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“CONVEX” CHARACTERIZATION OF LINEARLY
CONVEX DOMAINS

NIKOLAI NIKOLOV and PASCAL J. THOMAS∗

Abstract
We prove that a C1,1-smooth bounded domain D in Cn is linearly convex if and only if the convex
hull of any two discs in D with common center lies in D.

1. Statements

Recall that an open set D in Cn is called (cf. [1], [3]):

• C-convex if any non-empty intersection with a complex line is connected
and simply connected;

• linearly convex if its complement in Cn is a union of affine complex hyper-
planes;

• weakly linearly convex if for any a ∈ ∂D there exists an affine complex
hyperplane through a which does not intersect D.

Note that the following implications hold:

C-convexity ⇒ linear convexity ⇒ weak linear convexity.

Moreover, these three notions coincide in the case of bounded domains with
C1-smooth boundary (cf. [1], [3]).

Let now D be an open set in Cn, z ∈ D and X ∈ Cn. Denote by dD(z, X) the
distance from z to ∂D in the complex direction X (possibly dD(z, X) = ∞):

dD(z, X) = sup{r > 0 : z + λX ∈ D if |λ| < r}.
Note that the following three properties are equivalent:

• 1/dD(z, ·) is a convex function;
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• the maximal circular open subset Dz of D w.r.t. z is convex (1/dD(z, ·) is
the Minkowski function of Dz − z);

• D contains the convex hull of the union of any two (complex affine) discs
in D with center z.

By [7] (see also [6]), any weakly linearly convex open set has these properties.
To see this directly for the third property, let us compute the linearly convex

hull of a union of two discs, which coincides with its convex hull.
By using linear transformations, we may reduce ourselves to the case of

K := (D × {0}) ∪ ({0} × D) in C2. Then, if we identify a complex hyperplane
not passing through 0 with the coefficients (a1, a2) of its representation as
{a1z1+a2z2 = 1}, the (polar) set of all hyperplanes not meeting K is K∗ = D2.
Then (see [1]) the linearly convex hull of K is given by

(K∗)∗ = {z : |z1| + |z2| ≤ 1},
which coincides with the convex hull of K . (It is also the hull of K with
respect the family of linear-fractional functions [1], since those are constant
on complex hyperplanes). Therefore any weakly linearly convex open set must
contain the convex hull of the union of two affine discs contained in the domain
and intersecting at their common center.

Our aim is to show that the converse is also true in the case of C1,1-smooth
bounded domains. We do not know if this regularity can be weakened. Non-
smooth linearly convex domains can be quite different (they can fail to be
C-convex), and Aizenberg’s question is still open: can any C- convex domain
be exhausted by smooth C-convex domains?

Proposition 1. Let D be a C1,1-smooth bounded domain in Cn and let U

be a neighborhood of ∂D. If D contains the convex hull of any two discs in
D ∩ U with common center, then D is linearly convex.

This can be considered as an analogue of the characterization of convex
domains by line segments, or of pseudoconvex domains by Hartogs figures.

More precisely, it follows from the proof of Lemma 4 that a bounded C1,1-
smooth domain D is not linearly convex if and only if there are c ∈ ∂D and
a line segment [a, b] in the complex tangent hyperplane at c such that c is
its midpoint and [a, b] \ {c} ⊂ D. This is analogous to the situation for real
convexity.

Proposition 2. Let U be a neighborhood of the boundary of a domain D

in Rn such that if D ∩ U contains two sides of a triangle, then it contains the
midpoint of the third side. Then D is convex.
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Sketch of the proof. Assume that D is not convex. Then there is a
boundary point c which is the midpoint of a segment [a, b] with [a, b]\{c} ⊂ D

(cf. [3, Theorem 2.1.27]). To get a contradiction, it is enough to find d ∈ D near
c such that [a, d] ⊂ D and [b, d] ⊂ D. This follows by [3, Theorem 2.1.27],
since we may touch D at z from inside by a smooth domain not convex at c.

2. Proofs

Proof of Proposition 1. First we need a slight modification of [4, Theorem
1.4].

Proposition 3. Suppose that D has a C1,1-smooth boundary, with defining
function ρ. If for almost every p ∈ ∂D

(1) lim inf
T C(p)
ζ→p

ρ(ζ )

|ζ − p|2 ≥ 0,

where T C(p) denotes the largest complex affine subspace passing through p

and contained in the real affine tangent space to ∂D, then D is linearly convex.

Notice that [4, Theorem 1.4] has the same conclusion with slightly different
hypotheses: it demands a little less boundary regularity of D, but assumes the
inequality (1) everywhere instead of almost everywhere. When D has a C2-
smooth boundary, the second partials are defined and continuous everywhere,
and so (1) holds everywhere and there is nothing more to prove.

In Section 3, we shall recall the steps of Hörmander’s proof and give the
small modifications needed to adapt it to our context.

