
MATH. SCAND. 111 (2012), 187–209

ON AREA STATIONARY SURFACES IN THE
SPACE OF ORIENTED GEODESICS OF

HYPERBOLIC 3-SPACE

NIKOS GEORGIOU∗

Abstract
We study area-stationary surfaces in the space L(H3) of oriented geodesics of hyperbolic 3-space,
endowed with the canonical neutral Kähler structure. We prove that every holomorphic curve
in L(H3) is an area-stationary surface. We then classify Lagrangian area-stationary surfaces � in
L(H3) and prove that the family of parallel surfaces in H3 orthogonal to the geodesics γ ∈ � form a
family of equidistant tubes around a geodesic. Finally we find an example of a two parameter family
of rotationally symmetric area-stationary surfaces that are neither Lagrangian nor holomorphic.

The last two decades has seen increasing interest in spaces L(M) of oriented
geodesics of a manifold M, with particular attention to their rich geometric
structure. In the case of the space L(E3) of oriented affine lines in Euclidean
3-space this interest can be traced back over a hundred years to Weierstrass’s
construction of minimal surfaces [16] and Whittaker’s solutions to the wave
equation [17].

A natural complex structure on L(E3) was considered by Hitchin to construct
monopoles in E3 [11], and then Guilfoyle and Klingenberg understood that
the canonical symplectic structure on L(E3) is compatible with this complex
structure [7], [8] and that the associated Kähler metric is of neutral signature.
Salvai subsequently proved that this neutral Kähler metric is (up to addition of
the round metric) the unique metric on L(E3) that is invariant under Euclidean
motions [12]. This Kähler structure has recently been used by Guilfoyle and
Klingenberg to solve an 80 year old conjecture of Carathéodory [10].

More recently, Anciaux, Guilfoyle and Romon [2] have studied Lagrangian
area-stationary surfaces in TN , with N being an oriented Riemannian surface
and the neutral Kähler structure generalising that of the space of oriented
geodesics in Euclidean and Lorentzian 3-space.

In addition, Salvai constructed a neutral Kähler metric on the space L(H3)

of oriented geodesics in hyperbolic 3-space [13], while the geometry of L(H3)
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was explored by Georgiou, Guilfoyle and Klingenberg [4], [5], [6].
Recently Alekseevsky, Guilfoyle and Klingenberg have given a description

of all metrics defined on the space L(M) of oriented geodesics of space forms
or rank 1 Riemannian symmetric spaces, that are invariant under the isometry
group of M [1].

The current paper can be considered as a continuation of the work of Geor-
giou and Guilfoyle (see [6]) on surface theory of L(H3). Here we study im-
mersed area stationary surfaces, that is, immersed surfaces that area stationary
for the area functional.

Since L(H3) = S2 × S2 − {diag}, we can consider surfaces in L(H3) of
rank 0, 1 or 2, depending on the rank of the projection onto the first factor.

In the first two sections we illustrate the geometric background on the
construction of L(H3) and its submanifold theory, including geodesics and
surfaces (further details can be found in [4], [5], [6]).

In section 3 we investigate rank 1 surfaces in L(H3) and prove that there
are no holomorphic curves of rank 1. Moreover, in the case of a surface being
Lagrangian of rank 1, we prove that it can not be area stationary.

Surfaces of rank 2 are studied in section 4 and, in particular, we prove
that every holomorphic curve of rank 2 is area stationary and, since the only
holomorphic curve of rank 0 are orthogonal to a horosphere, we conclude that
every holomorphic curve is area stationary.

We also classify all Lagrangian area stationary surfaces. We summarize this
result as:

Main Theorem. Let S ⊂ H3 be a C3 smooth immersed oriented surface
and � ⊂ L(H3) be the Lagrangian surface formed by the oriented geodesics
normal to S.

The surface � is area stationary iff S is an equidistant tube around a
geodesic in H3. In terms of holomorphic coordinates (μ1, μ2) on L(H3), the
surface � is given by

μ̄2 = 1 + λ1μ1

λ2 + μ1
,

where λ1, λ2 ∈ C with λ1λ2 �= 1.

Finally, in section 5 we obtain a two parameter family of area stationary
rotationally symmetric surfaces that are neither Lagrangian nor holomorphic.

1. The Neutral Kähler Metric on L(H3)

We now describe the construction of the canonical Kähler metric on the space
L(H3) of oriented geodesics in Hyperbolic 3-space – further details can be
found in [4].
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Consider the four dimensional manifold S2×S2 endowed with the canonical
complex structure J = j ⊕j . Here, and throughout, we write P1 for S2 with the
standard complex structure. By taking local holomorphic coordinates (μ1, μ2),
we set � = {(μ1, μ2) ∈ P1 × P1 | μ1μ̄2 = −1}. Then L(H3) can be identified
with P1 × P1 − �.

The Kähler metric G and the symplectic form � on L(H3) are expressed
locally by:

G = Im

(
2

(1 + μ1μ̄2)2
dμ1 ⊗dμ̄2

)
, � = − Re

(
2

(1 + μ1μ̄2)2
dμ1 ∧dμ̄2

)
.

It has been proven that the Kähler metric G is scalar flat, conformally flat
and is of signature (+ + −−).

Moreover, G is invariant under the action induced on L(H3) by the isometry
group of H3. Indeed, this has been shown to be the unique Kähler metric on
L(H3) with this property [13].

In order to transfer geometric data between L(H3) and H3 we use the cor-
respondence space:

L(H3) × R

π1
�

L(H3) H3

Given γ ∈ L(H3), the set � ◦π−1
1 (γ ) is the oriented geodesic in H3, while, for

a point p ∈ H3, π1 ◦ �−1(p) is the set of oriented geodesics in L(H3) that pass
through p.

