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OPERATOR SYSTEM QUOTIENTS OF MATRIX
ALGEBRAS AND THEIR TENSOR

PRODUCTS

DOUGLAS FARENICK and VERN I. PAULSEN

Abstract
If φ : S → T is a completely positive (cp) linear map of operator systems and if J = ker φ,
then the quotient vector space S/J may be endowed with a matricial ordering through which
S/J has the structure of an operator system. Furthermore, there is a uniquely determined cp map
φ̇ : S/J → T such that φ = φ̇ ◦ q, where q is the canonical linear map of S onto S/J . The
cp map φ is called a complete quotient map if φ̇ is a complete order isomorphism between the
operator systems S/J and T . Herein we study certain quotient maps in the cases where S is a
full matrix algebra or a full subsystem of tridiagonal matrices.

Our study of operator system quotients of matrix algebras and tensor products has applica-
tions to operator algebra theory. In particular, we give a new, simple proof of Kirchberg’s Theorem
C∗(F∞)⊗min B(H ) = C∗(F∞)⊗max B(H ), show that an affirmative solution to the Connes Em-
bedding Problem is implied by various matrix-theoretic problems, and give a new characterisation
of unital C∗-algebras that have the weak expectation property.

Introduction

The C∗-algebra B(H ) of bounded linear operators acting on a Hilbert space H

and the group C∗-algebra C∗(F∞) of the free group F∞with countably infinitely
many generators are both universal objects in operator algebra theory. There-
fore, it is a remarkable fact that C∗(F∞)⊗min B(H ) = C∗(F∞)⊗max B(H ),
which is a well known and important theorem of Kirchberg [12, Corollary 1.2].
Kirchberg’s proof was achieved by first showing that the C∗-algebra C∗(F∞)
has the lifting property [12, Lemma 3.3] and by then invoking his theorem [12,
Theorem 1.1] that states A ⊗min B(H ) = A ⊗max B(H ) for every separable
unital C∗-algebra A that has the lifting property. A more direct proof of Kirch-
berg’s theorem on the uniqueness of the C∗-norm for C∗(F∞) ⊗ B(H ) was
later found by Pisier [17], [18, Chapter 13] using a mix of operator algebra and
operator space theory. Boca [3] made a further extension, replacing C∗(F∞)
with a free product of C∗-algebras Ai in which each of the maps idAi

is locally
liftable. An exposition of the results of Kirchberg and Pisier can be found in
[13].
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One of our main results in this paper is a new proof of Kirchberg’s theorem
(see Corollary 3.3), obtained herein by reducing Kirchberg’s theorem to the
verification of a certain property (Theorem 3.2) of a finite-dimensional quotient
operator system Wn whose C∗-envelope is C∗(Fn−1).

Our study of operator system quotients of the matrix algebra Mn and of
the full operator subsystem Tn ⊆ Mn of tridiagonal matrices (full in the
sense that C∗(Tn) = Mn) allows us to formulate matrix-theoretic questions
in Section §5 whose resolution in the affirmative would result in a solution to
the Connes Embedding Problem. Our approach to this is by way of another
celebrated theorem of Kirchberg [11, Proposition 8]: C∗(F∞)⊗min C∗(F∞) =
C∗(F∞)⊗max C∗(F∞) if and only if every separable II1-factor can be embedded
as a subfactor of the ultrapower of the hyperfinite II1-factor. It is of course an
open problem whether these equivalent statements are true. The problem of
whether or not C∗(F∞)⊗min C∗(F∞) = C∗(F∞)⊗max C∗(F∞) is known as the
Kirchberg Problem, while the latter problem involving separable II1-factors is
the Connes Embedding Problem.

The methods we use in this paper draw upon recent work of the second
author and others [10], [9], [16] on matricially ordered vector spaces, tensor
products of operator systems, and quotients of operator systems.

An operator system is a triple consisting of: (i) all ∗-vector spaces Mn(S ) of
n×nmatrices over a fixed ∗-vector space S ; (ii) distinguished cones Mn(S )+
in Mn(S ) that give rise to a matricial ordering of S ; and (iii) a distinguished
element e ∈ S which is an Archimedean order unit. The axioms for operator
systems are given in [5], [14], and so we will not repeat them here. However,
recall a very important and fundamental fact [5]: every operator system S

arises as an operator subsystem of B(H ), for some Hilbert space H . This
result is known as the Choi-Effros Theorem.

Two important C∗-algebras that arise in connection with a given operator
system S are the C∗-envelope C∗e(S ) and the injective envelope I (S ) of
S . The latter algebra I (S ) is very large (usually nonseparable) and there
exist embeddings so that S ⊆ C∗e (S ) ⊆ I (S ) and such that C∗e(S ) is the
C∗-subalgebra of I (S ) generated by S . These are “enveloping” algebras in
the sense that C∗e(S ) is a quotient of every C∗-algebra generated by (a copy
of) S and I (S ) rigidly contains S , which is to say that if a linear unital
completely positive (ucp) map ω : I (S )→ I (S ) satisfies ω|S = idS , then
necessarily ω = idI (S ). See [14, Chapter 15] for further details on C∗- and
injective envelopes.

In contrast to progress on tensor products and quotients in operator space
theory (see [18], for example), an analogous theory in the category of operator
systems is only now emerging. In §1 we review those aspects of the theory
that are required for our work herein. In Sections §2 and §4 we study certain
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quotient operator systems that arise from quotients of operator systems of finite
matrices, and in Sections §3 and §5 we consider tensor products of these quo-
tients and obtain the earlier mentioned applications to Kirchberg’s Theorem
and the Connes Embedding Problem. In Section §6 we use complete quo-
tient maps to characterise unital C∗-algebras that possess the weak expectation
property (WEP), and in §7 the injective envelope of C∗(Fn) is determined.

1. Tensor Products, Quotients, and Duals of Operator Systems:
A Review

In this section we review some of the fundamental facts, established in [10],
[9], concerning tensor products, quotients, and duals of operator systems, and
introduce the notion of a complete quotient map.

Some basic notation: (i) the Archimedean order unit e of an operator system
S is generally denoted by 1, but we will sometimes revert to the use of e
in cases where the order unit is not canonically given (for example, when
considering duals of operator systems); (ii) for a linear map φ : S → T , the
map φ(n) : Mn(S ) → Mn(T ) is defined by φ(n)([xij ]i,j ) = [φ(xij )]i,j ; (iii)
for any operator systems S and T , S ⊗T shall denote their algebraic tensor
product.

1.1. Quotients of operator systems

Assume that S is an operator system and that J ⊂ S is norm-closed ∗-
subspace that does not contain 1S . Let q : S → S/J denote the canonical
linear map of S onto the vector space S/J . The vector space S/J has an
induced involution defined by q(X)∗ = q(X∗).

We will denote elements of S by uppercase letters, such asX, and elements
of S/J by lowercase letters, as in x = q(X), or by “dots” as in Ẋ = q(X).

For each n ∈ N, there is a linear isomorphism

(S/J )⊗Mn
∼= (S ⊗Mn)/(J ⊗Mn).

The canonical linear surjection S⊗Mn→ (S⊗Mn)/(J⊗Mn) is denoted by
q(n) and we shall view q(n)(X) as ann×nmatrix x = Ẋ of Ẋij ∈ S/J , thereby
identifying (S/J )⊗Mn with Mn(S/J ). Further, each matrix space Mn(S/J )

is an involutive vector space under the involution h = [hij ]1≤i,j≤n �→ h∗ =
[h∗ji]1≤i,j≤n. The real vector space of hermitian (or selfadjoint elements) is
denoted by Mn(S/J )sa.

Consider the subset Dn(S/J ) of Mn(S/J )sa defined by

Dn(S/J ) = {Ḣ : ∃K ∈Mn(J )sa such that H +K ∈Mn(S )+}.
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The collection {Dn(S/J )}n∈N is a family of cones that endow S/J with the
structure of a matricially ordered space. However, this ordering will not be an
operator system on S/J in general.

Definition 1.1. A subspace J ⊂ S is a kernel if there are an operator
system T and a completely positive linear map φ : S → T such that J =
ker φ.

If J ⊂ S is a kernel, then define a subset Cn(S/J ) ⊂Mn(S/J )sa by

Cn(S/J ) = {Ḣ : ∀ ε > 0 ∃Kε ∈Mn(J )sa

such that ε1+H +Kε ∈Mn(S )+}.
That is,

Cn(S/J ) = {Ḣ : ε1̇+ Ḣ ∈ Dn(S/J ),∀ ε > 0}.
The collection {Cn(S/J )}n∈N is a family of cones that endow S/J with the
structure of an operator system with (Archimedean) order unit 1̇ = q(1).

Definition 1.2. The operator system (S/J , {Cn(S/J )}n∈N, q(1)) is cal-
led a quotient operator system.

The first basic result concerning quotient operator systems is the First Iso-
morphism Theorem [9, Proposition 3.6].

Theorem 1.3 (First Isomorphism Theorem). If φ : S → T is a nonzero
completely positive linear map, then there is a unique completely positive
linear map φ̇ : S / ker φ→ T such that φ = φ̇ ◦ q.

Associated with Dn(S/J ) and Cn(S/J ) are the subsets Dn(S/J ) and
Cn(S/J ) of (S ⊗Mn)sa defined by

Dn(S/J ) = q−1
n (Dn(S/J )) and Cn(S/J ) = q−1

n (Cn(S/J )).

Clearly Dn(S/J ) ⊆ Cn(S/J ). Examples in which the inclusion
Dn(S/J ) ⊆ Cn(S/J ) is proper are given in [9].

Definition 1.4. A kernel J ⊂ S is completely order proximinal if
Dn(S/J ) = Cn(S/J ), for every n ∈ N.

This notion of a completely order proximinal kernel will be of importance
for the quotient operator systems we study in later sections.

Example 1.5. If A is a unital C∗-algebra and if J ⊂ A is the kernel of a
∗-homomorphism, then J is completely order proximinal and

((A/J )⊗Mn)+ = Dn(A/J ) = Cn(A/J ), for all n ∈ N.



214 douglas farenick and vern i. paulsen

Proof. Let J = ker π , where π is a ∗-homomorphism which, without
loss of generality, we assume to be unital. Note that Dn(A/J ) is precisely
the positive cone (A ⊗Mn)+ of the quotient C∗-algebra A/J . Because any
positive element h = Ḣ of (A/J )⊗Mn

∼= (A ⊗Mn)/(J ⊗Mn) lifts to an
element of the form H +K , where K ∈ J ⊗Mn and H ∈ (A ⊗Mn)+,

Dn(A/J ) = {H +K : H ∈ (A ⊗Mn)+,K ∈ (J ⊗Mn)sa}.
Suppose now thatH ∈ Cn(A/J ). Then, for every ε > 0, ε1+H ∈ Dn(A/J )

and so every εqn(1) + qn(H) = ε1̇ + h is positive in (A/J ) ⊗Mn. But as
1̇ ∈ A/J is an Archimedean order unit for the quotient C∗-algebra A/J ,
ε1̇ + h is positive for all ε > 0 only if h is positive, which is to say that
H ∈ Dn(A/J ).