Assume to get a contradiction that D is not linearly convex. By the Implicit
Function Theorem, we can choose local coordinates such that the boundary
of D can be written locally as a graph. By Rademacher’s theorem about the
differentiability almost everywhere of Lipschitz functions, applied to the first
partial derivatives of the function defining the graph in each coordinate patch,
we may find a point p ∈ ∂D such that ρ is twice differentiable at p and

(2) lim inf
T C(p)
ζ→p

ρ(ζ )

|ζ − p|2 < 0.

From now on, we choose such a p.
It is easy to show that the property we are studying can be tested on two-

dimensional subspaces, so henceforth we assume that � ⊂ C2.

Lemma 4. Under the above hypotheses, there exist r > 0, c ≥ 1 and co-
ordinates (z, w) obtained by a complex affine transformation from the original
coordinates such that (z(p), w(p)) = (0, 0) and

� ∩ B2(0, r) ⊃ E := {(z, w) ∈ C2 : ρc(z, w) < 0} ∩ B2(0, r),
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where ρc(z, w) = Re z − (Re w)2 + c|z|2 + c(Im w)2.

Proof. It will be enough to majorize ρ by ρc for some c > 0 when (z, w)

is close enough to p.
First take coordinates (z1, w1) such that (z1(p), w1(p)) = (0, 0) and the

real gradient ∇ρ(0, 0) = (1, 0). Then by Taylor’s formula,

ρ(z1, w1) = Re z1 + Re(a11z
2
1 + a12z1w1 + a22w

2
1)

+ b11|z1|2 + Re(b12z1w̄1) + b22|w1|2 + o(|z1|2 + |w1|2),
where the coefficients aij , bij are deduced from the second order partial deriv-
atives of ρ at (0, 0) in the usual way.

Here T C(p) = {(0, w), w ∈ C}, and

ρ(0, w1)

|(0, w1) − p|2 = Re

(
a22

w2
1

|w1|2
)

+ b22 + o(1),

and the lim inf in (2) is exactly −|a22| + b22 =: −�.
We rotate the w1 coordinate so that a22 = −|a22|, thus

ρ(0, w1) = −�(Re w1)
2 + (2b22 + �)(Im w1)

2 + o(|w1|2).
To estimate the other terms,

|a12z1w1 + b12z1w̄1| ≤ c1|z1w1| ≤ 1

2
c1

(
ε|w1|2 + 1

ε
|z1|2

)
;

we choose ε so that c1ε ≤ �, c2 := |a11| + |b11|, so

ρ(z1, w1) < Re z1+
(

c2+ c1

2ε

)
|z1|2− �

2
(Re w1)

2+
(

εc1

2
+2b22+�

)
(Im w1)

2

+ o(|z1|2 + |w1|2) ≤ Re z1 + c3|z1|2 − �

3
(Re w1)

2 + c4(Im w1)
2

for (z1, w1) small enough.

Taking z = z1, w =
√

�
3 w1, we have the required form.

Further, choose r > 0 such that B2(0, r) ⊂ U and suppose that we have
two disks in E of the form

D1 = {(−δ(1 − ζ ), δζ/μ), |ζ | ≤ 1},
D2 = {(−δ(1 + ζ ), δζ/μ), |ζ | ≤ 1},
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where μ = √
2cδ. Then by taking the midpoint of (0, δ/μ) (ζ = 1 for D1) and

(0, −δ/μ) (ζ = −1 for D2) we find (0, 0), which is a contradiction, proving
Proposition 1.

One can see by changing ζ into −ζ that it is enough to check that D1 ⊂ E.
It is clear that D1 ⊂ B(0, r) for any small δ > 0. It remains to show that
ρc|D1 < 0 on D1. Since c ≥ 1, this restriction is subharmonic and so it suffices
to prove the inequality for ζ = eiθ .

Dividing through by δ, we have to verify

−1 + cos θ − 1

2c
cos2 θ + 1

2
sin2 θ + 2cδ(1 − cos θ) < 0, θ ∈ R,

equivalently

−1 + 4cδ + 2(1 − 2cδ)x −
(

1 + 1

c

)
x2 < 0, −1 ≤ x ≤ 1.

Computing the (reduced) discriminant of this quadratic polynomial yields

(1 − 2cδ)2 −
(

1 + 1

c

)
(1 − 4cδ) = 4c2δ2 + 4δ − 1

c
< 0

for δ > 0 small enough.
The proof of Proposition 1 is completed.

3. Appendix

Proof of Proposition 3. First, the hypothesis and conclusion of [4, The-
orem 1.4] are restated in terms of the function

h(z) := inf
w∈∂D

|z − w|2, z ∈ D.