The map � takes an oriented geodesic γ in L(H3) and a real number r to
the point on γ an affine parameter distance r from some fixed point on the
geodesic. This choice of point on each geodesic can be made globally, but we
more often just use a local choice, which is sufficient for our purposes.

Let (x0, x1, x2) be the local coordinates of the upper-half space model of
H3. Then, in terms of holomorphic coordinates (μ1, μ2) on L(H3) the map �

has expression:

(1.1) z = 1 − μ1μ̄2

2μ̄2
+

(
1 + μ1μ̄2

2μ̄2

)
tanh r, t = |1 + μ̄1μ2|

2|μ2| cosh r
,

where z = x1 + ix2 and t = x0.

2. Surfaces in L(H3)

Our interest in this paper is focused on the study of two parameter families
of oriented geodesics, or surfaces in L(H3). Therefore, we recall some basic
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results on the surface theory of the space of oriented geodesics in hyperbolic
3-space – further details can be found in [6].

In order to avoid any confusion, whether we use the expression of geodesic
congruence we mean a surface in L(H3).

For computational purposes, we give explicit local parameterizations of the
geodesic congruence. The dual picture of a surface in L(H3) is to consider the
surfaces in H3 that are orthogonal to a given set of geodesics. However, not
every geodesic congruence has such orthogonal surfaces – indeed, most don’t.
To explain this further, we consider the first order properties of �, which can
be described by two complex functions, the optical scalars: ρ, σ : �×R 
→ C.
The real part � and imaginary part λ of ρ are the divergence and twist of the
geodesic congruence, while σ is the shear.

Given a surface � ⊂ L(H3), a trio {e0, e+, e−} of complex vector fields
in C ⊗ T H3 is said to be an adapted null frame if for each γ ∈ �, we have
e0 = γ̇ and e+ is the complex conjugate of e− such that the orientation of
{e0, Re(e+), Im(e+)} is the standard orientation on H3, and:

〈e0, e0〉 = 〈e+, e−〉 = 1, 〈e0, e+〉 = 〈e+, e+〉 = 0.

The optical scalars are defined by:

ρ = 〈∇e−e+, e0〉, σ = 〈∇e+e+, e0〉,
where ∇ denotes the Levi-Civita connection of the hyperbolic metric.

In terms of the holomorphic coordinates (μ1, μ2), the optical scalars have
the following local expressions:

σ = 8μ2J2̄1̄

μ̄2�|1 + μ1μ̄2|2

ρ = −1 − 8e−r

�

[
J21̄

(1 + μ̄1μ2)2
er − |μ2|2J11̄

|1 + μ̄1μ2|2 e−r

]
,

where
Jkl = ∂μk∂̄μl − ∂̄μk∂μl,

and

1

4
� = J22̄

|μ2|2|1 + μ1μ̄2|2 e2r + J2̄1

(1 + μ1μ̄2)2

+ J1̄2

(1 + μ̄1μ2)2
+ |μ2|2J11̄

|1 + μ1μ̄2|2 e−2r .
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A surface � in L(H3), is said to be Lagrangian if the symplectic form �

pulled back to � vanishes. We now give the following Proposition:

Proposition 1 ([6]). The following statements are equivalent:

(i) the geodesic congruence � is Lagrangian,

(ii) locally there exists an embedded surface S in H3 such that the geodesics
of � are normal to S,

(iii) the imaginary part λ of ρ (the twist) is zero.

Let � be a Lagrangian surface in L(H3) parameterized by ν 
→ (μ1(ν, ν̄),

μ2(ν, ν̄)). The surfaces S in H3 orthogonal to the geodesics of � are given by
(1.1), where the functions r = r(ν, ν̄) solve:

(2.1) 2∂r = μ2

μ̄1μ2 + 1

(
∂μ̄1 + ∂μ2

μ2
2

)
+ μ̄2

μ1μ̄2 + 1

(
∂μ1 + ∂μ̄2

μ̄2
2

)
,

where ∂ denotes the derivative with respect of ν.
The set of Lagrangian geodesic congruences is divided into three categories,

depending on the rank of the immersion of the geodesic congruence.

Definition 1. Given an immersion f : � → L(H3), consider the map
(π ◦ f )∗ : T � → T P1, where π is projection onto the first factor of L(H3) =
P1 × P1 − �. The rank of the immersion f at a point γ ∈ � is defined to be
the rank of this map at γ , which can be 0, 1 or 2.

Note that by reversing the orientation of the geodesics, the rank can be
defined by projection onto the second factor. A rank 0 Lagrangian geodesic
congruence correspond to a geodesic congruence orthogonal to a horosphere.

In the Lagrangian case, the functions σ and ρ have the following interpret-
ation in terms of the second fundamental form of the orthogonal surfaces in
H3.

Proposition 2 ([6]). Let S ⊂ H3 be a C2 immersed surface and � ⊂ L(H3)

be the oriented normal geodesic congruence. Then

(2.2) |σ | = 1

2
|λ1 − λ2|, ρ = −1

2
(λ1 + λ2),

where λ1 and λ2 are the principal curvatures of S.

The induced metric G� on a Lagrangian surface � in L(H3) can be described
by the functions σ and λ:

Theorem 1 ([6]). Let � be a surface in L(H3). The induced metric is Lorentz
(degenerate, Riemannian) iff |σ |2 − λ2 > 0 (= 0, < 0), where λ and σ are
the twist and the shear of �.
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The theorem says that if a surface is Lagrangian then is either Lorentz or
degenerate, the latter occurring at umbilic points on the orthogonal surfaces in
H3.

