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WEIGHTED SPACES OF HOLOMORPHIC FUNCTIONS
ON THE UPPER HALFPLANE

MOHAMMAD ALI ARDALANI and WOLFGANG LUSKY

Abstract
We discuss weighted spaces Hv(G) of holomorphic functions on the upper halfplane G where
v(w) = v(i Im w), w ∈ G, limt→0 v(it) = 0 and v(it) is increasing in t . We characterize those
weights v with moderate growth where Hv(G) is isomorphic to l∞ and we show that this is never
the case if v is bounded.

1. Introduction

Let O ⊂ C be an open subset and v : O → [0, ∞[ a given function. Then we
consider, for f : O → C, the weighted sup-norm

‖f ‖v = sup
z∈O

|f (z)|v(z)

and the spaces

Hv(O) = {f : O → C holomorphic : ‖f ‖v < ∞}
and

Hv0(O) = {f ∈ Hv(O) : |f (z)|v(z) vanishes at ∞}.
(Here |f |v vanishes at ∞ if for any ε > 0 there is a compact subset K ⊂ O

such that |f (z)|v(z) < ε for all z ∈ O \ K .)
Assume that limdist(z,∂O)→0 v(z) = 0, v(z) > 0 for all z ∈ O and v is

continuous. Then, for a holomorphic function f , f ∈ Hv(O) is equivalent
to the growth condition |f (z)| = O(1/v(z)) as dist(z, ∂O) → 0 while f ∈
Hv0(O) is equivalent to |f (z)| = o(1/v(z)) as dist(z, ∂O) → 0.

There is a large number of publications which deal with radial weights v on
D = {z ∈ C : |z| < 1} where v(z) = v(|z|), z ∈ D, and v satisfies in addition
v(t) ≤ v(s) if 0 ≤ s ≤ t < 1 and limt→1 v(t) = 0. Of particular interest here
are weights with moderate decay, i.e. which satisfy the condition (U) of Shields
and Williams ([12], [13], [14]). (U) is equivalent to supn∈N v(1 − 2−n)/v(1 −
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2−n−1) < ∞ (see [4]). In [10] it was shown that for such weights Hv(D) is
isomorphic to l∞ if and only if infk∈N lim supn→∞ v(1−2−n−k)/v(1−2−n) <

1. The latter condition corresponds to condition (L) of Shields and Williams
([4], [12], [13], [14]). It turns out that even without (U) the Banach space
Hv(D) is always isomorphic either to l∞ or to H∞, the space of all bounded
holomorphic functions endowed with the sup-norm ([11]). Weights on D which
satisfy both (U) and (L) are called normal weights. They have been studied
extensively.

Inspired by these results about radial weights on D we consider in this paper
the upper halfplane G = {w ∈ C : Im w > 0} and investigate the following
class of weights.

Definition 1.1. (i) Let v be a continuous function on G satisfying v(w) >

0 for all w ∈ G. Assume that v satisfies

lim
r→0

v(ir) = 0 and v(w1) ≤ v(w2) whenever 0 < Im(w1) ≤ Im(w2).

Then v is called a standard weight.
(ii) A standard weight v on G satisfies condition (�) if

sup
k∈Z

v(2k+1i)

v(2ki)
< ∞.

A standard weight always satisfies v(w) = v(i Im w) for all w ∈ G which
is a consequence of the definition.

In contrast to radial weights on D very little is known about standard weights
v on G. We mention Stanev’s result ([15]) that there exists some b ∈ R with
v(it) ≤ ebt , t > 0, if and only if Hv(G) �= {0}. This is always the case if (�)

holds. Hv0(G) is always isomorphic to a subspace of c0 ([3]). Moreover, if v

is a bounded standard weight on G then Hv0(G) has a Schauder basis ([1]).
Finally, with the methods of [2] one can show that Hv0(G)�� is isometrically
isomorphic to Hv(G) (see [5]). (The results of [1], [3], [5], [15] even hold for
a larger class of weights.)

In our paper we want to contribute to the isomorphic classification of Hv(G)

and Hv0(G). We show

Theorem 1.2. Let v be a standard weight on G satisfying (�). Then the
following are equivalent

(i) Hv(G) is isomorphic to l∞
(ii) Hv0(G) is isomorphic to c0
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(iii) v also satisfies (��):

inf
n∈N

sup
k∈Z

v(2ki)

v(2k+ni)
< 1.

