ON POLARS OF BLASCHKE-MINKOWSKI HOMOMORPHISMS

ZHAO CHANG-JIAN*

Abstract

In this paper we establish Minkowski, Brunn-Minkowski, and Aleksandrov-Fenchel type inequalities for the volume difference of polars of Blaschke-Minkowski homomorphisms.

1. Introduction and statement of main results

The well-known classical Minkowski inequality and Brunn-Minkowski inequality can be stated as follows:

If K and L are convex bodies in R^{n}, then (see, e.g., [19])

$$
V_{1}(K, L)^{n} \geq V(K)^{n-1} V(L)
$$

and

$$
V(K+L)^{1 / n} \geq V(K)^{1 / n}+V(L)^{1 / n} .
$$

In each case, equality holds if and only if K and L are homothetic. Here, + is usual Minkowski sum and $V_{1}(K, L)$ denotes the mixed volume of the convex bodies K and L defined by

$$
V_{1}(K, L)=\frac{1}{n} \int_{S^{n-1}} h(L, u) d S(K, u),
$$

where $h(L, u)=\max \{u \cdot x: x \in L\}$ is the support function of L and $S(K, u)$ is the surface area measure of K (see, e.g., [19]).

Let K and L be star bodies in R^{n}, then the dual Minkowski inequality and the dual Brunn-Minkowski inequality state that (see [15]).

$$
\tilde{V}_{1}(K, L)^{n} \leq V(K)^{n-1} V(L),
$$

and

$$
V(K \tilde{+} L)^{1 / n} \leq V(K)^{1 / n}+V(L)^{1 / n} .
$$

[^0]In each case, equality holds if and only if K and L are dilates. Here, $\tilde{+}$ is radial sum and $\tilde{V}_{1}(K, L)$ denotes the dual mixed volume of the star bodies K and L, defined by

$$
\tilde{V}_{1}(K, L)=\frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{n-1} \rho(L, u) d S(u)
$$

where $\rho(K, u)=\max \{\lambda \geq 0: \lambda u \in K\}$ is the radial function of K and $S(u)$ is the spherical Lebesgue measure (see [4]).

In 2004 Leng [11] defined the volume difference function of compact domains D and K, where $D \subseteq K$, by

$$
D_{V}(K, D)=V(K)-V(D)
$$

The following Minkowski and Brunn-Minkowski type inequalities for volume difference functions were also established by Leng [11].

Theorem A. If K, L, D and D^{\prime} are compact domains, $D \subseteq K, D^{\prime} \subseteq L$, and D^{\prime} is a homothetic copy of D, then

$$
\begin{equation*}
\left(V_{1}(K, L)-V_{1}\left(D, D^{\prime}\right)\right)^{n} \geq(V(K)-V(D))^{n-1}\left(V(L)-V\left(D^{\prime}\right)\right) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{align*}
(V(K+L)-V(D+ & \left.\left.D^{\prime}\right)\right)^{1 / n} \tag{1.2}\\
& \geq(V(K)-V(D))^{1 / n}+\left(V(L)-V\left(D^{\prime}\right)\right)^{1 / n}
\end{align*}
$$

In each case, equality holds if and only if K and L are homothetic and $(V(K), V(D))=\mu\left(V(L), V\left(D^{\prime}\right)\right)$, where μ is a constant.

Recently, Lv [18] introduced the dual volume difference function for star bodies and established the following dual Minkowski and Brunn-Minkowski type inequalities for them:

Theorem B. If K, L, D and D^{\prime} are star bodies in R^{n}, and $D \subseteq K, D^{\prime} \subseteq L$, and L is a dilation of K, then

$$
\begin{equation*}
\left(\tilde{V}_{1}(K, L)-\left(\tilde{V}_{1}\left(D, D^{\prime}\right)\right)^{n} \geq(V(K)-V(D))^{n-1}\left(V(L)-V\left(D^{\prime}\right)\right)\right. \tag{1.3}
\end{equation*}
$$

with equality if and only if D and D^{\prime} are dilates and $\left.(K, D)\right)=\mu\left(L, D^{\prime}\right)$, where μ is a constant, and

$$
\begin{align*}
(V(K \tilde{+} L)-(V(D & \left.\left.\tilde{+} D^{\prime}\right)\right)^{1 / n} \tag{1.4}\\
& \geq(V(K)-V(D))^{1 / n}+\left(V(L)-V\left(D^{\prime}\right)\right)^{1 / n}
\end{align*}
$$

with equality if and only if D and D^{\prime} are dilates and $(V(K), V(D))=$ $\mu\left(V(L), V\left(D^{\prime}\right)\right)$, where μ is a constant.