The following theorem recovers the Weierstrass representation for the flat
surfaces in H3:

Theorem 2 ([6]). Let S be an oriented C2 smooth immersed surface in H3

with normal geodesic congruence �. Assume that the metric G� induced on
� by the neutral Kähler metric is non-degenerate.

Then S is flat iff � is of rank two and is parameterized by μ2 = μ2(μ̄1),
that is, μ2 is an anti-holomorphic function of μ1.

We use the complex structure J of L(H3) in order to describe another im-
portant class of surfaces:

Definition 2. A point γ on a surface � ⊂ L(H3) is said to be a complex
point if the complex structure J acting on L(H3) preserves Tγ �. A surface
� ⊂ L(H3) is said to be a holomorphic curve if all of the points of � are
complex points.

In particular:

Proposition 3 ([6]). A point γ on a surface � is complex iff the shear
vanishes along γ .

By Proposition 2, observe that complex points on a Lagrangian surface
� ⊂ L(H3) correspond to umbilic points on the surfaces in H3 orthogonal to
�.

3. Non-existence of rank one area stationary surfaces

Consider a surface � ⊂ L(H3) of rank one. Then � can be locally paramet-
erized by μ1 = μ1(s) and μ2 = μ2(s, t) where (s, t) ∈ D with D being an
open subset of R2.

We have the following:

Proposition 4. An immersed holomorphic curve in L(H3) cannot be of
rank 1.

Proof. Assume the existence of an immersed rank one surface on L(H3)

such that in an open neighborhood U ⊂ � is holomorphic, which, by Proposi-
tion 3, is equivalent to the vanishing of the shear σ in this open set. Considering
now the local parametrisation � → L(H3) : (s, t) 
→ (μ1(s), μ2(s, t)), the
vanishing of the shear implies the vanishing of J2̄ 1̄, which means ∂sμ̄1∂t μ̄2 = 0
on U .
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Then, in an open subset V of U , either ∂sμ̄1 = 0 or ∂t μ̄2 = 0. In any case,
we have a contradiction since, if ∂sμ̄1 = 0 then μ1 is constant and therefore
� is of rank 0 on V , and if ∂t μ̄2 = 0 then μ2 only depends on s and � would
not be immersed.

We now assume that the rank 1 surface � is Lagrangian. In this case the
induced metric g = f ∗G has components in local coordinates (s, t):

gss = 2 Im

[
∂sμ1∂sμ̄2

(1 + μ1μ̄2)2

]
, gst = Im

[
∂sμ1∂t μ̄2

(1 + μ1μ̄2)2

]
, gtt = 0,

and the nonzero Christoffel symbols are given by:

�s
ss = Re

(
∂2
s μ1

∂sμ1
− 2μ̄2∂sμ1

1 + μ1μ̄2

)
,

�t
st = Re

(
∂2
stμ2

∂tμ2
− 2μ̄1∂sμ2

1 + μ̄1μ2

)
,

�t
tt = Re

(
∂2
t μ2

∂tμ2
− 2μ̄1∂tμ2

1 + μ̄1μ2

)
.

It is already known that the induced metric g of a rank one Lagrangian surface
� is scalar flat [6].

The second fundamental form h = h
μk

ij has non-vanishing components:

hμ1
ss = ∂2

s μ1 − 2μ̄2(∂sμ1)
2

1 + μ1μ̄2
− ∂sμ1�

s
ss,

hμ2
ss = ∂2

s μ2 − 2μ̄1(∂sμ2)
2

1 + μ̄1μ2
− ∂sμ2�

s
ss − ∂tμ2�

t
ss,

h
μ2
st = ∂2

stμ2 − 2μ̄1∂sμ2∂tμ2

1 + μ̄1μ2
− ∂tμ2�

t
st ,

h
μ2
t t = ∂2

t μ2 − 2μ̄1(∂tμ2)
2

1 + μ̄1μ2
− ∂tμ2�

t
tt ,

with h
μ̄k

ij = h
μk

ij .

In contrast to what occurs in the space L(E3) of oriented lines in Euclidean
3-space [9], we have the following:

Proposition 5. There are no area stationary Lagrangian surfaces in L(H3)

of rank one.
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Proof. Let � be a Lagrangian surface in L(H3) of rank one, locally para-
meterized by μ1 = μ1(s) and μ2 = μ2(s, t).

The mean curvature vector H = 2 Re(Hμ1∂/∂μ1 + Hμ2∂/∂μ2) in local
coordinates (s, t) is given by:

Hμi = gsshμi

ss + 2gsth
μi

st + gtth
μi

tt

Then Hμ1 = 0 and it remains to find Hμ2 . By using the expressions of h
μi

ij and
by considering the Lagrangian condition:

(3.1)
∂sμ1∂t μ̄2

(1 + μ1μ̄2)2
= − ∂sμ̄1∂tμ2

(1 + μ̄1μ2)2
,

we find Hμ2 , and finally the mean curvature vector H of � is:

H = 4 Re

[
gst (1 + μ̄1μ2)

2

∂sμ̄1
∂t

(
∂sμ1∂sμ̄2

(1 + μ1μ̄2)2
+ ∂sμ̄1∂sμ2

(1 + μ̄1μ2)2

)
∂

∂μ2

]
,

which means that the surface � is area stationary iff

∂t

[
Re

(
∂sμ1∂sμ̄2

(1 + μ1μ̄2)2

)]
= 0.

The above condition and the Lagrangian condition give:

A∂sμ̄2 + Ā∂sμ2 = f (s),(3.2)

A∂t μ̄2 + Ā∂tμ2 = 0,(3.3)

where
A = ∂sμ1

(1 + μ1μ̄2)2
.

Differentiate equations (3.2) and (3.6) with respect to t and s, respectively, and
then subtract:

(3.4) Re(∂tA∂sμ̄2 − ∂sĀ∂t μ̄2) = 0.