The proof above shows that, in the case of C∗-agebras A and ideals J ⊂ A ,
Dn(A/J ) = Cn(A/J ) for every n ∈ N. This in fact leads to the following
useful criterion for completely order proximinal kernels in operator systems.

Proposition 1.6. Let J be a kernel in an operator system S . Then

(1) Dn(S/J ) =Mn(J )+Mn(S )+,

(2) Cn(S/J ) is the norm closure of Mn(J )+Mn(S )+, and

(3) J is completely order proximinal if and only if Mn(J ) +Mn(S )+ is
closed for every n ∈ N.

Proof. The first statement is obvious. To see the second statement, first
note that Cn(S/J ) = {H : ∀ε > 0, ε1 + H ∈ Dn(S/J )} = {H : ∀ε >
0, ε1+H ∈Mn(S )++Mn(J )}. Thus, ifH ∈ Cn(S/J ) then for every ε > 0
there exist Pε ∈ Mn(S )+ and Kε ∈ Mn(J ), such that ε1 + H = Pε + Kε
and it follows that H is in the norm closure of Mn(S )+ +Mn(J ).

For the converse it is sufficient to assume that H = H ∗ is in the closure of
Mn(S )+ +Mn(J )sa and prove that ε1+H ∈Mn(S )+ +Mn(J ) for every
ε > 0. Since H is in the closure and Mn(J )

∗ = Mn(J ), for every ε > 0 we
may choosePε ∈Mn(S )+ andKε ∈Mn(J )sa such that ‖H−(Pε+Kε)‖ < ε.
This implies thatQε = ε1+H − Pε −Kε ∈Mn(S )+, and hence ε1+H =
(Qε + Pε)+Kε ∈Mn(S )+ +Mn(J ). This proves the second statement.

The third statement follows by combining the first and second statements.

1.2. Definitions: complete quotient maps and complete order injections

Definition 1.7. A linear map φ : S → T of operator systems is a complete
order isomorphism if

(1) φ is a linear isomorphism and

(2) φ and φ−1 are completely positive.
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Definition 1.8. A linear map φ : S → T of operator systems is a
complete order injection, or a coi map, if φ is a complete order isomorphism
between S and the operator system φ(S ) with order unit φ(1S ).

Definition 1.9. A completely positive linear map φ : S → T of operator
systems is a complete quotient map if the uniquely determined completely
positive linear map φ̇ : S / ker φ→ T is a complete order isomorphism.

A basic fact about complete quotient maps that we shall use repeatedly is:

Proposition 1.10. If φ : S → T is a complete quotient map and if ker φ
is completely order proximinal, then φ(n) maps Mn(S )+ onto Mn(T )+, for
every n ∈ N.

The next fact is also basic.

Proposition 1.11. If T is an operator subsystem of S , and if J is a
kernel such that J ⊂ T ⊆ S , then there is a complete order embedding
T/J → S/J .

1.3. Tensor products of operator systems

1.3.1. The minimal tensor product. The matricial state space of an operator
system S is the set

S∞(S ) =
⋃
n∈N

Sn(S ), where Sn(S ) = {all ucp maps S →Mn}.

For every p ∈ N, let

Cmin
p (S ,T ) = {x ∈Mp(S ⊗T ) : (φ ⊗ ψ)(p)(x) ∈Mp(Mk ⊗Mm)+,

∀ (φ, ψ) ∈ Sk(S )× Sm(T ),∀ (k,m) ∈ N× N}.
The collection {Cmin

p (S ,T )}p∈N induces an operator system structure on S ⊗
T with order unit 1S ⊗1T . The operator system that arises from this matricial
order structure is denoted by S⊗minT and is called the minimal tensor product
of S and T .

1.3.2. The maximal tensor product. Let Dmax
p (S ,T ) ⊂Mp(S ⊗T ) denote

the subset of all elements of the form

α(s ⊗ t)α∗,where s ∈Mk(S )+, t ∈Mm(T )+, α : Ck ⊗ Cm→ Cp is linear.

For every p ∈ N, let

Cmax
p (S ,T ) = {h ∈Mp(S ⊗T ) : ε1Mp

+ h ∈ Dmax
p (S ,T ) for all ε > 0}.
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The collection {Cmax
p (S ,T )}p∈N induces an operator system structure on S ⊗

T with order unit 1S ⊗1T . The operator system that arises from this matricial
order structure is denoted by S ⊗max T and is called the maximal tensor
product of S and T .

Proposition 1.12. Ifφ : S → T is a complete quotient map, thenφ⊗idR :
S ⊗max R → T ⊗max R is a complete quotient map for every operator system
R.

Proof. Let J = ker φ. Because φ̇ : S/J → T is a complete order
isomorphism, so is φ̇⊗idR : (S/J )⊗max R → T ⊗max R. Therefore, φ⊗idR

is a complete quotient map if (S ⊗max R)/ ker(φ⊗ idR) and (S/J )⊗max R

are completely order isomorphic.
Let q̃ : S⊗max R → (S⊗max R)/ ker(φ⊗idR) be the canonical surjective

cp map and define a bilinear map

σ : (S/J )×R → (S ⊗max R)/ ker(φ ⊗ idR)

by σ(x, y) = q̃(X ⊗ y), where X ∈ S is any element for which q(X) = x.
Note that σ is well defined. Furthermore, σ is jointly completely positive
and “unital”, and so by the universal property of the max tensor product [10,
Theorem 5.8], there is a ucp extension σ : (S/J ) ⊗max R → (S ⊗max

R)/ ker(φ ⊗ idR). We claim that σ is a complete order isomorphism.
By linear algebra, the restriction of σ to the algebraic tensor product is a

linear isomorphism between (S/J ) ⊗ R and (S ⊗ R)/ ker(φ ⊗ idR), and
thereforeσ is a linear isomorphism of (S/J )⊗maxR and (S⊗maxR)/ ker(φ⊗
idR).

To show that σ−1 is completely positive, select a positive element b in the
p×pmatrices over (S⊗max R)/ ker(φ⊗idR). Hence, for every ε > 0 there is
are P ∈Mk(S )+,Q ∈Mm(R)+ and α : Ck⊗Cm→ Cp linear such that ε1̇+
b = α(q(P )⊗Q)α∗. Hence, εσ−1(p)(1̇)+σ−1(p)(b) ∈ Dmax

p (S/J ,R) for all
ε > 0. Because σ−1 is unital, this implies that σ−1(p)(b) ∈ Mp((S/J )⊗max

R)+.

Corollary 1.13. If φ : S → T is a complete quotient map, then φ⊗φ :
S ⊗max S → T ⊗max T is a complete quotient map.

Proof. Because φ ⊗ φ = (φ ⊗ idT ) ◦ (idT ⊗φ) and a composition of
complete quotient maps is a complete quotient map, the result follows.

1.3.3. The commuting tensor product. Let cp(S ,T ) denote the set of all pairs
(φ, ψ) of completely positive linear maps that map S and T , respectively,
into a common B(H ) and such that φ(x)ψ(y) = ψ(y)φ(x), for all (x, y) ∈
S × T . Such a pair determines a bilinear map φ · ψ : S × T → B(H )
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via φ ·ψ(x, y) = φ(x)ψ(y), and so there exists a unique linear map, denoted
again by φ ·ψ , of S ⊗T into B(H ) and for which φ ·ψ(x⊗y) = φ(x)ψ(y),
for all elementary tensors x ⊗ y ∈ S ⊗T . Let

Ccomm
p (S ,T ) = {x ∈Mp(S ⊗T ) : (φ · ψ)(p)(x) ∈Mp(B(H ))+,

∀(φ, ψ) ∈ cp(S ,T )}.
The collection {Ccomm

p (S ,T )}p∈N induces an operator system structure on
S ⊗ T with order unit 1S ⊗ 1T . The operator system that arises from this
matricial order structure is denoted by S ⊗c T and is called the commuting
tensor product of S and T .

1.3.4. Properties of tensor products. Evidently,

Cmax
p (S ,T ) ⊆ Ccomm

p (S ,T ) ⊆ Cmin
p (S ,T ),

and so the maps S ⊗max T → S ⊗c T and S ⊗c T → S ⊗min T arising
from the identity map of S ⊗T are ucp; we denote this by

S ⊗max T ⊆ S ⊗c T ⊆ S ⊗min T .

Definition 1.14. Assume that S is an operator system.

(1) S is said to be nuclear or (min,max)-nuclear if S ⊗min T = S ⊗max T

for every operator system T .

(2) S is (min,c)-nuclear if S ⊗min T = S ⊗c T for every operator system
T .

All unital C∗-algebras that are nuclear in the sense of C∗-algebraic tensor
products are also (min,max)-nuclear [10, Proposition 5.15]. Although finite-
dimensional C∗-algebras are, therefore, nuclear, it is not the case that every
finite-dimesional operator system is nuclear [10, Theorem 5.18].

By definition, an operator system S is endowed with a specific matricial
ordering in which the positive cone in the vector space Mp(S ) of p × p
matrices is denoted by Mp(S )+. Expressed as tensor products, we have

Mn(S )+ = (S ⊗max Mn)+ = (S ⊗c Mn)+ = (S ⊗min Mn)+.

1.4. Duals of finite-dimensional operator systems

For any finite-dimensional operator system S , let S d denote the dual of S .
For every n ∈ N, there are the following natural identifications:

Mn(S
d) ∼= L (S dd ,Mn) = L (S ,Mn) ∼=Mn(S )

d .



218 douglas farenick and vern i. paulsen

In the first of these identifications, and using↔ to denote “is identified with”,

G = [gij ]i,j ∈Mn(S
d)←→ Ĝ ∈ L (S ,Mn), Ĝ(s) = [gij (s)]i,j .

In the second of the identifications,

Ĝ ∈ L (S ,Mn)←→ ϕG ∈Mn(S )
d, ϕG([sij ]i,j ) =

∑
i,j

gij (sij ).

A linear functional on Mn(S ) of the form ϕG satisfies ϕG(x) ≥ 0, for all
x ∈ Mn(S )+, if and only if Ĝ : S → Mn is completely positive. Hence,
Mn(S

d)+ is defined to be:

Mn(S
d)+ = {G ∈Mn(S

d) : Ĝ : S →Mnis completely positive}
= {G ∈Mn(S

d) : ϕG(x) ≥ 0,∀ x ∈Mn(S )+}.
One can define these cones for any operator system S and they endow S d with
a matricial ordering. However, because S has finite dimension, this matricial
ordering on S d gives rise to an operator system structure on S d in which an
Archimedean order unit is given by e = ϕ, for some faithful state ϕ of S [5,
§4].

For every linear map φ : S → T , let φd denote the adjoint of φ as a linear
map T d → S d . That is, φd(ψ)[s] = ψ(φ(s)), for all ψ ∈ T d , s ∈ S .

Proposition 1.15. The following statements are equivalent for a linear map
φ : S → T of finite-dimensional operator systems:

(1) φ is a complete quotient map;

(2) φd is a complete order injection.