In fact, more general versions on these types of inequalities were proved in [11] and [18], respectively. Moreover, inequalities for p-quermassintegral difference functions were established in [31].

Let \mathscr{K}^{n} denote the space of convex bodies in R^{n}, i.e. compact, convex subsets of R^{n} with non-empty interior. The topology on \mathscr{K}^{n} is induced by the Hausdorff metric.

Definition 1.1 ([20]). A map $\Phi: \mathscr{K}^{n} \rightarrow \mathscr{K}^{n}$ is called Blaschke-Minkowski homomorphism if it satisfies the following conditions:
(a) Φ is continuous.
(b) For all $K, L \in \mathscr{K}^{n}$,

$$
\Phi(K \ddot{+} L)=\Phi(K)+\Phi(L)
$$

where $\ddot{+}$ denotes the Blaschke sum of the convex bodies K and L.
(c) For all $K, L \in \mathscr{K}^{n}$ and every $\vartheta \in S O(n)$,

$$
\Phi(\vartheta K)=\vartheta \Phi(K),
$$

where $S O(n)$ is the group of rotations in n dimensions.
Blaschke-Minkowski homomorphism is an important notion in the theory of convex body valued valuations (see, e.g., [1], [5], [8], [10], [12]-[14], [17], [21], [23]-[25], [30]). Their natural dual, radial Blaschke-Minkowski homomorphism, was introduced by Schuster [20] and further investigated to be meaningful (see [22]).

Let $\Phi\left(K_{1}, \ldots, K_{n-1}\right)$ denote mixed Blaschke-Minkowski homomorphisms of convex bodies K_{1}, \ldots, K_{n-1} (see Section 2). The convex body $\Phi\left(K_{1}, \ldots\right.$, $\left.K_{n-1}\right)$ contains the origin in its interior, as was shown in [20]-[22].

If K is a convex body that contains the origin in its interior, the polar body of K is defined by

$$
K^{*}:=\left\{x \in \mathbf{R}^{n} \mid x \cdot y \leq 1, y \in K\right\} .
$$

Thus, the polar body $\left(\Phi\left(K_{1}, \ldots, K_{n-1}\right)\right)^{*}$, in particular, $(\Phi K)^{*}$ is well defined. We will simply write $\Phi_{i}^{*}\left(K_{1}, \ldots, K_{n-1}\right)$ and $\Phi^{*} K$ rather than $\left(\Phi\left(K_{1}, \ldots\right.\right.$, $\left.\left.K_{n-1}\right)\right)^{*}$ and $(\Phi K)^{*}$. If $K_{1}=\cdots=K_{n-i-1}=K, K_{n-i}=\cdots=K_{n-1}=B$, then write $\Phi_{i}^{*} K$ for $\Phi^{*}(\underbrace{K, \ldots, K}_{n-i-1}, \underbrace{B, \ldots, B}_{i})$, and write $\Phi_{i}^{*}(K, L)$ for the mixed $\Phi(\underbrace{K, \ldots, K}_{n-i-1}, \underbrace{L, \ldots, L}_{i})$. We write $\Phi_{0}^{*} K$ as $\Phi^{*} K$.

In 2006, Schuster [20] established the following Minkowski, Brunn-Minkowski, and Aleksandrov-Fenchel type inequalities for Blaschke-Minkowski homomorphisms.