Example. Let β > 0 > γ and put

v1(w) = (Im(w))β,

v2(w) = min(v1(w), 1),

v3(w) =
{

(1 − log(Im(w)))γ if Im(w) ≤ 1

Im w if Im(w) > 1.

All these weights are standard weights. v1 satisfies (�) and (��) while v2 and
v3 satisfy only (�).

We immediately get:

Corollary 1.3. If v is a bounded standard weight on G satisfying (�) then
Hv(G) is never isomorphic to l∞.

The conditions (�) and (��) resemble the conditions for normal radial
weights u on D, see [4], [10], [12], [13], [14] and Lemma 1.6 below. However
if we consider a Möbius transform α : D → G then v ◦ α is non-radial on
D and we do not have lim|z|→1(v ◦ α)(z) = 0. Therefore it is not possible to
derive Theorem 1.2 directly from the corresponding results of radial weights
on D.

The main ingredients of the proof of Theorem 1.2 are the following

Proposition 1.4. Let v be a standard weight on G and put

vn(w) = v

(
4 Im w(∣∣w

n
+ i

∣∣ + ∣∣w
n

− i
∣∣)2 i

)
, w ∈ G,

un(z) = v

(
n

1 − |z|
1 + |z| i

)
, z ∈ D, n ∈ N.

Then vn(w) ↑ v(w), w ∈ G, and Hvn(G) is isometrically isomorphic to
Hun(D). Moreover, un is a radial weight on D such that un(t) is decreasing in
t ∈ [0, 1[.

Proof. We only have to show that Hvn(G) and Hun(D) are isometrically
isomorphic. To this end consider αn : D → G with αn(z) = n(1+z)(1−z)−1i.
Then α−1

n (w) = (w/n− i)(w/n+ i)−1, w ∈ G. We have vn ◦αn = un. Hence
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T : Hvn(G) → Hun(D) with (Tf )(z) = f (αn(z)), z ∈ D, f ∈ Hvn(G), is
an onto-isometry.

Corollary 1.5. Let v be a standard weight on G and let un be the weights
on D of Proposition 1.4. Then Hv(G) is isometrically isomorphic to a comple-
mented subspace of

(∑∞
n=1 ⊕Hun(D)

)
(∞)

.

Proof. In view of Proposition 1.4 it suffices to show that Hv(G) is isomet-
rically isomorphic to a complemented subspace of

(∑∞
n=1 ⊕Hvn(G)

)
(∞)

. To

this end define T : Hv(G) → (∑∞
n=1 ⊕Hvn(G)

)
(∞)

by Tf = (f, f, . . .). T

is an isometry since vn ↑ v.
Now, let (fn) ∈ (∑∞

n=1 ⊕Hvn(G)
)
(∞)

. If K ⊂ G is compact then
infw∈K Im w > 0 and hence c := infn∈N infw∈K vn(w) ≥ infw∈K v1(w) > 0.
This implies supn∈N supw∈K |fn(w)| ≤ c−1 supn ‖fn‖vn

. Fix a free ultrafilter U

on N and put (S(fn))(w) = limn,U fn(w). By Montel’s theorem S(fn) is holo-
morphic. We have ‖S(fn)‖v ≤ supn ‖fn‖vn

in view of Proposition 1.4. Clearly
T S is a contractive projection from

(∑∞
n=1 ⊕Hvn(G)

)
(∞)

onto T Hv(G).

We complete the proof of Theorem 1.2 in Section 4. Before, in Section 2,
we discuss the space Hu(D) for a radial weight u on D and we consider special
subspaces of Hv(G) in Section 3.

Here we prove

Lemma 1.6. Let v be a standard weight on G. Then

(i) a := supk∈Z
v(2k+1i)

v(2k i)
< ∞ if and only if v(ti)

v(si)
≤ c

(
t
s

)β
whenever 0 <

s ≤ t , for some c > 0 and β > 0. In this case we can take c = a2 and
β = log a

log 2 .

(ii) infn∈N supk∈Z
v(2k i)

v(2k+ni)
< 1 if and only if v(ti)

v(si)
≥ d

(
t
s

)γ
whenever 0 < s ≤

t , for some constants d, γ > 0.