After a brief computation we get:

∂sA∂t μ̄2 = ∂2
s μ1∂t μ̄2

(1 + μ1μ̄2)2
− 2μ1∂sμ1∂sμ̄2∂t μ̄2

(1 + μ1μ̄2)3
− 2μ̄2(∂sμ1)

2∂t μ̄2

(1 + μ1μ̄2)3
,

∂tA∂sμ̄2 = −2μ1∂sμ1∂sμ̄2∂t μ̄2

(1 + μ1μ̄2)3
,



on area stationary surfaces 195

and then condition (3.4) becomes

(3.5) Re

(
2μ̄2(∂sμ1)

2∂t μ̄2

(1 + μ1μ̄2)3
− ∂2

s μ1∂t μ̄2

(1 + μ1μ̄2)2

)
= 0.

Using the Lagrangian condition (3.1) in (3.5), we have

(3.6)
μ̄2∂sμ1

1 + μ1μ̄2
− μ2∂sμ̄1

1 + μ̄1μ2
= 1

2

(
∂2
s μ1

∂sμ1
− ∂2

s μ̄1

∂sμ̄1

)
= h(s).

Integration of (3.1) with respect of t gives

(3.7)
μ̄2∂sμ1

1 + μ1μ̄2
+ μ2∂sμ̄1

1 + μ̄1μ2
= g(s),

and then the sum (3.6) + (3.7), is

μ̄2∂sμ1

1 + μ1μ̄2
= h(s) + g(s) = m(s)∂sμ1.

Hence
μ̄2 = m

1 − mμ1
= μ̄2(s),

which is a contradiction, since � is of rank one.

4. Rank two area stationary surfaces

Consider a rank 2 surface � in L(H3). That is, a surface � given locally
by μ1 → (μ1, μ2(μ1, μ̄1)) for some smooth function μ2 : C → C. We
are interested in area stationary surfaces in L(H3) of rank 2 and therefore we
consider variations of the area integral

A (�) =
∫

�

|G| 1
2 dμ1 dμ̄1.

For an arbitrary parameterization μ1 → (μ1, μ2(μ1, μ̄1)) the area integral is

|G| = �2

64
(λ2 − |σ |2),

where

λ = 4i

�

[
∂μ2

(1 + μ̄1μ2)2
− ∂̄μ̄2

(1 + μ1μ̄2)2

]
,(4.1)

σ = 8μ2∂μ̄2

μ̄2�|1 + μ1μ̄2|2 ,(4.2)
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and

(4.3)
1

4
� = ∂μ2∂̄μ̄2 − ∂̄μ2∂μ̄2

|μ2|2|1 + μ1μ̄2|2 e2r

− 2Re

(
∂μ2

(1 + μ̄1μ2)2

)
+ |μ2|2

|1 + μ1μ̄2|2 e−2r ,

with ∂ denotes the differentiation with respect to μ1.
A surface is area stationary if δA (�) = 0. In order to compute this quantity

note that
�2λ2

64
= −1

4

[
∂μ2

(1 + μ̄1μ2)2
− ∂̄μ̄2

(1 + μ1μ̄2)2

]2

,

and so

δ

(
�2λ2

64

)

= − Re

[
∂μ2

(1 + μ̄1μ2)2
− ∂̄μ̄2

(1 + μ1μ̄2)2

][
∂δμ2

(1 + μ̄1μ2)2
− 2μ̄1∂μ2δμ2

(1 + μ̄1μ2)3

]
,

while, since
�2|σ |2

64
= ∂μ̄2∂̄μ2

|1 + μ̄1μ2|4 ,

we have

δ

(
�2|σ |2

64

)
= 2 Re

(
∂μ̄2∂̄δμ2

|1 + μ̄1μ2|4 − 2μ̄1

1 + μ̄1μ2

∂μ̄2∂̄μ2δμ2

|1 + μ̄1μ2|4
)

.

Combining these we find that

δ|G| 1
2 = 16

�
√

λ2 − |σ |2 Re

{
−1

2

[
∂μ2

(1 + μ̄1μ2)2
− ∂̄μ̄2

(1 + μ1μ̄2)2

]

· ∂

(
δμ2

(1 + μ̄1μ2)2

)
− ∂μ̄2∂̄δμ2

|1 + μ̄1μ2|4 + 2μ̄1

1 + μ̄1μ2

∂μ̄2∂̄μ2δμ2

|1 + μ̄1μ2|4
}

= 2 Re

[
λi√

λ2 − |σ |2 ∂

(
δμ2

(1 + μ̄1μ2)2

)
− μ̄2σ ∂̄δμ2

μ2|1 + μ̄1μ2|2
√

λ2 − |σ |2

+ 16μ̄1

1 + μ̄1μ2

∂μ̄2∂̄μ2δμ2

�|1 + μ̄1μ2|4
√

λ2 − |σ |2
]
.

Integrating by parts we have established the following:
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Proposition 6. A rank two surface is area stationary if and only if

(4.4)
−i

(1 + μ̄1μ2)2
∂

(
λ√

λ2 − |σ |2
)

+ ∂̄

(
μ̄2σ

μ2|1 + μ̄1μ2|2
√

λ2 − |σ |2
)

+ μ̄1�|σ |2
4(1 + μ̄1μ2)

√
λ2 − |σ |2 = 0.

The following proposition shows that all holomorphic curves on L(H3) are
area stationary:

Proposition 7. Every holomorphic curve � in L(H3) such that the metric
G� induced on � by the neutral Kähler metric is non-degenerate, is area
stationary.

Proof. Consider a holomorphic curve � in L(H3). Then by Proposition 3
the shear σ vanishes throughout the surface �.