For any ζ ∈ ∂D at which this infimum is attained, z belongs to the normal to
∂D at ζ . For any z for which the infimum is attained at a unique point ζ ∈ ∂D,
we denote π(z) = ζ this nearest point. Then h is differentiable at any point z

where π(z) is well defined.
The property that ∂D admits a neighborhood in which the nearest point in

uniquely defined is called “positive reach” in [2]. When ∂D is C 1,1 smooth
(i.e., D admits a C 1,1-smooth defining function with non vanishing gradient
near the boundary), it is of positive reach, as follows for instance from the
remark at the beginning of [2, Section 4], “the class of sets with positive reach
is closed under bi-Lipschitzian maps with Lipschitzian differentials” (or see
the note added in proof at the end of [5]).
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It is proved in [5] that when ∂D has positive reach and is C 1, then h ∈ C 1

and its first partial derivatives are given explicitly in terms of the first partial
derivatives of the defining function in an appropriate coordinate system, see
equations (3) and (4) on [5, p. 118]. Since the C 1,1 property does not depend
on the coordinate system, it follows from the formulae that if ρ has Lipschitz
continuous first partial derivatives, then so does h, i.e., h ∈ C 1,1. Note that
for any ε > 0 there exist domains with C2−ε-smooth boundary which do not
have positive reach, and where h fails to be differentiable in a neighborhood
of the boundary, so C 1,1 smoothness is a kind of minimal hypothesis we have
to demand using these methods.

It is also noted in a remark after the statement of [4, Theorem 1.4] that when
∂D is C 1,1-smooth, the regularity hypotheses of the theorem, i.e., the interior
ball condition (which implies positive reach) and condition [4, (1.5)], are in
particular fulfilled.

[4, Proposition 1.5] shows that D is linearly convex if and only if

(3) h(w) ≤ h(z)+2 Re〈w−z, h′
z(z)〉+

∣∣〈w − z, h′
z(z)〉

∣∣2
/h(z), w ∈ D,

for every z at which h is differentiable.
Then the proof of [4, Theorem 1.4], given at the end of [4, Section 2],

proceeds as follows: given a δ > 0 such that h is C 1 on Dδ := {h < δ2},
choose for each ζ ∈ ∂D a ball Bδ,ζ of radius δ/2, tangential to ∂D at ζ (and
thus contained in Dδ). It is shown that D is linearly convex if (3) holds on each
Bδ,ζ . For that it is enough to show that h is quadratically concave, a notion
defined by [4, Definition 2.1].

[4, Theorem 2.4] shows that when a positive function g is defined on a ball
B ⊂ RN and its second derivatives are measures, a sufficient condition for it
to be quadratically concave is that

(4) 〈g′′(z)v, v〉 ≤ 1

2
|v|2|g′(z)|2/g(z),

for any z ∈ B, v ∈ RN .
We need to show that the conclusion of [4, Theorem 2.4] still holds under

our new hypotheses.
[4, Proposition 1.6] shows that (1) at ζ ∈ ∂D implies

(5) lim sup
w→0

1

|w|2
(

h(z + w) − h(z) − 2 Re〈w, h′
z(z)〉 − |〈w, h′

z(z)〉|2
h(z)

)
≤ 0

at any point z at which h is differentiable, and such that ζ = π(z). Since
z must lie in the normal to ∂D at ζ and ∂D ∈ C 1,1, the implicit function
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theorem shows that if N ⊂ ∂D is of (2n − 1)-Lebesgue measure zero, then
in a neighborhood of ∂D, π−1(N) is of 2n-Lebesgue measure zero. So our
hypothesis implies that (5) holds for almost every z in a neighborhood of
the boundary. Applying Taylor’s formula, we see that this implies that (4)
holds for a.e. z in this neighborhood and any vector v. So our hypotheses
differ from Hörmander’s only in that the second derivatives of our function are
measures given by a.e. defined bounded functions, and by requiring a second-
order differential inequality almost everywhere instead of everywhere.

[4, Theorem 2.4] shows that g is quadratically concave by proving that

(6) g(y) ≤ g(x) + 〈y − x, g′(x)〉 + 1

4
|y − x|2 |g′(x)|2

g(x)
, x, y ∈ B,

which is enough by [4, Theorem 2.2].
Assuming that B is the unit ball, if we prove (6) for g(x) = hr(x) := h(rx),

and 0 < r < 1, we obtain the same inequality for h = h1, using the fact that
h ∈ C 1 to pass to the limit. So we may now assume that g ≥ ε0 > 0.
Then we follow part (c) of the proof of [4, Theorem 2.4]: writing gε(x) :=
g(x) − ε(|x|2 + 1) for small enough ε > 0, we have that

〈g′′
ε t, t〉 ≤

(
1

2
|g′

ε(x)|2/gε(x) − 2ε/(|x|2 + 1)

)
|t |2,

and so a C ∞ regularization of gε will satisfy (4) with strict inequality in B when
|t | = 1 (since the second order differential inequality is obtained by integrating
against the regularizing kernel bounded functions that satisfy the inequality
almost everywhere). By parts (a) and (b) of the proof of [4, Theorem 2.4]
(which are valid for C 2-smooth functions), this regularization will satisfy (6),
and letting the regularization tend to g, we obtain (6) for g.
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