Proof. (i) Assume a < ∞. Put β = log a/ log 2. Then fix s, t with 2k ≤
s ≤ 2k+1 and 2n+k ≤ t ≤ 2n+k+1 for some n ∈ N ∪ {0} and k ∈ Z. We obtain

v(ti)

v(si)
≤ an+1 = (2n+1)β =

(
2n+k+2

2k+1

)β

≤ 22β
( t

s

)β = a2
( t

s

)β

.

If v(ti)/v(si) ≤ c(t/s)β whenever 0 < s ≤ t then put t = 2k+1 and s = 2k .
This yields v(2k+1i)/v(2ki) ≤ c2β .

(ii) Assume there is n ∈ N and b ∈ ]0, 1[ with

v(2ki)

v(2k+ni)
≤ b for all k ∈ Z.
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We may take b ≤ 1/2. Otherwise consider mn instead of n for suitable m ∈ N.
Fix 0 < s ≤ t . Then there is k ∈ Z, l ∈ N ∪ {0} with 2kn ≤ s ≤ 2(k+1)n and

2(l+k)n ≤ t ≤ 2(l+k+1)n. Assume l > 1. Then we have

v(si)

v(ti)
≤ v(2(k+1)ni)

v(2(l+k)ni)
≤

(
1

2

)l−1

= 22

(
2kn

2(l+k+1)n

)1/n

≤ 22
( s

t

)1/n

.

If l ≤ 1 then

v(si)

v(ti)
≤ v(2(k+1)ni)

v(2(l+k)ni)
≤ a ≤ 22a

(
2kn

2(l+k+1)n

)1/n

≤ 22a
( s

t

)1/n

.

Put γ = 1/n and d = 1/(4a).
If

v(ti)

v(si)
≥ d

( t

s

)γ

for 0 < s ≤ t

then take n ∈ N such that d2−nγ ≤ 2−1. With s = 2k , t = 2k+n we obtain

v(2ki)

v(2k+ni)
≤ d

1

2nγ
≤ 1

2
for all k ∈ Z.

For two Banach spaces X, Y put

d(X, Y ) = inf{‖T ‖ · ‖T −1‖ : T : X → Y an onto-isomorphism}
provided X and Y are isomorphic (otherwise put d(X, Y ) = ∞). d(X, Y ) is
called the Banach-Mazur distance between X and Y ([17]).

If X ⊂ Y we define

λ(X, Y ) = inf{‖P ‖ : P : Y → X a projection}
and λ(X) = supY⊃X λ(X, Y ). λ(X, Y ) and λ(X) are called the relative and
absolute projection constant of X ([17]). We have λ(X) ≤ d(X, l∞) and
λ(X) = λ(X, l∞) if X ⊂ l∞. This follows from the Hahn-Banach exten-
sion property of l∞ which also shows λ(l∞) = 1. Moreover, using the same
argument, we can replace l∞ by L∞. If Y is another Banach space then
λ(X) ≤ λ(Y )d(X, Y ) ([17]). Finally, if dim X = n it is easily seen that
λ(X) ≤ n. (We even have λ(X) ≤ √

n, [7].)

2. Radial weights on D

Let R > 0. For a function f : R · D → C and 0 ≤ r < R put M∞(f, r) =
sup|z|=r |f (z)|. Using the maximum principle we obtain (e.g., see [11], Lem-
ma 3.1)
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Lemma 2.1. Let 0 < r < s.

(i) If f is a polynomial of degree n then

M∞(f, s) ≤
( s

r

)n

M∞(f, r).

(ii) If g(z) = ∑n
k=m αkz

k then

M∞(g, r) ≤
( r

s

)m

M∞(g, s).

Now let u be a radial weight on D such that u(t) is decreasing in t ∈ [0, 1[
and limt→1 u(t) = 0. Assume

a := sup
n∈N

u(1 − 1/2n)

u(1 − 1/2n+1)
< ∞.

Using induction we find integers m0 = 0 < m1 < m2 < m3 < · · · such that

(2.1)
1

2a
≤ u(1 − 1/2mk+1)

u(1 − 1/2mk )
≤ 1

2

(e.g., let mk+1 be the smallest integer with u(1−2−mk+1)/u(1−2−mk ) ≤ 1/2).
For a harmonic function f (reiϕ) = ∑

k∈Z αkr
|k|eikϕ and n ∈ N put

(Rnf )(reiϕ) =
∑

|k|≤2n

αkr
|k|eikϕ +

∑
2n<|k|<2n+1

αk

2n+1 − |k|
2n

r |k|eikϕ.