Proof. Assume that φ is a complete quotient map and fix n ∈ N. Recall
that φd is completely positive since, for every G ∈ Mn(T

d), φd(n)(G) is
identified with Ĝ ◦ φ, a composition of completely positive linear maps; thus,
φd(n)(G) ∈Mn(S

d)+.
To show that φd is a complete order injection, it is sufficient to show that

if φd(n)(G) ∈ Mn(S
d)+, for some G ∈ Mn(T

d), then necessarily G ∈
Mn(T

d)+. Therefore, it is necessary to show that Ĝ is completely positive.
Let p ∈ N and y ∈ Mp(T )+. By hypothesis, φ is a complete quotient map;
thus, there is a x ∈ Mp(S )+ such that φ(p)(x) = y (Proposition 1.10). Thus,
Ĝ(p)(y) = Ĝ(p) ◦ φ(p)(x) ∈ Mp(Mn)+, which shows that G ∈ Mn(T

d)+.
This proves that φd is a complete order injection.

Conversely, assume that φd is a complete order injection. Let E denote an
arbitrary operator system. By way of the identification of Mn(E

d)+ with the
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linear functionals ϕ on Mn(E ) for which ϕ(x) ≥ 0 for all x ∈ Mn(E )+, we
identify Mn(E

d)+ with the dual cone [Mn(E )+]# of the cone Mn(E )+:

Mn(E
d)+ = [Mn(E )+]# = {ψ ∈Mn(E )

d : ψ(x) ≥ 0,∀ x ∈Mn(E )+}.
By hypothesis, ψ ∈Mn(T

d)+ if and only if φd(n)(ψ) ∈Mn(S
d)+. The dual

cone of the cone φd(n)(Mn(S )+) in Mn(T ) is given by

[φd(n)(Mn(S )+)]# = {ψ ∈Mn(T )d : ψ(y) ≥ 0,∀ y ∈ φd(n)(Mn(S )+)}
= {ψ ∈Mn(T )d : ψ ◦ φ(n)(x) ≥ 0, ∀ x ∈Mn(S )+}
= {ψ ∈Mn(T )d : φd(n)(ψ) ∈Mn(S

d)+}
= [Mn(T )+]# (as φ is coi).

Hence, by the Bidual Theorem,

φd(n)(Mn(S )+) = [φd(n)(Mn(S )+)]## = [Mn(T )+]## =Mn(T )+,

which implies that φ̇ is a complete order isomorphism.

Remark 1. The use of finite-dimensional operator systems in Proposi-
tion 1.15 is not essential, as the same arguments can be applied to the case
of arbitrary S and T . What is lost is the fact that the duals S d and T d are
operator systems. However, duals of operator systems are matricially ordered
spaces and one can speak of completely positive maps between such spaces.
Thus, Proposition 1.15 holds in the category whose objects are matricially
normed spaces and whose morphisms are completely positive linear maps.

Proposition 1.16. If S and T are finite-dimensional operator systems,
then the operator systems S d ⊗max T d and (S ⊗min T )d are completely
order isomorphic.

Proof. Let δ and ζ be faithful states on S and T , respectively, so that
eS d = δ and eT d = ζ are the Archimedean order units for the operator
systems S d and T d .

We first show that there is a completely positive embedding of ι1 : S d⊗max

T d → (S ⊗min T )d . Let P ∈ Mk(S
d)+ and Q ∈ Mm(T

d)+; we aim to
show that P̂ ⊗ Q̂ is a completely positive map S ⊗min T → Mk ⊗ Mm.
Any completely positive map of an operator system into a matrix algebra is a
matricial convex combination of matricial states; thus,

P̂ =
∑
μ

α∗μφμαμ, Q̂ =
∑
ν

β∗νψνβν,
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where φμ and ψν are matricial states on S and T , respectively, and αμ and βν
are rectangular matrices for which

∑
ν α
∗
μαμ = 1k ,

∑
ν β
∗
ν βν = 1m. Hence,

P̂ ⊗ Q̂ =
∑
μ,ν

(αμ ⊗ βμ)∗(φμ ⊗ φν)(αμ ⊗ βν)

is completely positive. Hence, every α(P̂ ⊗ Q̂)α∗ is completely positive, for
every linear map α : Ck ⊗ Cm → Cn. Identifying P̂ ⊗ Q̂ and P ⊗ Q, this
proves that

α(P ⊗Q)α∗ ∈Mn((S ⊗min T )d)+.

Therefore, if G ∈ Mn(S
d ⊗max T d)+, then for every ε > 0 there are P ∈

Mk(S
d)+, Q ∈Mm(T

d)+, and α : Ck ⊗ Cm→ Cn linear such that

G+ ε(eS d ⊗ eT d ) = α(P ⊗Q)α∗ ∈Mn((S ⊗min T )d)+.

Because G + ε(eS d ⊗ eT d ) ∈ Mn((S ⊗min T )d)+ for every ε > 0, the
Archimedean property implies that G ∈ Mn((S ⊗min T )d)+. Hence, the
canonical linear embedding ι1 : (S d ⊗ T d) → (S ⊗min T )d is completely
positive.

We now show that there is a completely positive embedding of (S d ⊗max

T d)d into S ⊗min T . To this end, fix n and let G ∈ Mn((S
d ⊗max T d)d)+.

Because S dd = S and T dd = T , G = [gij ]i,j for some gij ∈ S ⊗ T .
Having identifiedG as an element of Mn(S⊗T ), we need only show thatG ∈
Mn(S ⊗min T )+. To do so, let ψ : S →Mk and ψ : T →Mm be any pair
of matricial states. Thus, φ ∈ Mk(S

d)+ and ψ ∈ Mm(T
d)+. By hypothesis,

Ĝ : S d⊗maxT d →Mn is completely positive, and so Ĝ(km)(φ⊗ψ) is positive
in Mn(Mk ⊗Mm). In writing φ and ψ as matrices of linear functionals φk�,
ψμν , we note that

Ĝ(km)(φ ⊗ ψ) = [G(φk� ⊗ ψμν)] = [φk� ⊗ ψμν)(gij )] = φ ⊗ ψ (n)(G),

which implies that φ⊗ψ (n)(G) ∈Mn(Mk⊗Mm)+. Therefore, the canonical
linear embedding ι : (S d ⊗max T d)d → S ⊗min T is completely positive.

To complete the proof, the completely positive embedding ι : (S d ⊗max

T d)d → S ⊗min T leads to a completely positive embedding

ι2 = ιd : (S ⊗min T )d → (S d ⊗max T d)dd = S d ⊗max T d .

In combination with the embedding ι1 and because ι1 = ι−1
2 , we obtain a

complete order isomorphism of S d ⊗max T d and (S ⊗min T )d .

Remark 2. Since S d is an operator system with Archimedian order unit
δ and T d is an operator system with Archimedian order unit ζ , the image of
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δ ⊗ ζ under the above complete order isomorphism is an Archimedean order
unit for (S ⊗min T )d . Thus, in particular, δ⊗ζ is a faithful state on S ⊗min T .

2. The Operator System Mn/Jn

Assume that n ≥ 2 and that w2, . . . , wn are n − 1 universal unitaries that
generate the full group C∗-algebra C∗(Fn−1), where Fn−1 is the free group on
n−1 generators. Letw1 = 1 ∈ C∗(Fn−1). Throughout, tr denotes the standard
(non-normalised) trace functional on a full matrix algebra.

Definition 2.1. For each n ≥ 2, let

(1) Jn ⊂Mn be the vector subspace of all diagonal matrices D ∈Mn with
tr(D) = 0, and

(2) Wn be the operator system in C∗(Fn−1) spanned by {wiw∗j : 1 ≤ i, j ≤
n}.

We first show that Jn is a kernel. To do so, consider the unital linear map
φ : Mn→ C∗(Fn−1) defined on the matrix units of Mn by

(1) φ(Eij ) = 1

n
wiw

∗
j , 1 ≤ i, j ≤ n.

The Choi matrix corresponding to φ is

[φ(Eij )]1≤i,j≤n = 1

n
[wiw

∗
j ]1≤i,j≤n = 1

n
W ∗YW ∈ (C∗(Fn−1)⊗Mn)+,

whereW =∑
i w
∗
i ⊗Eii and Y =∑

i,j 1⊗Eij ∈ (C∗(Fn−1)⊗Mn)+. Hence,
φ is a completely positive linear map of Mn onto Wn. It is clear that Jn ⊆ ker φ.
Conversely, suppose that A ∈ ker φ. Then,

0 = φ(A) =
( n∑
i=1

aii

)
1+ 1

n

∑
j �=i

aij (wiw
∗
j ),

and so aij = 0 for all j �= i and tr(A) = 0. That is, ker φ ⊆ Jn.
Because Jn is a kernel, we form and study the quotient operator system

Mn/Jn. In this section we will show that the ucp map φ : Mn → Wn is a
complete quotient map and that the C∗-envelope of the operator system Mn/Jn

is C∗(Fn−1).

Notation 2.2. The order unit q(1) of Mn/Jn is denoted by 1̇ and eij
denotes q(Eij ) for every matrix unit Eij of Mn.

Lemma 2.3. For every i and j , eii = 1
n

1̇ and ‖eij‖ = 1
n

.
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Proof. Suppose that j �= i. The matrix Q =
[
Eii Eij

Eji Ejj

]
is positive in

M2(Mn), and therefore q(2)(Q) is positive in M2(Mn/Jn). However, the mat-
rix

q(2)(Q) =
[ 1
n

1̇ eij

eji
1
n

1̇

]

is positive only if ‖eij‖ ≤ 1
n

. Consider now the density matrix ρ ∈ Mn with
1
n

in every entry and let sρ be the state on Mn defined by sρ(X) = tr(ρX).
Then sρ(Jn) = {0} and so we obtain a well-defined state ṡ on Mn/Jn via
ṡ(Ẋ) = sρ(X). With this state ṡ, we have ṡ(eij ) = tr(ρEij ) = 1

n
, which

implies that ‖eij‖ ≥ 1
n

.

The result above shows that the norm on the operator system quotient
Mn/Jn is quite different from the quotient norm of Mn by the subspace Jn.
Indeed, in the usual quotient norm, one has ‖eij‖q ≡ inf{‖Eij + K‖ : K ∈
Jn} = 1, when i �= j .

Lemma 2.4. Jn ⊆Mn is completely order proximinal.

Proof. By Proposition 1.6, we need to prove that for every p ∈ N,
Mp(Mn)+ + Mp(Jn) is closed. To this end assume that Pk = (P kij ) ∈
Mp(Mn)+ and Kk = (Kk

ij ) ∈ Mp(Jn) are sequences such that ‖H − Pk −
Kk‖ → 0, where H = (Hij ). Applying the partial trace idp⊗ tr leads to
‖(tr(Hij )− (tr(P kij ))‖ → 0. Consequently, the set {(tr(P kij ) ∈ Mp : k ∈ N} is
norm bounded. But this implies that the set of traces of this set of matrices is
bounded, which in turn implies that the set of positive matricesPk has bounded
trace and hence is a norm bounded set. Thus, by dropping to a subsequence
if necessary, we may assume that Pk converges in norm to some P that is
necessarily in Mp(Mn)+, since the latter set is closed. But then for this same
subsequence, we have that Kk converges to an element K ∈ Mp(Jn) and so
H = P +K ∈Mp(Mn)+ +Mp(Jn) and the result follows.

The following result gives a variety of characterisations of positivity for the
matricial ordering of the operator system Mn/Jn.