Theorem C. Let $\Phi: \mathscr{K}^{n} \rightarrow \mathscr{K}^{n}$ be an even Blaschke-Minkowski homomorphism. If K, L are convex bodies in R^{n}, then

$$
\begin{equation*}
V\left(\Phi_{1}^{*}(K, L)\right)^{n-1} \leq V\left(\Phi^{*} K\right)^{n-2} V\left(\Phi^{*} L\right) \tag{1.5}
\end{equation*}
$$

with equality if and only if K and L are homothetic.
Theorem D. Let $\Phi: \mathscr{K}^{n} \rightarrow \mathscr{K}^{n}$ be an even Blaschke-Minkowski homomorphism. If K, L are convex bodies in R^{n}, then

$$
\begin{equation*}
V\left(\Phi^{*}(K+L)\right)^{-1 / n(n-1)} \geq V\left(\Phi^{*} K\right)^{-1 / n(n-1)}+V\left(\Phi^{*} L\right)^{-1 / n(n-1)} \tag{1.6}
\end{equation*}
$$

with equality if and only if K and L are homothetic.
Theorem E. Let $\Phi: \mathscr{K}^{n} \rightarrow \mathscr{K}^{n}$ be an even Blaschke-Minkowski homomorphism. If $K_{i}(1 \leq i \leq n-1)$ are convex bodies in R^{n}, and $1 \leq r \leq n-1$, then

$$
\begin{equation*}
V\left(\Phi^{*}\left(K_{1}, \ldots, K_{n-1}\right)\right)^{r} \leq \prod_{j=1}^{r} \Phi^{*}(\underbrace{K_{j}, \ldots, K_{j}}_{r}, K_{r+1}, \ldots, K_{n-1}) \tag{1.7}
\end{equation*}
$$

Motivated by the work of Leng and Lv, we give the following definition:
Definition 1.2. The volume difference function for polar Blaschke-Minkowski homomorphism of convex bodies K and $D, D_{V}\left(\Phi^{*} K, \Phi^{*} D\right)$, is defined by

$$
D_{V}\left(\Phi^{*} K, \Phi^{*} D\right)=V\left(\Phi^{*} K\right)-V\left(\Phi^{*} D\right)
$$

The aim of this paper is to establish the following Minkowski, BrunnMinkowski, and Aleksandrov-Fenchel type inequalities for volume difference of polars of Blaschke-Minkowski homomorphisms.

Theorem C'. Let $\Phi: \mathscr{K}^{n} \rightarrow \mathscr{K}^{n}$ be an even Blaschke-Minkowski homomorphism. If $D, D^{\prime}, K, L \in \mathscr{K}^{n}, V\left(\Phi^{*}(D)\right) \leq V\left(\Phi^{*}(K)\right)$ and $V\left(\Phi^{*}\left(D^{\prime}\right)\right) \leq$ $V\left(\Phi^{*}(L)\right)$, and L is a homothetic copy of K, then

$$
\begin{align*}
{\left[V\left(\Phi_{1}^{*}(K, L)\right)\right.} & \left.-V\left(\Phi_{1}^{*}\left(D, D^{\prime}\right)\right)\right]^{n-1} \tag{1.8}\\
& \geq\left[V\left(\Phi^{*} K\right)-V\left(\Phi^{*} D\right)\right]^{n-2}\left[V\left(\Phi^{*} L\right)-V\left(\Phi^{*} D^{\prime}\right)\right]
\end{align*}
$$

with equality if and only if D and D^{\prime} are homothetic and $\left(V\left(\Phi^{*} K\right), V\left(\Phi^{*} L\right)\right)=$ $\mu\left(V\left(\Phi^{*} D\right), V\left(\Phi^{*} D^{\prime}\right)\right)$, where μ is a constant.