Then we obtain

Lemma 2.2.
(i) RnRm = Rmin(m,n) if n �= m.

(ii) M∞(Rnf, r) ≤ 3M∞(f, r) for any n ∈ N and any r > 0.

Proof. (i) follows from the definition. (ii) follows, e.g., from [11], Lem-
ma 3.3.

We need a slightly stronger result than Theorem (i) (d) and (ii) (c) for
holomorphic functions in [10].

Proposition 2.3. Put |||f ||| = supk M∞((Rmk
− Rmk−1)f, 1)u(1 − 2−mk ).

There is a universal constant b > 0, depending only on a, such that

1

96
|||f ||| ≤ ‖f ‖u ≤ b|||f ||| for any f ∈ Hu(D).
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Proof. Fix 0 < r < 1, say 1 − 2−mk−1 ≤ r ≤ 1 − 2−mk . Put fj =
(Rmj

− Rmj−1)f (where Rm−1 = 0) and rj = 1 − 2−mj , j = 0, 1, 2, . . .. Using
Lemma 2.1 and (2.1) we obtain, for j ≤ k,

M∞(fj , r)u(r) ≤ 2aM∞(fj , rk)u(rk)

≤ 2a

(
rk

rj

)2mj +1

u(rk)

u(rj )
M∞(fj , rj )u(rj )

≤ 2ar−2mj +1

j 2j−kM∞(fj , 1)u(rj ).

For l ≥ k we have

M∞(fl, r)u(r) ≤ 2aM∞(fl, rk)u(rk)

≤ 2a

(
rk

rl

)2ml−1
u(rk)

u(rl)
M∞(fl, rl)u(rl)

≤ 2a

(
rk

rl

)2ml−1

(2a)l−kM∞(fl, 1)u(rl).

Put

bk = 2a

(k−1∑
j=1

r−2mj +1

j 2j−k +
∞∑

l=k+1

(
rk

rl

)2ml−1

(2a)l−k

)
.

Then, using the Bernoulli inequality and 1 − x ≤ e−x for x ≥ 0, we obtain

bk ≤ 2a

(k−1∑
j=1

16

2k−j
+

∞∑
l=k+1

2 exp(−2ml−1−mk + (log 2 + log a)(l − k))

)

≤ 32a + 4a

∞∑
l=k+1

exp
(−2l−k−1 + (l − k)(log 2 + log a)

)
.

We see that there is b > 0 depending only on a with bk ≤ b for all k. Since f

as holomorphic function on D has a Taylor series which converges uniformly
on rD̄ we obtain that f = ∑∞

j=1 fj and the series converges uniformly on rD̄.
Hence

M∞(f, r)u(r) ≤
∞∑

j=1

M∞(fj , r)u(r) ≤ b sup
j

M∞(fj , 1)u(rj )
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which implies ‖f ‖u ≤ b|||f |||. The lower estimate follows from

M∞(fj , 1)u(rj ) ≤ r−2mj +1

j M∞(fj , rj )u(rj )

≤ 16 · 6M∞(f, rj )u(rj )

≤ 96‖f ‖u.

For a harmonic function f (reiϕ) = ∑
k∈Z αkr

|k|eikϕ put (Rf )(z) =∑∞
k=0 αkz

k .

Lemma 2.4. For any m, n ∈ N with m ≤ n, any trigonometric polynomial
of the form f (reiϕ) = ∑

m<|k|≤n αkr
|k|eikϕ and any r > 0 we have

M∞(Rf, r) ≤ n

m
M∞(f, r).

Proof. See [11], Lemma 3.3(b).

Proposition 2.5. There are universal constants c1, c2, c3 > 0, depending
only on a, such that for any sequence (mk) with (2.1) we have

c1 sup
k

(mk − mk−1) ≤ λ(Hu(D)) ≤ c2 sup
k

2mk−mk−1 .

Moreover, there is an (into-)isomorphism T : Hu(D) → l∞ with ‖T ‖ ·
‖T −1‖ ≤ c3.