By Proposition 4 we know that a holomorphic surface � can be either rank 0
or 2. In the case of rank 0, the surface � is totally null and, in particular, it is
orthogonal to a horosphere, which is not our case. Then � must be of rank 2
and therefore Proposition 6 shows that is area stationary.

Consider now a Lagrangian surface � in L(H3). We are interested in area
stationary Lagrangian surfaces of rank 2. In this case, the twist λ vanishes on
� and then Proposition 6 implies that a Lagrangian surface � of rank 2 will
be area stationary iff

∂ ln

(
σ̄0

σ0

)
− 4μ̄2

1 + μ1μ̄2
= 0,

where

(4.5) σ0 = ∂μ̄2

(1 + μ1μ̄2)2
.

Definition 3. The Lagrangian angle φ of the surface � ⊂ L(H3) is defined
by

σ0 = |σ0|e2iφ,

where σ0 is given by (4.5).

An equivalent condition that characterizes Lagrangian area stationary sur-
faces in L(H3) is given by the following proposition:
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Proposition 8. Let � ⊂ L(H3) be a Lagrangian surface of rank two. Then
� is a area stationary surface iff � is locally orthogonal to a flat surface in
H3 and the Lagrangian angle φ, satisfies the following PDE:

(4.6) e−iφ∂2e−iφ = eiφ∂̄2eiφ = |σ0|.

Proof. Assume that � is a Lagrangian area stationary surface of rank two.
Then Hμ1 = 0 which means that

∂ ln

(
σ̄0

σ0

)
− 4μ̄2

1 + μ1μ̄2
= 0

and by introducing the Lagrangian angle φ, the above gives

(4.7) μ2 = i∂̄φ

1 − iμ̄1∂̄φ
.

By derivation of the above with respect of μ1 we obtain

i∂∂̄φ = ρ0, −i∂∂̄φ = ρ̄0.

The Lagrangian condition ρ0 = ρ̄0 implies that ρ0 = 0 and therefore μ2 is
anti-holomorphic, which means that � is locally orthogonal to a flat surface
in H3.

Because of ρ0 = 0 we obtain

(4.8) ∂∂̄φ = 0.

The fact that μ2 is an anti-holomorphic function of μ1 implies that ln σ̄0 is
anti-holomorphic too, which means that ∂ ln σ̄0 = 0 and then

(4.9) ∂ ln |σ0| = 2i∂φ.

The expression of σ0 in terms of φ is

(4.10) σ0 = ∂μ̄2

(1 + μ1μ̄2)2
= −(∂φ)2 − i∂2φ.

Then we have
|σ0|e2iφ = −(∂φ)2 − i∂2φ

which gives
|σ0|eiφ = [−(∂φ)2 − i∂2φ ] e−iφ

and therefore |σ0| = e−iφ∂2e−iφ , which implies equation (4.6).
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We now prove the converse. If φ is a real solution of (4.6), it satisfies

(4.11) −i∂2φ − (∂φ)2 = |σ0|e2iφ = σ0.

By the assumption that � is locally orthogonal to a flat in H3, μ2 is anti-
holomorphic and therefore σ0 is a holomorphic function. Then

∂̄[−i∂2φ − (∂φ)2] = 0,

which implies
∂[(∂̄∂φ)e−2iφ] = 0,

and hence there is a holomorphic function β such that

(∂̄∂φ)e−2iφ = β, (∂̄∂φ)e2iφ = β̄.

Therefore, the function φ can be written as

(4.12) φ = a + ā,

where a is a holomorphic function. In other words, we have proved that ∂̄∂φ =
0.

On the other hand, using equations (4.11) and (4.12), μ2 must satisfies the
following equation:

(4.13) −i∂2a − (∂a)2 = ∂μ̄2

(1 + μ1μ̄2)2
,

but because of the fact that μ̄2 and a are holomorphic, the above equation is
equivalent to an ordinary differential equation of first order. In addition, we
observe that

μ̄2 = − i∂a

1 + iμ1∂a

is a solution of (4.13) and because this equation is equivalent to an ODE of
first order, it is unique.

Then it is easy to see that Hμ1 = 0 and therefore � is a Lagrangian area
stationary surface.

In the following proposition we give an explicit local expression of all
Lagrangian area stationary surfaces in L(H3) in terms of the holomorphic co-
ordinates (μ1, μ2) on P1 × P1 − �̄:

Proposition 9. Every Lagrangian area stationary surface � in L(H3) of
rank two can be locally parameterized by

(4.14) � → L(H3) : (μ1, μ̄1) 
→
(

μ1, μ2 = λ̄1μ̄1 + 1

μ̄1 + λ̄2

)
,

where λ1, λ2 ∈ C with λ1λ2 �= 1.
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Proof. Let � be a Lagrangian area stationary surface of rank two in L(H3).
By Proposition 8 the surface � is locally orthogonal to a flat surface in H3,
which allows us to obtain the holomorphic parameterization (μ1, μ̄1) 
→
(μ1, μ2(μ̄1)). In addition, the Lagrangian angle φ must satisfies equation (4.6).

There is a holomorphic function a such that φ = a + ā, and applying this
to equation (4.6), we get:

e3iā ∂̄2eiā = e−3ia∂2e−ia = c0,

where c0 ∈ R is a real constant.
Then the holomorphic function a satisfies

(4.15) ∂2e−ia = c0e
3ia,

which is equivalent to the following ordinary differential equation of second
order:

ẍ = c0x
−3.

The unique solution of (4.15) is

(4.16) a = i

2
log[(α0μ1 + β0)

2 − c0] − i

2
log α0,

and the Lagrangian angle is φ = a + ā.
The immersion of � is obtained by substituting (4.16) into (4.7) and then

μ2 = i∂̄φ

1 − iμ̄1∂̄φ
= i∂̄ ā

1 − iμ̄1∂̄ ā
= α2

0μ̄1 + α0β0

α0β0μ̄1 + β2
0 − c0

.