Theorem C^{\prime} just is a special case of Theorem 4.3 established in Section 4.
Theorem D'. Let $\Phi: \mathscr{K}^{n} \rightarrow \mathscr{K}^{n}$ be an even Blaschke-Minkowski homomorphism. If $D, D^{\prime}, K, L \in \mathscr{K}^{n}, V\left(\Phi^{*}(D)\right) \leq V\left(\Phi^{*}(K)\right)$ and $V\left(\Phi^{*}\left(D^{\prime}\right)\right) \leq$ $V\left(\Phi^{*}(L)\right)$, and L is a homothetic copy of K, then

$$
\begin{align*}
& {\left[V\left(\Phi^{*}(K+L)\right)-V\left(\Phi^{*}\left(D+D^{\prime}\right)\right)\right]^{-1 / n(n-1)}} \tag{1.9}\\
& \leq\left[V\left(\Phi^{*} K\right)-V\left(\Phi^{*} D\right)\right]^{-1 / n(n-1)}+\left[V\left(\Phi^{*} L\right)-V\left(\Phi^{*} D^{\prime}\right)\right]^{-1 / n(n-1)}
\end{align*}
$$

with equality if and only if D and D^{\prime} are homothetic and $\left(V\left(\Phi^{*} K\right), V\left(\Phi^{*} L\right)\right)=$ $\mu\left(V\left(\Phi^{*} D\right), V\left(\Phi^{*} D^{\prime}\right)\right)$, where μ is a constant.

Theorem D^{\prime} just is a special case of Theorem 4.1 established in Section 4.
Theorem E^{\prime}. Let $\Phi: \mathscr{K}^{n} \rightarrow \mathscr{K}^{n}$ be an even Blaschke-Minkowski homomorphism. If K_{i} and $D_{i}(1 \leq i \leq n-1)$ are convex bodies in R^{n},

$$
\begin{aligned}
V(\Phi^{*}(\underbrace{K_{j}, \ldots, K_{j}}_{r}, K_{r+1}, \ldots, & \left.\left.K_{n-1}\right)\right) \\
& \geq V(\Phi^{*}(\underbrace{D_{j}, \ldots, D_{j}}_{r}, D_{r+1}, \ldots, D_{n-1})),
\end{aligned}
$$

and $K_{j}(j=1, \ldots, r)$ be homothetic copies of each other, then

$$
\begin{align*}
& {\left[V\left(\Phi^{*}\left(K_{1}, \ldots, K_{n-1}\right)\right)-V\left(\Phi^{*}\left(D_{1}, \ldots, D_{n-1}\right)\right)\right]^{r}} \tag{1.10}\\
& \quad \geq \prod_{j=1}^{r} D_{V}(\Phi^{*}(\underbrace{K_{j}, \ldots, K_{j}}_{r}, K_{r+1}, \ldots, K_{n-1}) \\
& \Phi^{*}(\underbrace{D_{j}, \ldots, D_{j}}_{r}, D_{r+1}, \ldots, D_{n-1}))
\end{align*}
$$

2. Definitions and preliminaries

The setting for this paper is n-dimensional Euclidean space $\mathrm{R}^{n}(n>2)$. Let \mathscr{K}^{n} denote the set of all convex bodies (compact, convex subsets with nonempty interiors) in R^{n}. We reserve the letter u for unit vectors, and the letter B is reserved for the unit ball centered at the origin. The surface of B is S^{n-1}. The volume of the unit n-ball is denoted by ω_{n}. For $u \in S^{n-1}$, let E_{u} denote the hyperplane, through the origin, that is orthogonal to u. We will use K^{u} to denote the image of K under an orthogonal projection onto the hyperplane E_{u}. If $K_{1}, \ldots, K_{n-1} \in \mathscr{K}^{n}$, then write $v\left(K_{1}^{u}, \ldots, K_{n-1}^{u}\right)$ for the mixed volume of the figures $K_{1}^{u}, \ldots, K_{n-1}^{u}$ in the space E_{u}. If $K_{1}=\cdots=K_{n-1}=K$, then write $v\left(K^{u}\right)$ for $v\left(K^{u}, \ldots, K^{u}\right)$.

We use $V(K)$ for the n-dimensional volume of convex body K. Let $h(K, \cdot)$: $S^{n-1} \rightarrow \mathrm{R}$, denote the support function of $K \in \mathscr{K}^{n}$; i.e. for $u \in S^{n-1}$

$$
h(K, u)=\max \{u \cdot x: x \in K\}
$$

where $u \cdot x$ denotes the usual inner product u and x in R^{n}.
Let δ denote the Hausdorff metric on \mathscr{K}^{n}, i.e., for $K, L \in \mathscr{K}^{n}, \delta(K, L)=$ $\left|h_{K}-h_{L}\right|_{\infty}$, where $|\cdot|_{\infty}$ denotes the sup-norm on the space of continuous functions $C\left(S^{n-1}\right)$.