Proof. To prove the left-hand inequality we can assume λ(Hu(D)) < ∞.
Put hu(D) = {f : D → C harmonic : ‖f ‖u < ∞}. Fix ε > 0 and find a
projection P : hu(D) → Hu(D) with ‖P ‖ ≤ (1 + ε)λ(Hu(D)). For |θ | = 1
put (Lθf )(z) = f (θz). Then

(Rf )(z) = 1

2π

∫ 2π

0
(Le−iϕ PLeiϕ f )(z) dϕ

(check the Fourier series of f and Pf ). Hence ‖R‖ ≤ ‖P ‖. This implies
‖R‖ ≤ λ(Hu(D)).

Consider f (z) = ∑∞
k=1 k−1(zk − z̄k). f (eiϕ) is the Fourier series of the

function i(π − ϕ), ϕ ∈ [0, 2π ]. Hence M∞(f, 1) ≤ π . Fix k and assume
mk − mk−1 > 3. Put

g = (Rmk−1 − Rmk−1+1)f

u(1 − 2−mk )
.
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With the norm |||·||| of Proposition 2.3, since

(Rmj
− Rmj−1)(Rmk−1 − Rmk−1+1) =

{
0, j �= k

Rmk−1 − Rmk−1+1, j = k
,

we conclude

|||g||| = M∞(g, 1) ≤ 6M∞(f, 1) ≤ 6π.

Hence ‖g‖u ≤ 6bπ . On the other hand,

‖Rg‖u ≥ 1

96
M∞(Rg, 1)u

(
1 − 1

2mk

)

≥ 1

96

(
(Rmk−1 − Rmk−1+1)Rf

)
(1)

≥ 1

96

2mk−1∑
j=2mk−1+2

1

j

≥ 1

96
(log 2)(mk − mk−1 − 3).

(Here we used (Rg)u(1 − 2−mk ) = (Rmk−1 − Rmk−1+1)Rf .) This implies

log 2

96
(mk − mk−1 − 3) ≤ ‖R‖ · ‖g‖u

≤ 6πbλ(Hu(D)).

If mk − mk−1 ≤ 3 then certainly mk − mk−1 ≤ 3λ(Hu(D)). Altogether we
conclude

sup
k

(mk − mk−1) ≤
(

96

log 2
6πb + 3

)
λ(Hu(D)).

For the right-hand inequality put ‖f ‖k = M∞(f, 1)u(1 − 2−mk ). Then Xk :=
(L∞(∂D), ‖·‖k) is isometric to L∞. Put X = (∑

k ⊕Xk

)
(∞)

. We have d(X, l∞)

< ∞ since d(L∞, l∞) < ∞. Define T : Hu(D) → X by Tf = ((Rmk
−

Rmk−1)f ). Then ‖T ‖ ≤ 96 and ‖T −1‖ ≤ b in view of Proposition 2.3. Define
S : X → Hu(D) by S(gk) = ∑∞

k=1 R(Rmk
−Rmk−1)gk (where the polynomial

R(Rmk
− Rmk−1)gk defined on ∂D is extended naturally to D). We obtain with
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Lemma 2.4 and (2.1)

‖S(gk)‖u ≤ b|||S(gk)|||

≤ b sup
k

(
2mk−mk−1M∞((Rmk

− Rmk−1)gk, 1)

· max

(
u

(
1 − 1

2mk−1

)
, u

(
1 − 1

2mk

)
, u

(
1 − 1

2mk+1

)))

≤ 6ab sup
k

2mk−mk−1 sup
k

‖gk‖k.

Here we used

(Rmj
− Rmj−1)(Rmk

− Rmk−1) = 0 if j �= k − 1, k, k + 1

(see Lemma 2.2(i)).
We have TST = T which is a consequence of the definition of S and T .

Hence TS is a projection from X onto T Hu(D). We conclude

λ(Hu(D)) ≤ 96b λ(T Hu(D))

≤ 96b d(L∞, l∞)λ(T Hu(D), X)

≤ 96b d(L∞, l∞)‖TS‖
≤ 6 · 96ab2 d(L∞, l∞) sup

k

2mk−mk−1 .

3. A special subspace of Hv(G)

Let v be a standard weight on G and assume there are constants c > 0 and
β > 0 with

(3.1)
v(ti)

v(si)
≤ c

( t

s

)β

whenever 0 < s ≤ t.

By perhaps increasing β we may assume that β is an even integer. We consider
the subspace

Uv = {
f ∈ Hv(G) : w2βf (w) = f

(− 1
w

)
, w ∈ G

}
.