If we set λ̄1 = α0β
−1
0 and λ̄2 = (β2

0 − c0)(α0β0)
−1 then the area stationary

surface � is given by the immersion (4.14).
If λ1λ2 = 1 we find that � is a totally null surface given by the immersion

μ2 = λ1, and so it is not of rank two.

For a given Lagrangian area stationary surface � in L(H3), there is locally
a family of parallel flat surfaces in H3 such that their oriented normals are con-
tained in �. We recall the classification of complete flat surfaces in hyperbolic
3-space:

Proposition 10 ([14], [15]). Let S be a complete flat surface in hyperbolic
3-space H3. Then S is either a horosphere or an equidistant tube of a geodesic
in H3.

To proof the main theorem we need to introduce a particular class of surface
in hyperbolic 3-space H3:
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Definition 4. A surface S in hyperbolic 3-space H3 is called isoparametric
if the principal curvatures of S are constant.

Note that all parallel surfaces {St }t∈I to the isoparametric surface S are also
isoparametric.

The following proposition gives a classification of the isoparametric sur-
faces in hyperbolic 3-space:

Proposition 11 ([3]). Let S be an isoparametric surface in H3. Then S is
either a totally geodesic hyperbolic 2-space, or a totally umbilical surface or
an equidistant tube around a geodesic.

We now prove our main result:

Theorem 3. Let S ⊂ H3 be a C3 smooth immersed oriented surface and
� ⊂ L(H3) be the Lagrangian surface formed by the oriented geodesics normal
to S.

The surface � is area stationary iff S is an equidistant tube around a
geodesic.

Proof. Let � be a Lagrangian geodesic congruence formed by the oriented
geodesics normal to S.

First assume that � is area stationary. Since it cannot be of rank 0, as that
would mean that it is totally null, and by Proposition 5 it cannot be of rank 1,
we conclude that � is of rank two. Thus it is given locally by the graph:

μ̄2 = 1 + λ1μ1

μ1 + λ2
,

where λ1, λ2 ∈ C.
The non-degeneracy condition of the induced metric G� implies that λ1λ2 �=

1.
In this case, an orthogonal surface S ⊂ H3 can be obtained by solving the

following differential equation

2∂r = ∂μ2

μ2(1 + μ̄1μ2)
+ ∂μ̄2

μ̄2(1 + μ1μ̄2)
+ μ̄2

1 + μ1μ̄2
,

and, by using the fact that μ2 is holomorphic, we obtain, after a brief compu-
tation, that

2∂r = λ1

1 + λ1μ1
,

which implies

(4.17) r = 1

2
log |1 + λ1μ1|2 + r0.
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The function �, given by (4.3), is:

� = 4|λ1|2[e−2r0 − |λ1λ2 − 1|2e2r0 ]

|(λ1μ1 + 1)2 + λ1λ2 − 1|2 .

The optical scalars ρ and σ of the Lagrangian area stationary surface � given
by (4.1) and (4.2) are:

σ = 2(λ1λ2 − 1)

e−2r0 − |λ1λ2 − 1|2e2r0
· 1 + λ̄1μ̄1

1 + λ1μ1

and
ρ = −1 + 2

1 − e4r0 |λ1λ2 − 1|2 .

If we denote by h the mean curvature of the surface S ⊂ H3, Proposition 2
gives:

(4.18) h = 1 + 2

e4r0 |λ1λ2 − 1|2 − 1
.

Consider now the principal curvatures m1 and m2 of the surface S. The fact
that S is flat means that m1m2 = 1. Then the mean curvature of the surface S

is

h = m1 + m2

2
= m1 + m−1

1

2
,

and by using the relation (4.18), we observe that m1 must satisfy the following
quadratic equation

(4.19) m2
1 − 2

(
1 + 2

e4r0 |λ1λ2 − 1|2 − 1

)
m1 + 1 = 0.

Therefore the principal curvatures of the surface S are constant and in particular
are given by:

m1 = e2r0 |λ1λ2 − 1| + 1

e2r0 |λ1λ2 − 1| − 1
, m2 = e2r0 |λ1λ2 − 1| − 1

e2r0 |λ1λ2 − 1| + 1
,

and hence the surface S is isoparametric. Propositions 10 and 11 tell us that the
surface S can be either a horosphere or an equidistant tube around a geodesic.
By previous work (see the papers [5] and [6]) we have seen that geodesic
congruences orthogonal to horospheres are totally null (the induced metric
is degenerate). Therefore the surface S must be an equidistant tube around a
geodesic γ .
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In fact, every area stationary surface � is orthogonal to the set {Sr0}r0∈R of
all parallel equidistant tubes around a geodesic γ and each such a surface Sr0

is of hyperbolic distance r0 from the surface S0.
Conversely, assume that the surface S ⊂ H3 is an equidistant tube around

a geodesic γ ′ with holomorphic coordinates (μ1 = μ′
1, μ2 = μ′

2). Then S

belongs to the set of all parallel equidistant tubes Uγ ′ = {Sr0}r0∈R around the
geodesic γ ′. We first find an explicit expression of the orthogonal geodesic
congruence � ⊂ L(H3) to all surfaces in Uγ ′ .

Consider the hyperbolic 3-space H3 in the half space model with local
coordinates (x0, x1, x2).