2.1. Mixed volumes

If $K_{i} \in \mathscr{K}^{n}(i=1,2, \ldots, r)$ and $\lambda_{i}(i=1,2, \ldots, r)$ are nonnegative real numbers, then the volume of $\lambda_{1} K_{1}+\cdots+\lambda_{r} K_{r}$ is a homogeneous polynomial in λ_{i} given by

$$
\begin{equation*}
V\left(\lambda_{1} K_{1}+\cdots+\lambda_{r} K_{r}\right)=\sum_{i_{1}, \ldots, i_{n}} \lambda_{i_{1}} \ldots \lambda_{i_{n}} V_{i_{1} \ldots i_{n}} \tag{2.1}
\end{equation*}
$$

where the sum is taken over all n-tuples $\left(i_{1}, \ldots, i_{n}\right)$ of positive integers not exceeding r. The coefficient $V_{i_{1} \ldots i_{n}}$ depends only on the bodies $K_{i_{1}}, \ldots, K_{i_{n}}$, and is uniquely determined by (2.1), it is called the mixed volume of $K_{i}, \ldots, K_{i_{n}}$, and is written as $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$. Let $K_{1}=\ldots=K_{n-i}=K$ and $K_{n-i+1}=$ $\ldots=K_{n}=L$, then the mixed volume $V\left(K_{1}, \ldots, K_{n}\right)$ is usually written $V_{i}(K, L)$. If $L=B$, then $V_{i}(K, B)$ is the i-th projection measure (Quermassintegral) of K and is written as $W_{i}(K)$.

2.2. Projection bodies and mixed projection bodies

If $K \in \mathscr{K}^{n}$, then the projection body of convex body K will be denoted as ΠK and whose support function is defined by

$$
\begin{equation*}
h(\Pi K, u)=v\left(K^{u}\right), \quad u \in S^{n-1} \tag{2.2}
\end{equation*}
$$

If $K_{1}, \ldots, K_{r} \in \mathscr{K}^{n}$ and $\lambda_{1}, \ldots, \lambda_{r} \geq 0$, then the projection body of the Minkowski linear combination $\lambda_{1} K_{1}+\cdots+\lambda_{r} K_{r} \in \mathscr{K}^{n}$ can be written as a symmetric homogeneous polynomial of degree $(n-1)$ in the λ_{i} ([17]):

$$
\begin{equation*}
\Pi\left(\lambda_{1} K_{1}+\cdots+\lambda_{r} K_{r}\right)=\sum \lambda_{i_{1}} \ldots \lambda_{i_{n-1}} \Pi_{i_{1} \cdots i_{n-1}} \tag{2.3}
\end{equation*}
$$

where the sum is a Minkowski sum taken over all ($n-1$)-tuples $\left(i_{1}, \ldots, i_{n-1}\right)$ of positive integers not exceeding r. The body $\Pi_{i_{1} \ldots i_{n-1}}$ depends only on the bodies $K_{i_{1}}, \ldots, K_{i_{n-1}}$, and is uniquely determined by (2.3), it is called the mixed projection bodies of $K_{i_{1}}, \ldots, K_{i_{n-1}}$, and is written as $\Pi\left(K_{i}, \ldots, K_{i_{n-1}}\right)$. If $K_{1}=$ $\cdots=K_{n-1-i}=K$ and $K_{n-i}=\cdots=K_{n-1}=L$, then $\Pi\left(K_{i_{1}}, \ldots, K_{i_{n-1}}\right)$
will be written as $\Pi_{i}(K, L)$. If $L=B$, then $\Pi_{i}(K, L)$ is denoted $\Pi_{i} K$ and when $i=0, \Pi_{i} K$ is denoted ΠK.