Note that any f ∈ Hv(G) has a representation of the form

f (w) =
∞∑

k=0

αk

1

(w + i)2β

(
w − i

w + i

)k
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where the series converges uniformly on compact subsets of G. (Apply the
Möbius transform α(z) = (1+z)(1−z)−1i where α−1(w) = (w−i)(w+i)−1.
The function 22β(1 − z)−2βf (α(z)) is holomorphic on D. Hence f (α(z)) =∑∞

k=0 αk2−2β(1 − z)2βzk for some αk which yields the above representation.)
It can be shown that Uv consists of the functions f ∈ Hv(G) with

f (w) =
∞∑

k=0

αk

1

(w + i)2β

(
w − i

w + i

)2k

for some αk . For example, it is easily seen that (w+i)−2β(w−i)2k(w+i)−2k ∈
Uv for all k ∈ N ∪ {0} (in view of (3.1)).

Proposition 3.1. Let

u(z) = v

(
1 − |z|
1 + |z| i

)
, z ∈ D.

Then d(Uv, Hu(D)) ≤ 23βc3 where c is the constant in (3.1).

Proof. Put ṽ(w) = (w + i)−2βv(w). Then

ṽ(w)

ṽ(−1/w)
= v(w)

|w|2βv(−1/w)
≤ c if |w| ≥ 1

in view of (3.1). Define T : Uv → Hṽ(G) by (Tf )(w) = (w+i)2βf (w). Then
T is an isometry onto {g ∈ Hṽ(G) : g(w) = g(−1/w), w ∈ G}. For any g ∈
T Uv and w ∈ G with |w| ≥ 1 we have |g(w)|ṽ(w) ≤ |g(−1/w)|ṽ(−1/w)c.
Hence

(3.2) ‖g‖ṽ ≤ c sup
w∈G,|w|≤1

|g(w)|ṽ(w).

We use the Möbius transform α : D → G with α(z) = (1+ z)(1− z)−1i. Here
|α(z)| ≤ 1 is equivalent to Re z ≤ 0. We have, for z ∈ D,

Im α(−|z|) = 1 − |z|
1 + |z| ≤ 1 − |z|2

|1 − z|2 = Im α(z).

Hence,

(3.3)
1

c
ṽ(α(z)) ≤ v(α(−|z|)) = u(z) ≤ 2β ṽ(α(z)) if Re z ≤ 0.

Indeed, in view of (3.1),

ṽ(α(z))

v(α(−|z|)) ≤ c

(
1 − |z|2
|1 − z|2

)β (
1 + |z|
1 − |z|

)β |1 − z|2β

22β
≤ c.
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On the other hand,

v(α(−|z|)) ≤ v(α(z)) = ṽ(α(z))
22β

|1 − z|2β
≤ ṽ(α(z))2β

since Re z ≤ 0. This shows (3.3).
Put X = {h ∈ Hu(D) : h(z) = h(−z), z ∈ D}. (3.2) and (3.3) imply

(3.4) d(Uv, X) ≤ 2βc2.

Now, for h ∈ Hu(D) let (Sh)(z) = h(z2). Then, by (3.1),

|(Sh)(z)|u(z) = |h(z2)|v(α(−|z|2)) v(α(−|z|))
v(α(−|z|2)) ≤ ‖h‖u

since
Im α(−|z|) = 1 − |z|

1 + |z| ≤ 1 − |z|2
1 + |z|2 = Im α(−|z|2).

Hence Sh ∈ X.
Conversely, if h ∈ X then h(z) = k(z2) for some holomorphic function

k : D → C. Hence S−1h = k. We have, with z = z2
0

|(S−1h)(z)|u(z) = |k(z2
0)|u(z) = |h(z0)|u(z0)

u(z)

u(z0)

≤ ‖h‖u

v(α(−|z0|2)
v(α(−|z0|))

≤ ‖h‖uc

(
1 − |z0|2
1 + |z0|2

)β (
1 + |z0|
1 − |z0|

)β

≤ c22β‖h‖u.

Hence d(X, Hu(D)) ≤ c22β . This together with (3.4) implies the proposition.

We show next that Uv is complemented in Hv(G).

Proposition 3.2. There is a constant d which depends only on β and c such
that

λ(Uv, Hv(G)) ≤ d.