By direct computation we get that for a given point p = (p0, p1, p2) in H3

and a given vector e0 = a0
∂

∂x0
+ a1

∂
∂x1

+ a2
∂

∂x2
∈ TpH3 the unique geodesic

γ : I ⊂ R → H3 : r 
→ γ (r) ∈ H3 such that

γ (0) = p, γ̇ (0) = e0,

where I is an open interval containing 0 and the dot denotes the differentiation
with respect of r , is defined by:

x0 = p0

√
a2

0 + a2
1 + a2

2

a2
1 + a2

2

sech

[√
a2

0 + a2
1 + a2

2

p0
(r + r0)

]
,

x1 =
a1p0

√
a2

0 + a2
1 + a2

2

a2
1 + a2

2

tanh

[√
a2

0 + a2
1 + a2

2

p0
(r + r0)

]
+ c3,

x2 =
a2p0

√
a2

0 + a2
1 + a2

2

a2
1 + a2

2

tanh

[√
a2

0 + a2
1 + a2

2

p0
(r + r0)

]
+ c4.

Introduce complex coordinate z = x1 + ix2 and set t = x0. We then obtain

ξ = c1 + ic2 = β

t2
0

, η = c3 + ic4 = z0 + t0
a

β̄
,

where t0 = t (0), z0 = z(0), β = a1 + ia2 and a = a0.
Therefore for a given point p = (z0, t0) and a given vector e0 = a ∂

∂t
+

β ∂
∂z

+ β̄ ∂
∂z̄

the unique oriented geodesic γ = (ξ, η) with the initial conditions
γ (0) = p and γ̇ (0) = e0 is given by

(4.20) ξ = β

t2
0

, η = z0 + t0
a

β̄
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Fix the point p on the given oriented geodesic γ ′ = (ξ ′, η′). Let γ = (ξ, η)

be an oriented geodesic that intersects γ ′ orthogonally at p. Denote the unit
tangent vectors of γ, γ ′ at p by e0, e

′
0 respectively. The orthogonality condition

gives the following relation:

e0 = 1√
2
(e−iθ e′

+ + eiθ e′
−),

for some θ ∈ [0, 2π) where

e′
+ = 1√

2|ξ ′| cosh2 r0

∂

∂t
+ 1√

2 cosh2 r0

(
−e−r0

ξ̄ ′
∂

∂z
+ er0

ξ ′
∂

∂z̄

)
, e′

− = ē′
+.

Thus the unit tangent vector of γ is

e0 = cos θ

|ξ ′| cosh2 r0

∂

∂t
+ sinh(r0 + iθ)

ξ̄ ′ cosh2 r0

∂

∂z
+ sinh(r0 − iθ)

ξ ′ cosh2 r0

∂

∂z̄
.

Applying (4.20), the oriented geodesic γ = (ξ, η) is

ξ = ξ ′ sinh(r0 + iθ), η = η′ + 1

ξ̄ ′ tanh(r0 − iθ)

Moving the point p along the geodesic (ξ ′, η′), it is equivalent to an affine
shift of r0.

Therefore we obtain the surface � given by the immersion f : C → L(H3) :
(ν, ν̄) 
→ (ξ(ν, ν̄), η(ν, ν̄)) where

ξ = ξ ′ sinh ν, η = η′ + 1

ξ̄ ′ tanh ν̄
,

with ν = r + iθ .
If we change the coordinates from (ξ, η) to holomorphic coordinates (μ1,

μ2) on L(H3), the surface � is given by the following immersion

μ1(ν, ν̄) = 1 − cosh ν̄ − η′ξ̄ ′ sinh ν̄

ξ̄ ′ sinh ν̄
,

μ2(ν, ν̄) = ξ ′ sinh ν

1 + cosh ν + η̄′ξ ′ sinh ν
.

We can easily see that

sinh ν = 2(ξ ′)−1μ2

1 + μ̄1μ2
and cosh ν = 1 − μ̄1μ2 − 2η̄′μ2

1 + μ̄1μ2
,
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and from the identity cosh2 ν−sinh2 ν = 1 we find that the Lagrangian surface
� is an area stationary surface since it can be written

μ̄2 = λ1μ1 + 1

μ1 + λ2
, with λ1 = 1

η′ , λ2 = 1

η′

[
(η′)2 − 1

(ξ̄ ′)2

]
,

which completes the proof.

Note: We have proved on the main theorem that every area stationary
Lagrangian surface is given by the graph (4.14) and is orthogonal to a family
of parallel equidistant tubes {St }t∈I around to the following oriented geodesics
γ ′ = (μ′

1, μ
′
2) and γ̃ ′ = (μ̃′

1, μ̃
′
2), given by

μ′
1 = −1 + √

1 − λ1λ2

λ1
, μ′

2 = λ̄1

1 +
√

1 − λ̄1λ̄2

,

and
μ̃′

1 = −1 + √
1 − λ1λ2

λ1
μ̃′

2 = λ̄1

1 −
√

1 − λ̄1λ̄2

.

Consider now the antipodal map τ : P1 → P1 : x 
→ −x̄−1 and observe that
μ̃′

1 = τ(μ′
2) and μ̃′

2 = τ(μ′
1) which means that the geodesic γ̃ is obtained by

reversing the orientation of the geodesic γ . In other words γ̃ and γ describe
the same geodesic, up to orientation.

5. Rotationally symmetric maximal graphs

We now investigate area stationary surfaces of rank two that are not Lagrangian
or holomorphic. The simplest case is the rotationally symmetric ones, see also
[9].

Definition 5. A surface in L(H3) is rotationally symmetric if it is invariant
under the induced isometry of G.

Lemma 1. A graph � → L(H3) : μ1 
→ (μ1, μ2 = F(μ1, μ̄1)) is rotation-
ally symmetric if and only if F(μ1, μ̄1) = G(R)eiθ for some complex-valued
function G, where μ1 = Reiθ .