The support function of mixed projection bodies of K_{1}, \ldots, K_{n-1} given by

$$
\begin{equation*}
h\left(\Pi\left(K_{1}, \ldots, K_{n-1}\right), u\right)=v\left(K_{1}^{u}, \ldots, K_{n-1}^{u}\right) \tag{2.4}
\end{equation*}
$$

2.3. Mixed Blaschke-Minkowski homomorphisms

There is a continuous operator (see [20])

$$
\Phi: \underbrace{\mathscr{K}^{n} \times \cdots \times \mathscr{K}^{n}}_{n-1} \rightarrow \mathscr{K}^{n}
$$

symmetric in its arguments such that, for K_{1}, \ldots, K_{r} and $\lambda_{1}, \ldots, \lambda_{r} \geq 0$,

$$
\Phi\left(\lambda_{1} K_{1}+\cdots+\lambda_{r} K_{r}\right)=\sum_{i_{1}, \ldots, i_{n-1}} \lambda_{i_{1}} \ldots \lambda_{n-1} \Phi\left(K_{i_{1}}, \ldots, K_{i_{n-1}}\right)
$$

Clearly, above the continuous operator generalizes the notion of BlaschkeMinkowski homomorphism. We call

$$
\Phi: \underbrace{\mathscr{K}^{n} \times \cdots \times \mathscr{K}^{n}}_{n-1} \rightarrow \mathscr{K}^{n}
$$

the mixed Blaschke-Minkowski homomorphism induced by Φ. The mixed Blaschke-Minkowski homomorphisms were first studied in more detail in [20]. If $K_{1}=\cdots=K_{n-i-1}=K, K_{n-i}=\cdots=K_{n-1}=B$, we write $\Phi_{i} K$ for $\Phi(\underbrace{K, \ldots, K}_{n-i-1}, \underbrace{B, \ldots, B}_{i})$ and call Φ_{i} the mixed Blaschke-Minkowski homomorphism of order i. For $0 \leq i \leq n$, we write $\Phi_{i}(K, L)$ for $\Phi(\underbrace{K, \ldots, K}_{n-i-1}$, $\underbrace{L, \ldots, L}_{i})$. We write $\Phi_{0} K$ as ΦK.

3. Auxiliary Results

The following results will be required to prove our main theorems.
Lemma 3.1 ([20]). Let $\Phi: \mathscr{K}^{n} \rightarrow \mathscr{K}^{n}$ be an even Blaschke-Minkowski homomorphism. If $K, L \in \mathscr{K}^{n}$, and $0 \leq j \leq n-3$, then

$$
\begin{align*}
V\left(\Phi_{j}^{*}(K+L)\right. &)^{-1 /(n-1)(n-1-j)} \tag{3.1}\\
& \geq V\left(\Phi_{j}^{*} K\right)^{-1 /(n-1)(n-1-j)}+V\left(\Phi_{j}^{*} L\right)^{-1 /(n-1)(n-1-j)}
\end{align*}
$$

with equality if and only if K and L are homothetic.
Lemma 3.2 ([2], p.38, Reversed Bellman's inequality). Let $a=\left\{a_{1}, \ldots, a_{n}\right\}$ and $b=\left\{b_{1}, \ldots, b_{n}\right\}$ be two series of positive real numbers and $p<0$ (or $0<p<1)$ such that $a_{1}^{p}-\sum_{i=2}^{n} a_{i}^{p}>0$ and $b_{1}^{p}-\sum_{i=2}^{n} b_{i}^{p}>0$, then

$$
\begin{align*}
&\left(a_{1}^{p}-\sum_{i=2}^{n} a_{i}^{p}\right)^{1 / p}+\left(b_{1}^{p}-\sum_{i=2}^{n} b_{i}^{p}\right)^{1 / p} \tag{3.2}\\
& \geq\left(\left(a_{1}+b_{1}\right)^{p}-\sum_{i=2}^{n}\left(a_{i}+b_{i}\right)^{p}\right)^{1 / p}
\end{align*}
$$

with equality if and only if $a=v b$ where v is a constant.
The inequality is reversed for $p>1$.
Lemma 3.3 ([20]). Let $\Phi: \mathscr{K}^{n} \rightarrow \mathscr{K}^{n}$ be an even Blaschke-Minkowski homomorphism. If $K, L \in \mathscr{K}^{n}$ and $0 \leq j \leq n-2$, then