Proposition 2.5. The following statements are equivalent for matrices
A11, Aij ∈Mp, with 1 ≤ i, j ≤ n and j �= i:

(1) 1̇⊗ A11 +∑
j �=i eij ⊗ Aij is positive in (Mn/Jn)⊗Mp;

(2) 1̇ ⊗ A11 +∑
j �=i ψ̇(eij ) ⊗ Aij is positive in Mr ⊗Mp for every r ∈ N

and every ucp map ψ̇ : Mn/Jn→Mr ;

(3) 1r ⊗A11 +∑
j �=i ψ(Eij )⊗Aij is positive in Mr ⊗Mp for every r ∈ N

and every ucp map ψ : Mn→Mr such that ψ(Jn) = {0};
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(4) 1r ⊗A11 +∑
j �=i ψ(Eij )⊗Aij is positive in Mr ⊗Mp for every r ∈ N

and every ucp map ψ : Mn → Mr such that ψ(Eii) = 1
n

1r , for all
1 ≤ i ≤ n;

(5) 1r ⊗A11 +∑
j �=i Bij ⊗Aij is positive in Mr ⊗Mp for every r ∈ N and

every collection of matrices Bij ∈Mr , j �= i, with the property that

⎡
⎢⎢⎢⎢⎣

1
n

1r B12 · · · B1n

B21
1
n

1r
...

...
. . .

...

Bn1 . . . Bn,n−1
1
n

1r

⎤
⎥⎥⎥⎥⎦

is positive in Mr ⊗Mn;

(6) 1r ⊗ A11 +∑
j �=i

1
n
Cij ⊗ Aij is positive in Mr ⊗Mp for every r ∈ N

and every collection of matrices Cij ∈Mr , j �= i, with the property that

⎡
⎢⎢⎢⎣

1r C12 · · · C1n

C21 1r
...

...
. . .

...

Cn1 . . . Cn,n−1 1r

⎤
⎥⎥⎥⎦

is positive in Mr ⊗Mn;

(7) 1⊗ A11 +∑
j �=i

(
1
n
wiw

∗
j

)⊗ Aij is positive in C∗(Fn−1)⊗Mp;

(8) 1⊗ (nA11)+∑n
i=1 Eii ⊗Bi +

∑
j �=i Eij ⊗Aij is positive in Mn ⊗Mp

for some B1, . . . , Bn ∈Mp such that
∑n

i=1 Bi = (n− n2)A11.

(9)
∑n

i,j=1 Eij ⊗ Rij is positive in Mn ⊗Mp for some Rij ∈ Mp such that
Rij = Aij for i �= j and R11 + · · · + Rnn = nA11.

Proof. We shall prove that (1)⇒ (9)⇒ (8)⇒ · · · ⇒ (1).
The hypothesis (1) is that r = 1̇ ⊗ A11 +∑

j �=i eij ⊗ Aij is positive in
(Mn/Jn) ⊗ Mp. Because Jn ⊆ Mn is completely order proximinal, there
is a positive R ∈ Mn ⊗ Mp such that q ⊗ idp(R) = r . In writing R as
R =∑

i Eii ⊗Rii +
∑
j �=i Eij ⊗Rij , we obtain from r =∑

i,j eij ⊗Rij that
Rij = Aij for all j �= i and that A11 = 1

n

∑
i Rii . Thus (9) follows. To see

(8), set Rii = nA11 + Bi , where Bi = −∑
k �=i Rkk , and so nA11 =∑

i Rii =
n2A11 +∑

i Bi implies that
∑

i Bi = (n− n2)A11, which is statement (8).
Now assume (8). Because 1 ⊗ nA11 +∑n

i=1 Eii ⊗ Bi +
∑
j �=i Eij ⊗ Aij

is positive in Mn ⊗Mp, the image of this matrix under the map φ ⊗ idp is
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positive in C∗(Fn−1)⊗Mp, where φ : Mn → C∗(Fn−1) is the ucp map (1) in
Lemma 2.3. That is, the following element is positive:

1⊗ (nA11)+
n∑
i=1

1

n
1⊗ Bi +

∑
j �=i

1

n
wiw

∗
j ⊗ Aij

= 1⊗
(
nA11 + 1

n

n∑
i=1

Bi

)
+

∑
j �=i

1

n
wiw

∗
j ⊗ Aij

= 1⊗ A11 +
∑
j �=i

1

n
wiw

∗
j ⊗ Aij ,

because 1
n

∑n
i=1 Bi = (1− n)A11. This establishes (7).

Next assume (7): namely, 1 ⊗ A11 +∑
j �=i

(
1
n
wiw

∗
j

) ⊗ Aij is positive in
C∗(Fn−1) ⊗Mp. Let r ∈ N and suppose that the matrices Cij ∈ Mr , j �= i,
satisfy

(2) C =

⎡
⎢⎢⎢⎣

1r C12 · · · C1n

C21 1r
...

...
. . .

...

Cn1 . . . Cn,n−1 1r

⎤
⎥⎥⎥⎦ ∈ (Mr ⊗Mn)+.

Let A = C1/2, the positive square root of C. We may express A in two ways:

A =

⎡
⎢⎢⎢⎣
a1

a2
...

an

⎤
⎥⎥⎥⎦ = A∗ =

[
a∗1 a∗2 . . . a∗n

]
,

where each aj is a rectangular block matrix, or an n-tuple, of r × r matrices.
Hence,

C = AA∗ = [
aia
∗
j

]
1≤i,j≤n .

Because aja∗j = 1 for each j , the rectangular matrix a∗j is an isometry. There-
fore, we may dilate a∗j to a unitary which we denote by u∗j by way of the
Halmos dilation:

u∗j =
[
a∗j (1− a∗j aj )1/2
0 −aj

]
∈

[
Mnr,n Mnr

Mn Mn,nr

]
=M(nr+n)
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By the Universal Property, there is a homomorphism π : C∗(Fn−1)→M(nr+n)
such that π(wj ) = u∗j for each j . If j �= i, then

π(wiw
∗
j ) =

[
a∗i a
∗
j ∗
∗ ∗

]
.

Therefore, if ψ : C∗(Fn−1) → M(nr+n) is the ucp map ψ = v∗πv, where v :
Cr → Cnr+n embeds Cr into the first r-coordinates of Cnr+n, then ψ(wiw∗j ) =
Cij . Thus,

ψ(p)

(
1⊗ A11 +

∑
j �=i
(

1

n
wiw

∗
j )⊗ Aij

)
= 1r ⊗ A11 +

∑
j �=i

1

n
Cij ⊗ Aij

is positive in Mr ⊗Mp, which yields statement (6).
Assume (6) holds. For any set of matrices Bij ∈Mr , j �= i, for which

(3) B =

⎡
⎢⎢⎢⎢⎣

1
n

1r B12 . . . B1n

B21
1
n

1r
...

...
. . .

...

Bn1 . . . Bn,n−1
1
n

1r

⎤
⎥⎥⎥⎥⎦

is positive in Mr⊗Mn, letCij = nBij . Thus, the matrixB above is 1
n
C, where

C is the matrix in (2). Therefore, from statement (6) one obtains (5).
Assuming (5), let ψ : Mn → Mr be a ucp map such that ψ(Eii) = 1

n
1r

for all 1 ≤ i ≤ n. Let Bij = ψ(Eij ), j �= i. Therefore, the Choi matrix
of ψ , namely [ψ(Eij )] ∈ Mr ⊗Mn, is precisely the matrix B in equation
(3). Because ψ is completely positive, the Choi matrix B of ψ is positive in
Mr ⊗Mn. Hence, (4) is implied by (5).

Next assume (4). Ifψ : Mn→Mr is ucp and has the property thatψ(Jn) =
{0}, then Eii − Ejj ∈ Jn, for all j �= i. Because ψ is unital, this implies that
ψ(Eii) = 1

n
1r , for each i, which yields (3).

Assume (3) and let ψ̇ : Mn/Jn → Mr be a ucp map. The linear map
ψ : Mn → Mr defined by ψ = ψ̇ ◦ q is unital, annihilates Jn, and is the
composition of cp maps ψ̇ and q. Therefore, (2) follows directly from (3).

Assume (2): that is, ψ̇(p)(h) is positive in Mr ⊗ Mp, for every r ∈ N
and every ucp map ψ̇ : Mn/Jn → Mr , and where h ∈ (Mn/Jn) ⊗ Mp

is given by h = 1̇ ⊗ A11 + ∑
j �=i eij ⊗ Aij . By the Choi-Effros theorem,

there is a unital complete order embedding Mn/Jn ⊂ B(H ) for some Hilbert
space H . Thus, h ∈ Mn/Jn ⊗min Mp is positive if and only if h is positive
in B(H ) ⊗min Mp = B(H ⊗ Cp) [10, Theorem 4.4]. In this context, the
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hypothesis (2) asserts that (q ⊗ 1Mp
)h(q ⊗ 1Mp

) is a positive operator for
every finite-rank projection q ∈ B(H ), which in turn implies that h itself is
positive. Hence, (1) is implied by (2).

Theorem 2.6. The ucp surjection φ : Mn → Wn is a complete quotient
map and the C∗-envelope of Mn/Jn is C∗(Fn−1).

Proof. By the First Isomorphism Theorem, there exists a ucp map φ̇ :
Mn/Jn → C∗(Fn−1) such that φ = φ̇ ◦ q, where φ : Mn → C∗(Fn−1)

is the ucp map defined in equation (1). Therefore, φ(eij ) = 1
n
wiw

∗
j , for all

1 ≤ i, j ≤ n, and so φ̇ maps Mn/Jn surjectively onto Wn. Hence, as Mn/Jn

and T are vector spaces of equal finite dimension, the surjection φ̇ is a linear
isomorphism. The equivalence of statements (1) and (7) in Proposition 2.5
shows, further, that φ̇ is a complete order isomorphism of Mn/Jn and Wn.

We now show that the C∗-envelope of Mn/Jn is C∗(Fn−1). Because there is
a completely isometric embedding of Mn/Jn into its C∗-envelope C∗e(Mn/Jn)

[14, Chapter 15], we assume without loss generality that Mn/Jn is an operator
system in C∗e(Mn/Jn) and that 1̇ is the multiplicative identity of C∗e(Mn/Jn).
We also suppose that C∗(Fn−1) has been represented faithfully on a Hilbert
space H . By Arveson’s extension theorem, the ucp map φ̇ : Mn/Jn →
C∗(Fn−1) ⊂ B(H ) has a ucp extension � : C∗e(Mn/Jn) → B(H ). Let � =
v∗πv denote a minimal Stinespring decomposition of �. With respect to the
decomposition of the representing Hilbert space Hπ as Hπ = ran v⊕(ran v)⊥,
every operator π(neij ) has the form

π(neij ) =
[
wiw

∗
j ∗
∗ ∗

]
.

Because ‖neij‖ = 1 and π is a contraction, the operator matrix above has
norm exactly equal to 1. And since wiw∗j is unitary, if either of the (1,2)- or
(2,1)-entries of π(neij ) were nonzero, then the norm of π(neij ) would exceed
1. Thus,

π(neij ) =
[
wiw

∗
j 0

0 ∗
]
,

which implies that � is multiplicative on the generators eij of the C∗-algebra
C∗e(Mn/Jn). Hence, � is a homomorphism that maps the generators of
C∗e(Mn/Jn) to the generators of C∗(Fn−1), which implies that � is surjective.

