regard as a pure state
on A, +1.) By repeating this process we find a sequence (¢,),>, such that
¢, 1s a a,-invariant pure state of A, which induces p, and ¢,|A,—1 = Pu—1.
Thus we can define a state ¢ of A by ¢|A, = ¢,. One concludes that ¢ is
an ¢-invariant pure state. We denote by U the unitary flow on 7, defined by
Uty (x)2p = my (0, (x))24. Note that 7, = m4(A,) 2 is finite-dimensional
and U-invariant. Since (#},) is increasing and the union of all 77, is dense in
JH one concludes that 4| A, is equivalent to a direct sum of covariant finite-
dimensional irreducible representations. Let § denote the set of all ¢ for all
the choices of m, w € FR),. Then the direct sum of 7y is faithful on A, for
any m and thus it is faithful on A.

PROPOSITION 5.9. Let o be a flow on a separable C*-algebra. Then the
following conditions are equivalent:

(1) There exists a faithful family of covariant irreducible representations of
(A, o) which are quasi-diagonal.

(2) There exists an a-cocycle u and a canonical increasing sequence (A, , o)
of RF flows whose inductive limit is isomorphic to (A, Ad ux).

PrOOF. Since A is separable it follows from (1) that there is a countable fam-
ily of covariant irreducible representations; (1) = (2) follows from Lemma 5.7.
The converse follows from Lemma 5.8.

Let A be a unital separable simple quasi-diagonal C*-algebra (e.g., a UHF
algebra) and let & be an approximately inner flow on A whose Connes spec-
trum is the whole R. Then one can apply the above proposition to conclude
that there is a -cocycle u and a canonical increasing sequence (A, o,) of RF
flows whose inductive limit is isomorphic to (A, Ad u«). This is because such a
system has a covariant irreducible representation which induces a faithful rep-
resentation of the crossed product (see [6]) and hence must be quasi-diagonal.
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