$$
\begin{equation*}
V\left(\Phi_{j}^{*}(K, L)\right)^{1 /(n-1)} \leq V\left(\Phi^{*} K\right)^{n-j-1}+V\left(\Phi^{*} L\right)^{j} \tag{3.3}
\end{equation*}
$$

with equality if and only if K and L are homothetic.
Lemma 3.4 ([31]). If $a, b, c, d>0,0<\alpha<1,0<\beta<1$ and $\alpha+\beta=1$. Let $a>b$ and $c>d$, then

$$
\begin{equation*}
a^{\alpha} c^{\beta}-b^{\alpha} d^{\beta} \geq(a-b)^{\alpha}(c-d)^{\beta} \tag{3.4}
\end{equation*}
$$

with equality if and only if $a / b=c / d$.
Lemma 3.5 ([20]). Let $\Phi: \mathscr{K}^{n} \rightarrow \mathscr{K}^{n}$ be an even Blaschke-Minkowski homomorphism. If $K_{1}, \ldots, K_{1} \in \mathscr{K}^{n}$, and $1 \leq r \leq n-1$, then

$$
\begin{equation*}
V\left(\Phi^{*}\left(K_{1}, \ldots, K_{n-1}\right)\right)^{r} \leq \prod_{j=1}^{r} V(\Phi^{*}(\underbrace{K_{j}, \ldots, K_{j}}_{r}, K_{r+1}, \ldots, K_{n})) \tag{3.5}
\end{equation*}
$$

Lemma 3.6 ([2], p. 26). If $c_{i}>0, b_{i}>0, c_{i}>b_{i}, i=1, \ldots, n$, then

$$
\begin{equation*}
\left(\prod_{i=1}^{n}\left(c_{i}-b_{i}\right)\right)^{1 / n} \leq\left(\prod_{i=1}^{n} c_{i}\right)^{1 / n}-\left(\prod_{i=1}^{n} b_{i}\right)^{1 / n} \tag{3.6}
\end{equation*}
$$

with equality if and only if $c_{1} / b_{1}=c_{2} / b_{2}=\cdots=c_{n} / b_{n}$.

4. Inequalities for volume differences of polar Blaschke-Minkowski homomorphisms

4.1. Brunn-Minkowski-type inequalities

In the following we establish the Brunn-Minkowski inequality for volume differences of Blaschke-Minkowski homomorphisms stated in the introduction.

In fact, Theorem D^{\prime} is just the special case $j=0$ of
Theorem 4.1. Let $\Phi: \mathscr{K}^{n} \rightarrow \mathscr{K}^{n}$ be an even Blaschke-Minkowski homomorphism. Let D, D^{\prime}, K and L be convex bodies in $\mathrm{R}^{n}, V\left(\Phi_{j}^{*} D\right) \leq V\left(\Phi_{j}^{*} K\right)$ and $V\left(\Phi_{j}^{*} D^{\prime}\right) \leq V\left(\Phi_{j}^{*} L\right)$, and let L be a homothetic copy of K. If $0 \leq j<$ $n-1$, then
(4.1) $\quad\left[V\left(\Phi_{j}^{*}(K+L)\right)-\Phi_{j}^{*}\left(D+D^{\prime}\right)\right]^{-1 / n(n-j-1)}$

$$
\begin{aligned}
\leq\left[V\left(\Phi_{j}^{*} K\right)-V\right. & \left.\left(\Phi_{j}^{*} D\right)\right]^{-1 / n(n-j-1)} \\
& +\left[V\left(\Phi_{j}^{*} L\right)-V\left(\Phi_{j}^{*} D^{\prime}\right)\right]^{-1 / n(n-j-1)}
\end{aligned}
$$

with equality if and only if D and D^{\prime} are homothetic and $\left(V\left(\Phi^{*} K\right), V\left(\Phi^{*} L\right)\right)=$ $\mu\left(V\left(\Phi^{*} D\right), V\left(\Phi^{*} D^{\prime}\right)\right)$, where μ is a constant.