Because φ̇ is a unital complete order isomorphism, there is a unital iso-
morphism α : C∗e(Mn/Jn)→ C∗e(Wn) such that α|Mn/Jn

= πe ◦ φ̇, where πe is
the unique surjective unital homomorphism C∗(Fn−1) = C∗(Wn) → C∗e(Wn)

arising from the Universal Property of the C∗-envelope. Therefore, πe(wj )
is unitary, for each 2 ≤ j ≤ n, and hence so are e1j in C∗e(Mn/Jn), for
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2 ≤ j ≤ n. By the Universal Property of C∗(Fn−1), there is a unital homo-
morphism β : C∗(Fn−1) → C∗e(Mn/Jn) such that β(wj ) = e1j , 2 ≤ j ≤ n.
Thus, β ◦�(wj ) = wj , for every j , which implies that � is in fact an isomorph-
ism.

Corollary 2.7. If u1, . . . , un are universal unitaries, then the C∗-envelope
of the operator system Span{uiu∗j : 1 ≤ i, j ≤ n} is C∗(Fn−1).

Proof. Set wi = u∗1ui , and note that w2, . . . , wn is a set of n− 1 universal
unitaries.

Another application of Proposition 2.5 is the following theorem concerning
the factorisation of positive elements in the C∗-algebra C∗(Fn)⊗Mp.

Theorem 2.8. Let u1, . . . , un be universal unitaries and letAij ∈Mp. Then
P = ∑n

i,j=1 uiu
∗
j ⊗ Aij is positive in C∗(Fn) ⊗Mp if and only if there exist

matrices Xik ∈Mp, such that P =∑n
k=1 YkY

∗
k , where Yk =∑n

i=1 ui ⊗Xik .
Proof. We have that the span of uiu∗j is completely order isomorphic to

Mn/Jn via the mapuiu∗j → eij with eii = (1/n)1̇. Thus,P → 1̇⊗[1/n(A11+
· · ·+Ann)]+∑

i �=j eij ⊗Aij . Apply Proposition 2.5((9)) to lift this element to
a positive element R =∑n

i,j=1 Eij ⊗Rij of Mn⊗Mp. Now factor R = XX∗
with X =∑n

i,j=1 Eij ⊗Xij and define Yk as above.
We have that

n∑
k=1

YkY
∗
k =

n∑
i,j,k=1

uiu
∗
j ⊗XikX∗jk =

n∑
i,j=1

uiu
∗
j ⊗ Rij = P,

and the result follows.

To conclude this section, we determine below the dual operator system of
Wn.

Proposition 2.9. Consider the operator subsystem En ⊆Mn defined by

(4) En = {A ∈Mn : aii = ajj , 1 ≤ i, j ≤ n}.
Then the operator systems W d

n and En are completely order isomorphic.

Proof. The function φ : Mn → Wn defined in (1) is a complete quotient
map. Therefore, the dual map φd : W d

n → Md
n is a complete order injection

(Proposition 1.15). The operator systems Md
n and Mn are completely order

isomorphic via the map Sij �→ Eij , where {Sij }1≤i,j≤n is the basis of Md
n that

is dual to the basis {Eij }1≤i,j≤n of Mn [16]. By Banach space duality, φd(W d
n )

is the annihilator of Jn, namely En.
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3. Tensor Products with Mn/Jn

Definition 3.1. Let S be an operator system.

(1) For a fixed n ∈ N, S is said to have property (�n) if, for every p ∈ N
and all S11, Sij ∈Mp(S ), where 1 ≤ i, j ≤ n and j �= i, for which

1⊗ S11 +
∑
j �=i
(

1

n
wiw

∗
j )⊗ Sij ≥ 0 in C∗(Fn−1)⊗min Mp(S ),

then for every ε > 0 there exist Rεij ∈Mp(S ), 1 ≤ i, j ≤ n, such that
(a) Rε = [Rεij ]1≤i,j≤n is positive in Mn(Mp(S )),
(b) Rεij = Sij for all j �= i, and

(c)
n∑
i=1

Rεii = n(S11 + ε1Mp(S )).

(2) We say that S has property (�) if S has property (�n) for every n ∈ N.

Property (�) is suggested by Proposition 2.5 (equivalent statements (7)
and (9)), which shows that every matrix algebra Mp has property (�). To say
that an operator system S has property (�n) is equivalent to saying that the
map φ ⊗ idS : Mn ⊗min S → Wn ⊗min S is a complete quotient map (see
Proposition 6.2 for a detailed argument).

The main results of this section are summarised by the following theorem.

Theorem 3.2 (Operator Systems with Property (�)).
(1) An operator system S has property (�n) if and only if (Mn/Jn) ⊗min

S = (Mn/Jn)⊗max S .

(2) Every (min,max)-nuclear operator system has property (�).

(3) B(H ) has property (�).

(4) If an operator system S has property (�n), then C∗(Fn−1) ⊗min S =
C∗(Fn−1)⊗max S .

Corollary 3.3 (Kirchberg’s Theorem). C∗(F∞) ⊗min B(H ) =
C∗(F∞)⊗max B(H ).

Proof. Let {ui}i∈N denote the generators of F∞ and let ι : C∗(Fn) →
C∗(F∞) be the canonical embedding. Let π : C∗(F∞) → C∗(Fn) be the epi-
morphism for which π(ui) = ui for 1 ≤ i ≤ n and π(ui) = 0 for i > n. Thus,
π ◦ ι = idC∗(Fn) and so (π ⊗max idB(H )) ◦ (ι ⊗max idB(H )) is the identity of
C∗(Fn)⊗max B(H ), which implies that ι⊗max idC∗(Fn) : C∗(Fn)⊗max B(H )→
C∗(F∞)⊗maxB(H ) is an isometry. That is, C∗(Fn)⊗maxB(H ) ⊂ C∗(F∞)⊗max

B(H ) as a C∗-subalgebra. As C∗(F∞) ⊗max B(H ) ⊆ C∗(F∞) ⊗min B(H ),
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we show below that there is a monomorphism of ρ : C∗(F∞)⊗min B(H )→
C∗(F∞)⊗max B(H ).

By (3) and (4) of Theorem 3.2, C∗(Fn)⊗min B(H ) = C∗(Fn)⊗max B(H ) ⊂
C∗(F∞)⊗maxB(H ) for everyn ∈ N, and so for eachn there is a monomorphism
ρn : C∗(Fn)⊗min B(H )→ C∗(F∞)⊗max B(H ) such that ρn−1 = ρn ◦ ιn−1,
where ιn−1 : C∗(Fn−1) ⊗min B(H ) → C∗(Fn) ⊗min B(H ) is the canonical
inclusion. Because C∗(F∞)⊗min B(H ) is the direct limit of the directed system
(C∗(Fn)⊗min B(H ), ιn)n, there is a unique monomorphism ρ : C∗(F∞)⊗min

B(H )→ C∗(F∞)⊗maxB(H ) such that ρn = ρ◦�n, where �n is the embedding
of C∗(Fn) ⊗min B(H ) into C∗(F∞) ⊗min B(H ) that is compatible with the
inclusions ιn. Hence, C∗(F∞)⊗min B(H ) = C∗(F∞)⊗max B(H ).

The following proposition yields assertion (1) of Theorem 3.2.

Proposition 3.4. (Mn/Jn) ⊗min S = (Mn/Jn) ⊗max S if and only if S

has property (�n).

Proof. Observe that if p ∈ N and H ∈ Mp(Mn/Jn ⊗ S ), then H =
[hk�]1≤k,�≤p and

hk� = 1̇⊗ S(k,�)11 +
∑
��=k

ek� ⊗ S(k,�)ij

for some S(k,�)11 , S
(k,�)
ij ∈ S , where 1 ≤ k, � ≤ p and j �= i. Therefore, we

write H as
H = 1̇⊗ S11 +

∑
��=k

eij ⊗ Sij ,

where
S11 = [S(k,�)11 ]1≤k,�≤p and Sij = [S(k,�)ij ]1≤k,�≤p.

Hence, to prove that S has property (�n), any argument that shows the prop-
erty for p = 1 also shows the property for arbitrary p ∈ N.

Assume that (Mn/Jn)⊗min S = (Mn/Jn)⊗max S . We may also assume
p = 1 by the observation above. Suppose that

1⊗ S11 +
∑
j �=i

(
1

n
wiw

∗
j

)
⊗ Sij ∈ (C∗(Fn−1)⊗min S )+.

The ucp map φ : Mn → Wn given by (1) is a complete quotient map, and
therefore the map

φ̇ ⊗ idS : (Mn/Jn)⊗max S → Wn ⊗max S
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is a complete order isomorphism. Hence, by the assumption that (Mn/Jn)⊗min

S = (Mn/Jn)⊗max S , we deduce that

h = 1̇⊗ S11 +
∑
j �=i

eij ⊗ Sij

is positive in (Mn/Jn)⊗min S . By hypothesis, h ∈ ((Mn/Jn)⊗max S )+ and
so, for every ε > 0,

h+ ε1 =
(

1̇⊗ (S11 + ε1)+
∑
j �=i

eij ⊗ Sij
)
∈ Dmax

1 (Mn/Jn,S ).

Thus, there are A ∈ Mk(Mn/Jn)+, C ∈ Mm(S )+, and α : Ck ⊗ Cm → C
linear such that

h+ ε1 = α(A⊗ C)α∗.
By Proposition 2.5, the fact that A ∈ Mk(Mn/Jn)+ = (Mn/Jn ⊗ Mk)+
implies that there exist R = [Rij ] ∈ (Mn ⊗Mk)+ such that q(k)(R) = A.
Thus,

h+ ε1 = α(q(R)⊗ C)α∗ = q ⊗ idS (α(R ⊗ C)α∗) ∈ Dmax
1 (Mn,S ).

That is, h + ε1 = q ⊗ idS (Rε), where Rε = α(R ⊗ C)α∗ ∈ (Mn ⊗max

S )+ =Mn(S )+. Therefore, we have proved that for every ε > 0 there exists
Rε ∈Mn(S )+ such that

1̇⊗ (S11 + ε1)+
∑
j �=i

eij ⊗ Sij =
∑
i

eii ⊗ Rεii +
∑
j �=i

eij ⊗ Rεij ,

which yields Rεij = Sij for j �= i and 1
n

∑
i R

ε
ii = S11 + ε1. Hence, S has

property (�n).
Conversely, suppose that S has property (�n). To prove thatCmin

p (Mn/Jn,

S ) ⊆ Cmax
p (Mn/Jn,S ) for all p ∈ N, we may, as mentioned earlier, restrict

ourselves to the case p = 1.
Suppose that h ∈ (Mn/Jn ⊗min S )+. Thus,

h = 1̇⊗ S11 +
∑
j �=i

eij ⊗ Sij

for some S11, Sij ∈ S , where 1 ≤ i, j ≤ n and j �= i. Letφ : Mn→ C∗(Fn−1)

be the ucp map defined by (1). Thus,

φ̇ ⊗ idS : Mn/Jn ⊗min S → C∗(Fn−1)⊗min S
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sends h to

1⊗ S11 +
∑
j �=i

(
1

n
wiw

∗
j

)
⊗ Sij ∈ (C∗(Fn−1)⊗min S )+.