Proof. Let wk , k = 1, . . . , β, be the zeros of w2β + 1 in G, i.e. wk =
exp(i(2k − 1)(2β)−1π). Then Im wk ≥ sin((2β)−1π) for all k. Let Ok be the
open disc with center wk and radius

r := min

(
sin(π/(2β))

2
, min

{ |wk − wj |
2

: k, j = 1, . . . , β, k �= j

})
.
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Then the Ok are mutually disjoint. Finally let δ = inf
{|w2β + 1| : w ∈

G \ ⋃β

k=1 Ok

}
. Put

V = {f ∈ Hv(G) : f (wk) = 0, k = 1, . . . , β}.
Then V is β-codimensional in Hv(G) and the codimension of Uv ∩ V in Uv

is ≤ β. For f ∈ V put

(Tf )(w) = 1

w2β + 1

(
f (w) + f

(
− 1

w

))
.

Then Tf is holomorphic. This follows from the fact that −1/wk is a zero of
w2β + 1 in G for all k, too. We claim Tf ∈ Uv . Indeed, (3.1) implies

(3.5)
v(w)

v(−1/w)
≤

{
1, |w| ≤ 1

c|w|2β, |w| ≥ 1.

Consider w ∈ G with |w| ≥ 2. Then, in view of (3.5),

|(Tf )(w)|v(w) ≤ 1

22β − 1
‖f ‖v + v(w)

|w2β + 1|v(−1/w)

∣∣∣∣f
(−1

w

)∣∣∣∣v
(−1

w

)

≤ 22βc + 1

22β − 1
‖f ‖v.

Next, let w ∈ G\⋃β

k=1 Ok such that |w| ≤ 2. Then |(Tf )(w)|v(w) ≤ δ−1(1+
c22β)‖f ‖v . (Again, we used (3.5).) Finally, let w ∈ ⋃β

k=1 Ok , say w ∈ Oj .
Since Tf is holomorphic, by the maximum principle, there is w0 ∈ ∂Oj with
|(Tf )w)| ≤ |(Tf )(w0)|. Hence, with (3.1),

|(Tf )(w)|v(w) ≤ v(w)

v(w0)
|(Tf )(w0)|v(w0)

≤ v(Im wj + r)

v(Im wj − r)
|(Tf )(w0)|v(w0)

≤ 1

δ
(1 + 22βc)c

(
Im wj + r

Im wj − r

)β

‖f ‖v

≤ 1

δ
(1 + 22βc)c

( 3
2 sin

(
π
2β

)
1
2 sin

(
π
2β

))β

‖f ‖v

= 3β

δ
c(1 + 22βc)‖f ‖v.
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Thus

(3.6) ‖Tf ‖v ≤ max

(
22βc + 1

22β − 1
,

3β

δ
c(1 + 22βc)

)
‖f ‖v.

Clearly, w2β(Tf )(w) = (Tf )(−1/w) which shows Tf ∈ Uv . If f ∈ Uv ∩ V

then Tf = f .
Let Q1 : Uv → Uv ∩ V and Q2 : Hv(G) → V be projections with

‖Qj‖ ≤ β, j = 1, 2. Then Q1T Q2 is a projection from Hv(G) onto Uv ∩ V

and dim (id − Q1T Q2)Uv ≤ β. Hence we find a projection Q3 : Hv(G) →
(id − Q1T Q2)Uv with ‖Q3‖ ≤ β. Finally put

P = Q3(id − Q1T Q2) + Q1T Q2.

Then P is a projection from Hv(G) onto Uv with ‖P ‖ ≤ β(1 + β2‖T ‖) +
β2‖T ‖. This together with (3.6) completes the proof of Proposition 3.2.

4. Proof of Theorem 1.2

Consider a standard weight v on G satisfying (�). Put

un(z) = v

(
n

1 − |z|
1 + |z| i

)
, z ∈ D, n ∈ N,

and assume

an := sup
j∈N

un(1 − 2−j )

un(1 − 2−j−1)
< ∞ for each n.

Fix integers 0 = mn,0 < mn,1 < mn,2 < · · · with

1

2an

≤ un(1 − 2−mn,k+1)

un(1 − 2−mn,k )
≤ 1

2
.

Then we have

Lemma 4.1.
(i) v satisfies (�) if and only if supn an < ∞.

(ii) Let v satisfy (�).

Then v also satisfies (��) if and only if supn supk(mn,k − mn,k−1) < ∞.