To find a complete characterisation of all area stationary rotationally sym-
metric surfaces in L(H3) of rank two, seems to be a very difficult problem be-
cause the correspondent ordinary differential equations are too complicated.
We then investigate the case of Re G = 0:

Proposition 12. Consider a rank two surface � immersed by μ1 = Reiθ

and F(μ1, μ̄1) = iAeiθ , where A = A(R) is real-valued function. Then
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the surface � is a holomorphic curve iff A = c0R, while is Lagrangian iff
A = c0R

−1.

The following proposition gives a two parameter family of rotationally
symmetric surfaces of rank two in L(H3) that are area stationary:

Proposition 13. Consider the rotationally symmetric � ⊂ L(H3) of rank
two, given locally immersed by μ1 = Reiθ and μ2 = F(μ1, μ̄1) = iZ1/2eiθ ,
where Z = Z(R) is a real-valued function.

Then � is area stationary if and only if the function Z is of the form:

(5.1) Z(R) = c + bR2

cR2 − 1
,

where b and c are real constants that aren’t both 0.

Proof. We first compute the functions �, λ and σ of the rotationally sym-
metric surface �. Since the surface � is of rank two, then by Proposition 6, it is
area stationary iff it satisfies the equation (4.4) which implies that the function
Z is satisfying the following ordinary differential equation:

(5.2) R(R2Z − 1)Z̈ − 2R3Ż2 + (3R2Z + 1)Ż = 0,

where the dot denotes differentiation with respect of the real variable R.
We first observe that the expression of the real-valued function Z = Z(R)

given in (5.1) satisfies the ordinary differential equation (5.2). Furthermore,
we have obtained a two parameter family of such solutions depended of the
constants b and c, which implies that the functions Z = Z(R) given in (5.1)
form the complete solutions of (5.2).

Note that for every choice of b, c ∈ R, the area stationary rotationally sym-
metric surface �bc, immersed by μ1 = Reiθ and μ2 = F(μ1, μ̄1) = iZ1/2eiθ ,
where Z = Z(R) is given by (5.1), is neither Lagrangian nor holomorphic
curve, since for

Z = A2 = c2
0R

2 or Z = A2 = c2
0R

−2,

are not solutions of the ordinary differential equation (5.2).
We now investigate the induced metric of area stationary rotationally sym-

metric surfaces. Such a surface � can be given locally by the immersion
μ1 = Reiθ , μ2 = iz1/2eiθ , where z is given by (5.1).

Proposition 14. Let � be an area stationary rotationally symmetric surface
in L(H3). Such a surface can be determined by the constants b, c ∈ R (b �= 0),
given by (5.1).
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If b > 0 the induced metric G� is Lorentz, while for b < 0 the surface �

has at least two degenerate curves.

Proof. From Theorem 1 we need to find the expression |σ |2 − λ2. After a
brief computation we find that

(5.3) |σ |2 − λ2 = A[bR4 + (cR2 − 1)2][((c2 + b)R2 − 1)2 + b],

where A = 64�−2|1 + μ1μ̄2|−2(1 + R2z)−2(cR2 − 1)−4 > 0.
Observe that |σ |2 − λ2 > 0 for b > 0 and therefore the rotationally sym-

metric area stationary surface � is Lorentzian.
We consider the case of b = −k2 < 0 and c2 + b > 0. Then the induced

metric G� of the surface � is degenrate at the following least four curves,

R = ±(c − k)−1/2, R = ±
√

k + 1

c2 − k2
, for k > −1,

R = ±(c − k)−1/2, R = ±
√

1 − k

c2 − k2
, for k < 1,

R = ±(c − k)−1/2, R = ±
√

k + 1

c2 − k2
, R = ±

√
1 − k

c2 − k2
, for |k| < 1.

In case of b = −k2 < 0 and c2 + b < 0 the induced metric G� is degenerate
at the following least two curves,

R = ±(c + k)−1/2, R = ±
√

k + 1

c2 − k2
, for k < −1,

R = ±(c + k)−1/2, R = ±
√

1 − k

c2 − k2
, for k > 1,

R = ±(c + k)−1/2, R = ±
√

k + 1

c2 − k2
, R = ±

√
1 − k

c2 − k2
, for |k| > 1.

R = ±(c + k)−1/2, for |k| < 1,

and the proposition follows.

We know that L(H3) can be identified with P1 × P1 − D, where D =
{(x, y) ∈ P1 × P1 : y = −x̄−1} is the reflected diagonal of P1. We would like
to see whether an area stationary rotationally symmetric surface � intersects
D.
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To do this we consider the local immersion μ1 = Reiθ and μ2 = iZ1/2eiθ ,
of �, where Z = Z(R) is given by (5.1). Assume that a point (R, θ) ∈ � is
very near to D. Then the equation μ1 = −μ̄−1

2 gives the following quadratic
equation

(c2 + b)R4 − 1 = 0.

Then, we conclude that for b positive the Lorentzian area stationary rotationally
symmetric surface � must be an open subset of L(H3).

Consider the surface T ⊂ L(H3) locally parameterised by

μ1(R, θ) = Reiθ , μ2(R, θ) = ±i

(
c + bR2

cR2 − 1

)1/2

eiθ .

In order T to be an immersed complete surface we require c < 0. If in addition
we assume that T must be a closed surface, we require c2 +b < 0. We can see
now that for R = 0 and R → ∞, we obtain the following two curves on T :

μ2 = i
√

c eiθ and μ2 = i

√
c2 + b

c
eiθ .

Under the i-th projection L(H3) = S2 × S2 − D → S2 for i = 1, 2 we observe
that these surfaces T double cover the sphere, except the north and south pole,
where the inverse image of each of these points, is a circle. Therefore, the
surface T must be an area stationary tori in L(H3).
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