By hypothesis, S has property (�), and so for every ε > 0 there existRεij ∈ S ,
1 ≤ i, j ≤ n, such that Rε = [Rεij ]1≤i,j≤n ∈Mn(S )+, Rεij = Sij for all j �= i,
and

∑n
i=1 R

ε
ii = n(S11 + ε1S ). The cone Mn(S )+ is (Mn ⊗max S )+ and

therefore the ucp map

q ⊗ idS : Mn ⊗max S → (Mn/Jn)⊗max S

sends Rε to the positive element

n∑
i,j=1

eij ⊗ Rεij = ε(1̇⊗ 1S )+ h ∈ ((Mn/Jn)⊗max S )+.

As this holds for all ε > 0, this implies, by the Archimedean property of the
positive cone in operator systems, that h ∈ ((Mn/Jn)⊗max S )+.

By definition, an operator system S is (min,max)-nuclear if S ⊗min T =
S ⊗max T for every operator system T . Thus, statement (2) of Theorem 3.2
follows immediately:

Corollary 3.5. If S is (min,max)-nuclear, then S has property (�).

We now prove statement (3) of Theorem 3.2.

Proposition 3.6. B(H ) has property (�).

Proof. Suppose that S11, Sij ∈ B(H ), 1 ≤ i, j ≤ n and j �= i, and that

1⊗ S11 +
∑
j �=i

(
1

n
wiw

∗
j

)
⊗ Sij ∈ (C∗(Fn−1)⊗min B(H ))+.

(We are assuming, as in the proof of Proposition 3.4, that p = 1.) Let ε > 0.
Because B(K ) is nuclear for all finite-dimensional Hilbert spaces K , if

pL ∈ B(H ) is a projection onto a finite-dimensional subspace L ⊆ H , then
there exist Rε,Lij ∈ B(H ), 1 ≤ i, j ≤ n, such that Rε,L = [Rε,Lij ]1≤i,j≤n ∈
Mn(B(H ))+,Rε,Lij = pL SijpL for all j �= i, and

∑n
i=1 R

ε,L
ii = n(pL S11pL

+εpL ). Therefore, F = {Rε,L }L is a net in Mn(B(H ))+ under subspace in-
clusion. Moreover, the fact that

∑n
i=1 R

ε,L
ii = n(pL S11pL +εpL ) ≤ n(S11+

ε1) implies that the diagonal operators of each matrix Rε,L are bounded. By
the positivity of Rε,L , the off-diagonal operators are also bounded, and hence
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F is a bounded net of positive operators. Let Rε = [Rεij ] ∈ Mn(B(H ))+
be the limit of some weakly convergent subnet F ′ = {Rε,L ′ }L ′ of F . Then
pL ′ → 1 strongly and, therefore,

∑n
i=1 R

ε
ii = n(S11+ ε1). BecauseRεij = Sij

for all j �= i, the proof is complete.

The proof below of statement (4) of Theorem 3.2 is the final step in the
proof of this theorem.

Proposition 3.7. If S has property (�n), then C∗(Fn−1) ⊗min S =
C∗(Fn−1)⊗max S .

Proof. By [9, Theorem 6.7], C∗(Fn−1)⊗cS = C∗(Fn−1)⊗maxS ; therefore,
we aim to show that if x ∈ Mn((C∗(Fn−1) ⊗min S ))+, then φ · ψ(n)(x) ∈
Mn(B(H ))+ for every pair of completely positive maps φ : C∗(Fn−1) →
B(H ) and ψ : S → B(H ) with commuting ranges. Let φ = v∗πv be a
minimal Stinespring representation of φ, where π : C∗(Fn−1)→ B(Hπ ) is a
unital representation. By the Commutant Lifting Theorem [2, Theorem 1.3.1],
there is a unital homomorphism δ : φ(C∗(Fn−1))

′ → B(Hπ ) such that δ(z)v =
vz. for all z ∈ φ(C∗(Fn−1))

′. Because ψ(S ) lies within the commutant of
φ(C∗(Fn−1)), we obtain a completely positive map ψ̃ = δ ◦ψ : S → B(Hπ )

such that the range of ψ̃ commutes with the range of π .
By hypothesis, S has property (�n) and so, by Proposition 3.4 and by

the fact that Mn/Jn and Wn are completely order isomorphic, Wn ⊗min S =
Wn ⊗max S . Consider the ucp map π · ψ̃ : Wn ⊗min S → B(Hπ ). Because
Wn ⊗min S is ucp mapped into C∗(Fn−1)⊗min C∗e(S ) and because B(Hπ ) is
injective, there is a ucp extension γ : C∗(Fn−1) ⊗min C∗e(S ) → B(Hπ ) of
π · ψ̃ . For each i, γ (wi ⊗1) = π · ψ̃(wi ⊗1) = π(wi), and sowi ⊗1 is in the
multiplicative domain �γ of γ . Hence, C∗(Fn−1)⊗{1} = C∗(Wn)⊗{1} ⊆ �γ

and, therefore,

γ (a ⊗ s) = γ ((a ⊗ 1)(1⊗ s)) = γ (a ⊗ 1)γ (1⊗ s) = π(a)ψ̃(s),
for all a ∈ C∗(Fn−1), s ∈ S . Thus, on elementary tensors,

φ · ψ(a ⊗ s) = φ(a)ψ(s) = v∗π(s)vψ(s) = v∗π(s)ψ̃(s)v = v∗γ (a ⊗ s)v.
Therefore, φ ·ψ = Adv ◦ γ|C∗(Fn−1)⊗minS and so (φ ·ψ)(n)(x) ∈Mn(B(H ))+.

4. The Operator System Tn/Jn

Definition 4.1. Let Tn = {A ∈ Mn : Aij = 0,∀ |i − j | ≥ 2}, the operator
system of tridiagonal matrices.

Observe that Tn = Span{Eij : |i − j | ≤ 1} and that Tn contains the
kernel Jn = {D ∈ Mn : D is diagonal and trD = 0} of the ucp map
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φ : Tn → C∗(Fn−1) defined in (1) by φ(Eij ) = 1
n
wiw

∗
j . Our interest in this

section is with the quotient operator system Tn/Jn.
We begin with a useful fact about the operator system Tn itself.

Proposition 4.2. Tn ⊗min S = Tn ⊗c S for every operator system S .
That is, Tn is (min,c)-nuclear.

Proof. Let G = (V ,E) be the graph with vertex set V = {1, . . . , n}
and edge set E = {(i, j) : |i − j | = 1}. Thus, G is simply a line segment
from vertex 1 through to vertex n. The operator system SG ⊂ Mn of the
graph G is the span of matrix units Eij ∈ Mn for which (i, j) ∈ E, and so
SG = Tn. Because G is a chordal graph, Tn = SG is (min,c)-nuclear [10,
Proposition 6.10].

Theorem 4.3. Assume that u1, . . . , un−1 are n− 1 universal unitaries that
generate the full group C∗-algebra C∗(Fn−1). Let u0 = 1, u−j = u∗j , and

Sn−1 = Span{1, uj , u∗j : 1 ≤ j ≤ n− 1} = Span{uj : −n+ 1 ≤ j ≤ n− 1}.
Consider the function φ : Tn→ Sn−1 defined by

(5) φ(Eij ) = 1

n
uj−i , ∀ |i − j | ≤ 1.

Then:

(1) ker φ = Jn, the vector subspace of all diagonal matrices D ∈Mn with
tr(D) = 0,

(2) Jn ⊂ Tn is completely order proximinal, and

(3) φ is a complete quotient map.

Proof. Because Jn is a kernel in Mn and Jn ⊂ Tn ⊂Mn, Proposition 1.11
shows that we may assume without loss of generality that Tn/Jn ⊂ Mn/Jn.
The function φ defined in (5) above is simply the function φ|Tn

, the restriction
of the the functionφ defined previously in (1) to the operator subsystem Tn, but
where we identify each product wiw∗i+1 with ui , for all 1 ≤ i ≤ (n− 1). (As-
suming thatw2, . . . , wn are n−1 universal unitaries, then so are u1, . . . , un−1.)
Therefore, the restriction of φ from Mn to Tn preserves complete positivity.
The proof of Lemma 2.4 shows that Jn ⊂ Tn is completely order proximinal,
and it is evident that the restriction of φ̇ from Mn/Jn to Tn/Jn is a complete
order isomorphism of Tn/Jn and Sn−1.

Corollary 4.4. The following statements are equivalent for Ai ∈ Mp,
−n+ 1 ≤ i ≤ n− 1:

(1)
∑n−1

i=1−n ui ⊗ Ai ∈Mp(Sn−1)+;
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(2) there exists R = [Rij ] ∈ Mp(Mn)+ such that Rij = 0 if |i − j | ≥ 2,
Ri,i+1 = Ai and Ri+1,i = A−i , for all 1 ≤ i ≤ (n− 1), and

∑n
i=1 Rii =

A0.

Proof. By statements (7) and (9) of Proposition 2.5, the element

n−1∑
i=1−n

ui⊗Ai = 1⊗A0+
n−1∑
i=1

(
1

n
wi+1w

∗
i

)
⊗(nA−i )+

n−1∑
i=1

(
1

n
wiw

∗
i+1

)
⊗(nAi)

is positive in C∗(Fn−1)⊗Mp if and only if there is a R̃ = [R̃ij ]i,j ∈Mn(Mp)+
with R̃ij = 0 if |i − j | ≥ 2, R̃i,i+1 = nAi and R̃i+1,i = nA−i , for all
1 ≤ i ≤ (n− 1), and

∑n
i=1 R̃ii = nA0. This last statement is equivalent to the

matrix R = 1
n
R̃ having the properties in (2) above.

Theorem 4.5. Let Un and Vn be the operator subsystems of
⊕n−1

k=1 M2

defined by

(6) Vn =
{
n−1⊕
k=1

[
ak11 ak12

ak21 ak22

]
: ak22 = ak+1

11 ,∀ 1 ≤ k ≤ (n− 1)

}

and

(7) Un =
{
n−1⊕
k=1

[
ak11 ak12

ak21 ak22

]
: akii = a�jj ,∀ 1 ≤ k, � ≤ (n− 1), i, j = 1, 2

}
.

Then

(1) T d
n and Vn are completely order isomorphic, and

(2) S d
n−1 and Un are completely order isomorphic.

Proof. The canonical linear basis of Tn is given by the subset {Eij }|i−j |≤1

of the matrix units of Mn. Let {Sij }|i−j |≤1 ⊂ T d
n be the basis of T d

n that is
dual to this canonical basis of Tn.