Proof. (i) Fix n ∈ N. Let m ∈ N ∪ {0} such that 2m ≤ n ≤ 2m+1. Then we
have

un(1 − 2−j )

un(1 − 2−j−1)
= v(n(2j+1 − 1)−1i)

v(n(2j+2 − 1)−1i)
≤ v(2m−j+1i)

v(2m−j−2i)
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and
un(1 − 2−j+1)

un(1 − 2−j−2)
= v(n(2j − 1)−1i)

v(n(2j+3 − 1)−1i)
≥ v(2m−j i)

v(2m−j−1i)
.

From this we infer (i).
(ii) Assume (��). Then there is j ∈ N with

b := sup
k∈Z

v(2ki)

v(2k+j i)
< 1.

We can assume b ≤ 1/2, otherwise take lj instead of j for suitable l ∈ N.
Hence if n ∈ N and 2m ≤ n ≤ 2m+1 then

un(1 − 2−l−j−2)

un(1 − 2−l)
= v(n(2l+j+3 − 1)−1i)

v(n(2l+1 − 1)−1i)
≤ v(2m−l−1−j i)

v(2m−l−1i)
≤ b ≤ 1

2

for all l ∈ N. From this we obtain supk(mn,k − mn,k−1) ≤ j + 2.
Now assume supn supk(mn,k − mn,k−1) < ∞. A simple calculation shows

that there is j ∈ N with

un(1 − 2−l−j )

un(1 − 2−l)
≤ 1

2
for all l, n ∈ N.

Hence

sup
l,n

v
(

n
2l+j+1−1 i

)
v

(
n

2l+1−1 i
) ≤ 1

2

and we easily infer from this condition (��).

Conclusion of the proof of Theorem 1.2. Let Hv(G) be isomorphic
to l∞. Consider the standard weights ṽn(w) = v(nw), n ∈ N. Define Tn :
Hv(G) → Hṽn(G) by (Tnf )(w) = f (nw), w ∈ G. The Tn are onto-
isometries. (�) implies

sup
n∈N

sup
k∈Z

ṽn(2k+1i)

ṽn(2ki)
< ∞.

Hence, by Lemma 1.6 there are constants c, β > 0 with

ṽn(ti)

ṽn(si)
≤ c

( t

s

)β

whenever 0 < s ≤ t for all n ∈ N.

Consider the spaces Uṽn
⊂ Hṽn(G). According to Proposition 3.1 and Propos-

ition 3.2 we have

sup
n

λ(Uṽn
, H ṽn(G)) < ∞ and sup

n

d(Uṽn
, Hun(D)) < ∞.
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Since d(H ṽn(G), l∞) = d(Hv(G), l∞) we conclude supn λ(Uṽn
) < ∞ and

hence supn λ(Hun(D)) < ∞. Proposition 2.5 then shows supk,n(mn,k −
mn,k−1) < ∞. By Lemma 4.1, v satisfies (��).

Now assume (��). With Lemma 4.1 and Proposition 2.5 we see that
supn λ(Hun(D)) < ∞. Hence

(∑
n ⊕Hun(D)

)
(∞)

is isomorphic to a com-
plemented subspace of l∞. In view of Corollary 1.5 Hv(G) is isomorphic to
a complemented subspace of l∞. Hence d(Hv(G), l∞) < ∞ (see [9], The-
orem 2.a.7).

It is known that Hv0(G)∗∗ is isomorphic to Hv(G) ([2], [5]). Hence if
Hv0(G) is isomorphic to c0 then Hv(G) is isomorphic to l∞.

Conversely, if Hv(G) is isomorphic to l∞ then Hv0(G) is a L∞−space ([8]).
Hv0(G) is always isomorphic to a subspace of c0 ([3]). By [6] this means that
Hv0(G) is isomorphic to c0.

Concluding remarks. It is known that, for any radial decreasing weight
u on D, the space Hu(D) is either isomorphic to l∞ or to H∞, the space of all
bounded holomorphic functions on D (with the sup-norm), see [11]. It is very
likely that, for a standard weight v on G which satisfies (�) but not (��), the
space Hv(G) is isomorphic to H∞, too. Even without condition (�) there might
be only two isomorphism classes for Hv(G), namely l∞ and H∞. However,
we mention again that in any case v must satisfy v(ti) ≤ ebt , t > 0, for some
constant b ∈ R. (This is always the case if (�) holds.) Otherwise, according to
[15], Hv(G) = {0}.
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