Consider the operator system
⊕n−1

k=1 M2 and for each 1 ≤ k ≤ (n−1) define
a ucp map ρk :

⊕n−1
k=1 M2 → M2 by projection onto the k-th coordinate. Let

{fj }2n−2
j=1 and {e1, e2} be the canonical orthonormal bases of C2n−2 and C2,

respectively, and let γk : C2n−2 → C2 be the linear map defined by γk(f2k) =
e1, γk(f2k+1) = e2, and γk(fj ) = 0 for all other j . Let θ :

⊕n−1
k=1 M2 → Tn

be the ucp map defined by θ =∑
k γ
∗
k ρkγk . Thus,

θ((Ak)k) =
n−1∑
k=1

2∑
i,j=1

akijEi+k−1,j+k−1,
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where Ak = [akij ]i,j ∈M2. The dual map θd : T d
n →

⊕n−1
k=1 M2 is given by

θd
( ∑
|i−j |≤1

aijSij

)
=

n−1⊕
k=1

[
akk ak k+1

ak+1 k ak+1 k+1

]
.

Now let ψ = θd and observe that the range of ψ is precisely Vn. Thus, ψ is
a completely positive linear isomorphism between T d

n and Vn. We now show
that ψ−1 is completely positive.

To this end, suppose that X ∈ Mp(T
d
n ) and Y = ψ(p)(X) ∈ Mp(Vn)+.

Our aim is to prove thatX is positive, which is to say thatX is a positive linear
functional on Mp(Tn). The matrix Y is a p × p matrix of n × n tridiagonal
matrices; hence, y is an n× n tridiagonal matrix of p× p matrices ykij ∈Mp:

Y =
n−1⊕
k=1

[
ykk yk k+1

y∗k k+1 yk+1 k+1

]
.

The pull back of Y to X ∈Mp(T
d
n ) is

X =

⎡
⎢⎢⎢⎢⎣
y11 y12

y∗12 y22 y23

y∗23 y33 y34

. . .

ynn

⎤
⎥⎥⎥⎥⎦ .

View the matrix X above as a partial matrix in the sense that outside the
tridiagonal band the entries are not specified. The only fully specified square
submatrices of X are the ones corresponding to 2 × 2 principal submatrices[
ykk yk k+1

y∗k k+1 yk+1 k+1

]
, each of which is a direct summand of the positive matrix

Y . Hence, the partially specified matrixX can be completed to a positive matrix
X̃ (see, for example, [15, Theorem 4.3]). The action of X̃ on Mn(Mp) as a
linear functional is given by Z �→ tr(ZX̃), and so X is a restriction of X̃ as
a linear functional on Tn. Therefore, X is also positive, which completes the
proof that ψ is a complete order isomorphism.

By Theorem 4.3, φ : Tn → Sn−1 is a complete quotient map; therefore,
ψ ◦ φd : S d

n−1 → Vn is a complete order injection. We need only identify the
range of ψ ◦ φd . Since Sn−1 is completely order isomorphic to Tn/Jn, the
dual of Sn−1 is the annihilator of Jn in Md

n . Hence, ψ ◦ φd(Sn−1) = Un.
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5. The Kirchberg Problem and the Connes Embedding Problem

Recall that the operator systems En, Vn, and Un of n×nmatrices are defined in
(4), (6), and (7) respectively. In this section we show that some matrix theory
problems involving these operator systems, if solved affirmatively, would lead
to an affirmative solution to Kirchberg’s Problem and, hence, to the Connes
Embedding Problem as well.

The following lemma is a proof technique that we shall require.

Lemma 5.1. Suppose that R, S , T , and U are operator systems and that,
for linear transformationsψ , θ , μ, and ν, where ν is a complete quotient map,
μ is a complete order isomorphism, θ is a linear isomorphism, and θ−1 is
completely positive, the following diagram is commutative:

(8)

R
μ−−−−−→ U

ψ ν

S −−−−→
θ

T .

Then ψ is a complete quotient map if and only if θ is a complete order iso-
morphism.

Proof. Suppose thatψ is a complete quotient map. Thus, if y ∈Mp(S )+,
then there is a hermitian x ∈Mp(R) such that for every ε > 0 there is a kε ∈
kerψ such that x ′ = ε1R + x + kε ∈Mp(R)+. We have kerψ ⊆ ker(ν ◦μ),
as θ ◦ψ = ν ◦μ; thus, εν ◦μ(1)+ ν ◦μ(x) = ν ◦μ(x ′) ∈Mp(T )+. As this
is true for every ε > 0, ν ◦μ(x) = θ ◦ψ(x) = θ(s) ∈Mp(T )+, which proves
that θ is cp and, hence, that θ is a complete order isomorphism.

Conversely, if θ is a complete order isomorphism, then ψ = θ−1 ◦ ν ◦ μ.
Because ν is a complete quotient map and θ−1 and μ are complete order
isomorphisms, one easily deduces that ψ is a complete quotient map.

We show in Theorems 5.2 (3) and 5.4 (2) below that an affirmative solution
of two problems concerning the tensor products of operator systems of matrices
will result in an affirmative solution to the Kirchberg Problem.

Consider the following commutative diagram of vector spaces and linear
transformations:

(9)

Mn ⊗min Mn
∼=−−−−−−→Mn ⊗max Mn

φ⊗φ φ⊗φ

Wn ⊗min Wn −−−−−−→idWn ⊗Wn

Wn ⊗max Wn.

(complete quotient map)

Above, the identity map on Mn ⊗ Mn is a complete order isomorphism
between Mn ⊗min Mn and Mn ⊗max Mn, and the map φ ⊗ φ : Mn ⊗max
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Mn → Wn ⊗max Wn is a complete quotient map by Corollary 1.13. The map
θ = idWn⊗Wn

is a linear isomorphism of Wn ⊗min Wn and Wn ⊗max Wn with
θ−1 completely positive. Therefore, Lemma 5.1 asserts that leftmost arrow on
the diagram is a complete quotient map if and only if the bottom arrow is a
complete order isomorphism. The following result captures this fact and two
additional equivalences.

Theorem 5.2. The following statements are equivalent:

(1) the map φ ⊗ φ : Mn ⊗min Mn → Wn ⊗min Wn is a complete quotient
map;

(2) Wn ⊗min Wn = Wn ⊗max Wn;

(3) En ⊗min En = En ⊗max En;

(4) Wn has property (�n).

If any of these equivalent statements is true for every n ∈ N, then the Kirchberg
Problem has an affirmative solution.

Proof. The equivalence of (1) and (2) is, as mentioned above, a con-
sequence of Corollary 1.13 and Lemma 5.1.

Statements (2) and (3) are equivalent by duality. Indeed, by Proposition 2.9,
the operator systems W d

n and En are completely order isomorphic. Therefore,
the hypothesis En ⊗min En = En ⊗max En is equivalent to W d

n ⊗min W d
n =

W d
n ⊗max W d

n and, by passing to duals (Proposition 1.16), is equivalent to
Wn ⊗max Wn = Wn ⊗min Wn.

Theorem 3.2 (4) asserts that Wn has property (�n) if and only if
(Mn/Jn) ⊗min Wn = (Mn/Jn) ⊗max Wn. Since Mn/Jn is completely order
isomorphic to Wn, we deduce that statements (2) and (4) are equivalent.

Suppose now that any one of the equivalent conditions holds, for every
n ∈ N. By Theorem 3.2 (4), C∗(Fn−1) ⊗min Wn = C∗(Fn−1) ⊗max Wn. But
this means that C∗(Fn−1) has property (�n) and so again Theorem 3.2 (4) is
invoked to conclude that C∗(Fn−1)⊗min C∗(Fn−1) = C∗(Fn−1)⊗max C∗(Fn−1).
As this is true for all n, we obtain C∗(F∞)⊗min C∗(F∞) = C∗(F∞)⊗max C∗(F∞)
by the direct limit argument used in the proof of Corollary 3.3.

In moving from the operator system Wn to the operator system Sn, it is
interesting to contrast Theorem 5.2 above with Theorem 5.3 below.

Theorem 5.3 ([9]). The Kirchberg Problem has an affirmative solution if
and only if Sn ⊗min Sn = Sn ⊗c Sn for every n ∈ N.

Proof. If Sn ⊗min Sn = Sn ⊗c Sn for every n ∈ N, then C∗(F∞) has
the weak expectation property [9, Theorem 9.14] which in turn implies that
C∗(F∞)⊗min C∗(F∞) = C∗(F∞)⊗max C∗(F∞) [11, Proposition 1.1(i)].
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Conversely, if C∗(F∞)⊗min C∗(F∞) = C∗(F∞)⊗max C∗(F∞), then C∗(F∞)
has WEP [11, Proposition 1.1(iii)], and so Sn ⊗min Sn = Sn ⊗c Sn for every
n ∈ N [9, Theorem 9.14].

We now turn to our second multilinear algebra problem.

Theorem 5.4. The following statements are equivalent:

(1) φ ⊗ φ : Tn ⊗min Tn→ Sn−1 ⊗min Sn−1 is a complete quotient map;

(2) Un ⊗max Un ⊆coi Vn ⊗max Vn.

If either of these equivalent statements is true for every n ∈ N, then the
Kirchberg Problem has an affirmative solution.

Proof. Assume (1) and letμ = φ⊗φ. Thus,μ is a complete quotient map.
By Theorem 4.5, T d

n = Un and S d
n−1 = Vn are complete order isomorphisms.

Thus, if μ is a complete quotient map, then

μd : (Sn−1 ⊗min Sn−1)
d → (Tn ⊗min Tn)

d

is a complete order injection, but

(Sn−1 ⊗min Sn−1)
d = Un ⊗max Un

and
(Tn ⊗min Tn)

d = Vn ⊗max Vn.

Conversely, assume (2). That is, Un ⊗max Un ⊆coi Vn ⊗max Vn, and so

S d
n−1 ⊗max S d

n−1 = Un ⊗max Un ⊆coi Vn ⊗max Vn = T d
n ⊗max T d

n .

Denote this complete order injection S d
n−1 ⊗max S d

n−1 → T d
n ⊗max T d

n by ϑ .
Hence, in passing to duals, we obtain a complete quotient map

ϑd : Tn⊗minTn = (T d
n ⊗maxT d

n )
d → (S d

n−1⊗maxS d
n−1)

d = Sn−1⊗minSn−1.

Since ϑd = μ, statement (1) follows.
Assume that one of (1) or (2) is true for all n ∈ N. By hypothesis, each y ∈

Mp(Sn−1 ⊗min Sn−1)+ is given by μ(p)(x) for some x ∈Mp(Tn ⊗min Tn)+.
Recall from Proposition 4.2 that Tn is (min,c)-nuclear; therefore, in particular,
Tn⊗min Tn = Tn⊗c Tn. Thus, since Mp(Tn⊗min Tn)+ =Mp(Tn⊗c Tn)+
and because μ : Tn ⊗c Tn → Sn−1 ⊗c Sn−1 is completely positive, y ∈
Mp(Sn−1 ⊗c Sn−1)+, which implies that Sn−1 ⊗min Sn−1 = Sn−1 ⊗c Sn−1.
As this is true for all n ∈ N, Theorem 5.3 completes the argument.
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6. C∗-Algebras with the Weak Expectation Property

By considering the positive liftings in Proposition 2.5 in the case of the operator
system Tn, we are led to consider a special case of property (�n), which we
call property (�n).

Definition 6.1. An operator system S is said to have property (�n) for a
fixed n ∈ N if, for every p ∈ N and all Si ∈Mp(S ), where 1− n ≤ i ≤ n− 1
and j �= i, for which

n−1∑
i=1−n

ui ⊗ Si ≥ 0 in C∗(Fn−1)⊗min Mp(S ),

then for every ε > 0 there exist Rεij ∈Mp(S ), 1 ≤ i, j ≤ n, such that

(1) Rε = [Rεij ]1≤i,j≤n is positive in Mn(Mp(S )),

(2) Rεij = 0 for all |i − j | ≥ 2, Rεi,i+1 = Si , and Rεi+1,i = S−i for all i, and

(3)
∑n

i=1 R
ε
ii = S0 + ε1Mp(S ).

We say that S has property (�) if it has property (�n) for every n ∈ N.

Proposition 6.2. The following statements are equivalent for an operator
system S :

(1) S has property (�n);

(2) φ ⊗ idS : Tn ⊗min S → Sn−1 ⊗min S is a complete quotient map.

Proof. To set up the argument, note that Mp(R⊗minT ) and R⊗minMp(T )

are completely order isomorphic operator systems for any p ∈ N and operator
systems R and T . IfZ ∈ Sn−1⊗Mp(S ) is arbitrary, thenZ =∑n−1

i=1−n ui⊗Si
for some Si ∈ Mp(S ). In this case Z = [φ ⊗ idS ](p)(X), where (one choice
of) X ∈ Tn ⊗Mp(S ) is given by

X =
n∑
j=1

Ejj ⊗ S0 +
n∑
i=1

Ei,i+1 ⊗ nSi +
n∑
i=1

Ei+1,i ⊗ nS−i .

Via the First Isomorphism Theorem, Z is the image of the quotient element Ẋ.
Choosep and suppose thatZ ∈ Sn−1⊗minMp(S ) is positive. By definition,

the element Ẋ is positive if and only if for every ε > 0 there is a Kε =
[Kε

ij ]
n
i,j=1 ∈ Tn⊗Mp(S ) such that (i)Kε is diagonal, (ii)

∑n
i=1K

ε
ii = 0, and

(iii) R̃ε = ε1 + X + Kε is positive in Tn ⊗min Mp(S ). But R̃ε is positive if
and only if Rε = 1

n
R̃ε is positive. Note that Rε = [Rεij ]i,j is tridiagonal with∑

i R
ε
ii = ε1Mp(S ) + S0, Rεi,i+1 = Si , and Rεi+1,i = S−i .
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Thus, if S has property (�n), then the positivity of Rε for every ε > 0
implies that Ẋ is positive. Conversely, if φ ⊗ idS is a complete quotient map,
then the positivity of Z implies that of Ẋ and, hence, the positivity of Rε also,
for every ε > 0.

Theorem 6.3. The following statements are equivalent for a unital C∗-
algebra A :

(1) A has property (�);

(2) A has WEP.

Proof. Assume (1) holds and consider the following commutative diagram
of vector spaces and linear transformations:

Tn ⊗min A
∼=−−−−−−→ Tn ⊗max A

φ⊗id φ⊗id

Sn−1 ⊗min A −−−−−−→
idSn−1⊗A

Sn−1 ⊗max A .

The top arrow is a complete order isomorphism by Proposition 4.2 and [10,
Theorem 6.7], and the leftmost arrow (φ ⊗ id) is a complete quotient map, by
hypothesis. By Proposition 1.12, the righthand arrow is also a quotient map.
Now apply Lemma 5.1 to conclude that the bottom arrow is a complete order
isomorphism.

Thus, Sn−1 ⊗min A = Sn−1 ⊗max A , for all n ∈ N. By the direct limit
argument of Corollary 3.3 we arrive at C∗(F∞) ⊗min A = C∗(F∞) ⊗max A ,
which is equivalent to A having WEP. Thus, statement (1) is established.

Next assume ((2)). Thus, C∗(F∞) ⊗min A = C∗(F∞) ⊗max A , by [11,
Proposition 1.1(iii)], and so C∗(Fn)⊗min A = C∗(Fn)⊗max A , for every n [9,
Lemma 7.5]. Therefore, for every n,

Sn ⊗min A ⊆coi C∗(Fn)⊗min A = C∗(Fn)⊗max A .

By the inclusion and equality above,

Sn ⊗min A = Sn ⊗c A = Sn ⊗max A .

Every unital C∗-algebra is (c,max)-nuclear [10, Theorem 6.7]. Thus, using the
fact that Tn is (min,c)-nuclear, we deduce that

Tn ⊗min A = Tn ⊗c A = Tn ⊗max A .
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We are therefore led to the following commutative diagram:

Tn ⊗min A
∼=−−−−−→ Tn ⊗max A

φ⊗id φ⊗id

Sn−1 ⊗min A −−−−−→∼= Sn−1 ⊗max A .

(complete quotient map)

Hence, by Lemma 5.1 the map φ ⊗ id : Tn ⊗min A → Sn−1 ⊗min A is a
complete quotient map for every n, and so A has property (�), which proves
(1).

By similar methods we can also prove:

Theorem 6.4. If Sn−1 has property (�n) for every n ∈ N, then Kirchberg’s
Problem has an affirmative solution.

7. Injective Envelopes

In the earlier sections we have seen that operator system quotients of matrix
spaces can have largeC∗-envelopes. In this section, we examine their injective
envelopes.

Recall that the injective envelope [14, Chapter 15] of a unital C∗-algebra
A is denoted by I (A). An AW∗-algebra is a unital C∗-algebra B with the
property that, for any nonempty subset X ⊂ B, there is a projection e ∈ B

such that annR(X ) = {ey | y ∈ B}, where

annR(X ) = {b ∈ B | xb = 0,∀ x ∈ X }.
Like von Neumann algebras, AW∗-algebras admit a decomposition into direct
sums of AW∗-algebras of types I, II, and III. An AW∗-factor is an AW∗-algebra
with trivial centre. The theory of AW∗-algebras is relevant to the study of
injective envelopes because every injective C∗-algebra is monotone complete
and every monotone complete C∗-algebra is an AW∗-algebra.

Theorem 7.1. If A �= C is a unital, separable, prime C∗-algebra with only
trivial projections, then its injective envelope I (A) is a type III AW∗-factor
with no normal states.

Proof. Under the hypothesis given, the injective envelope of A cannot be
a W∗-algebra (that is, a von Neumann algebra): for if I (A) were a von Neu-
mann algebra, then the separability of A would imply that A has a nontrivial
projection (see [1, Theorem 2.2(v)] or [8, §3]), contrary to the hypothesis.

As A is separable, A has a faithful representation as a unital C∗-subalgebra
of B(H ) for some separable Hilbert space H . The injective envelope of A

is obtained as follows [14]: there is a ucp projection φ : B(H ) → B(H )
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mapping onto an operator system I that contains A as a subsystem and such
that I is an injective C∗-algebra under the Choi-Effros product x ◦y = φ(xy),
x, y ∈ I [5], [14]. The injective envelope I (A) of A , when I (A) is viewed as
a C∗-algebra, is precisely the operator system I with the Choi-Effros product
◦.

Because H is separable, B(H ) has a faithful state ω. Let ϕ be the state
on I given by ϕ(x) = ω (φ(x)). By the Schwarz inequality, ϕ(x∗ ◦ x) =
ω (φ(x∗x)) ≥ ω (φ(x)∗φ(x)), which implies that ϕ is a faithful state on the
AW∗-algebra I (A).

The hypothesis that A is prime (that is, no two nonzero ideals can have
zero intersection) implies that the injective envelope I (A) is anAW∗-factor [7,
Theorem 7.1]. We show that the only type of factor that I (A) could possibly
be is a factor of type III.

If I (A) were a factor of type I, then I (A) would be coincide with B(H )

for some Hilbert space H , implying that I (A) is a von Neumann algebra,
which we have argued is not possible. If I (A) were a factor of type II (finite)
or II∞, then the fact that I (A) admits a faithful state implies that I (A) is a
von Neumann algebra [6], which again is not possible. Therefore, I (A) must
be of type III.

Finally, if I (A)were to have a normal state, then I (A)would have a direct
summand which is a von Neumann algebra. But the fact that I (A) is a factor
discounts the existence of a nonzero direct summand, and because I (A) is not
a W∗-algebra, we conclude that I (A) has no normal states.

Corollary 7.2. The injective envelope of C∗(Fn), where n ≥ 2, is a type
III AW∗-factor with no normal states.

Proof. If n ≥ 2, then C∗(Fn) is unital, separable, primitive (and therefore
prime), and has only trivial projections [4].

Corollary 7.3. The injective envelopes of Mn/Jn and Tn/Jn coincide.
When n ≥ 2, their injective envelope is a type III AW∗-factor with no normal
states.

Proof. The injective envelope of an operator system S and its C∗-envelope
C∗e(S ) coincide. Because C∗e(Tn/Jn) = C∗e(Mn/Jn) = C∗(Fn−1) (Theo-
rem 2.6), the result follows.
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6. Elliott, G. A., Saitō, K., and Wright, J. D. M., Embedding AW ∗-algebras as double commut-
ants in type I algebras, J. London Math. Soc. (2) 28 (1983), 376–384.

7. Hamana, M., Regular embeddings of C∗-algebras in monotone complete C∗-algebras,
J. Math. Soc. Japan 33 (1981), 159–183.

8. Hamana, M., The centre of the regular monotone completion of a C∗-algebra, J. London
Math. Soc. (2) 26 (1982), 522–530.

9. Kavruk, A. S., Paulsen, V. I., Todorov, I. G., and Tomforde, M., Quotients, exactness and
nuclearity in the operator system category, arXiv:1008.2811v2 (2010), preprint.

10. Kavruk, A. S., Paulsen, V. I., Todorov, I. G., and Tomforde, M., Tensor products of operator
systems, J. Funct. Anal. 261 (2011), 267–299.

11. Kirchberg, E., On nonsemisplit extensions, tensor products and exactness of group C∗-
algebras, Invent. Math. 112 (1993), 449–489.

12. Kirchberg, E., Commutants of unitaries in UHF algebras and functorial properties of exact-
ness, J. Reine Angew. Math. 452 (1994), 39–77.

13. Ozawa, N., About the QWEP conjecture, Internat. J. Math. 15 (2004), 501–530.
14. Paulsen, V., Completely Bounded Maps and Operator Algebras, Cambridge Studies in Adv.

Math. 78, Cambridge Univ. Press, Cambridge 2002.
15. Paulsen, V. I., Power, S. C., and Smith, R. R., Schur products and matrix completions, J. Funct.

Anal. 85 (1989), 151–178.
16. Paulsen, V. I., Todorov, I. G., and Tomforde, M., Operator system structures on ordered

spaces, Proc. Lond. Math. Soc. (3) 102 (2011), 25–49.
17. Pisier, G., A simple proof of a theorem of Kirchberg and related results on C∗-norms, J. Op-

erator Theory 35 (1996), 317–335.
18. Pisier, G., Introduction to Operator Space Theory, London Math. Soc. Lecture Note 294,

Cambridge Univ. Press, Cambridge 2003.

DEPARTMENT OF MATHEMATICS AND STATISTICS
UNIVERSITY OF REGINA
REGINA, SASKATCHEWAN S4S 0A2
CANADA
E-mail: Doug.Farenick@uregina.ca

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF HOUSTON
HOUSTON, TEXAS 77204-3476
U.S.A.
E-mail: vern@math.uh.edu