Proof. By Lemma 3.1, we have

$$
\begin{align*}
& V\left(\Phi_{j}^{*}\left(D+D^{\prime}\right)\right)^{-1 /(n-1)(n-j-1)} \tag{4.2}\\
& \quad \geq V\left(\Phi_{j}^{*} D\right)^{-1 /(n-i)(n-j-1)}+V\left(\Phi_{j}^{*} D^{\prime}\right)^{-1 /(n-i)(n-j-1)}
\end{align*}
$$

with equality if and only if D and D^{\prime} are homothetic. Since L is a homothetic copy of K, note that

$$
\begin{align*}
& V\left(\Phi_{j}^{*}(K+L)\right)^{-1 /(n-1)(n-j-1)} \tag{4.3}\\
& \quad=V\left(\Phi_{j}^{*} K\right)^{-1 /(n-i)(n-j-1)}+V\left(\Phi_{j}^{*} L\right)^{-1 /(n-i)(n-j-1)}
\end{align*}
$$

From (4.2) and (4.3), we obtain

$$
\begin{align*}
& D_{V}\left(\Phi_{j}^{*}(K+L), \Phi_{j}^{*}\left(D+D^{\prime}\right)\right)^{-1 / n(n-j-1)} \tag{4.4}\\
& \quad \leq\left\{\left[V\left(\Phi_{j}^{*} K\right)^{-1 / n(n-j-1)}+V\left(\Phi_{j}^{*} L\right)^{-1 /(n-i)(n-j-1)}\right]^{-n(n-j-1)}\right. \\
& \left.-\left[V\left(\Phi_{j}^{*} D\right)^{-1 / n(n-j-1)}+V\left(\Phi_{j}^{*} D^{\prime}\right)^{-1 / n(n-j-1)}\right]^{-n(n-j-1)}\right\}^{-1 / n(n-j-1)}
\end{align*}
$$

with equality if and only if D and D^{\prime} are homothetic.

From (4.4) and an application of Bellman's inequality, Lemma 3.2, we thus obtain the desired inequality

$$
\begin{aligned}
& D_{V}\left(\Phi_{j}^{*}(K+L), \Phi_{j}^{*}\left(D+D^{\prime}\right)\right)^{-1 / n(n-j-1)} \\
& \quad \leq\left(V\left(\Phi_{j}^{*} K\right)-V\left(\Phi_{j}^{*} D\right)\right)^{-1 / n(n-j-1)}+\left(V\left(\Phi_{j}^{*} L\right)-V\left(\Phi_{j}^{*} D^{\prime}\right)\right)^{-1 / n(n-j-1)}
\end{aligned}
$$

By the equality conditions of inequalities (4.4) and (3.2), equality holds in (4.1) if and only if D and D^{\prime} are homothetic and $\left(V\left(\Phi_{j}^{*} K\right), V\left(\Phi_{j}^{*} L\right)\right)=$ $\mu\left(V\left(\Phi_{j}^{*} D\right), V\left(\Phi_{j}^{*} D^{\prime}\right)\right)$, where μ is a constant.

Since the projection body operator $\Pi: \mathscr{K}^{n} \rightarrow \mathscr{K}^{n}$ is a Blaschke-Minkowski homomorphism, we have

Corollary 4.2. Let D, D^{\prime}, K and L be convex bodies in $\mathrm{R}^{n}, K \subseteq D, L \subseteq$ D^{\prime} and let L be a homothetic copy of K. If $0 \leq j<n-1$, then

$$
\begin{align*}
& D_{V}\left(\boldsymbol{\Pi}_{j}^{*}(K+L), \boldsymbol{\Pi}_{j}^{*}\left(D+D^{\prime}\right)\right)^{-1 / n(n-j-1)} \tag{4.5}\\
& \leq\left(V\left(\boldsymbol{\Pi}_{j}^{*} K\right)-V\left(\boldsymbol{\Pi}_{j}^{*} D\right)\right)^{-1 / n(n-j-1)} \\
& \quad+\left(V\left(\boldsymbol{\Pi}_{j}^{*} L\right)-V\left(\boldsymbol{\Pi}_{j}^{*} D^{\prime}\right)\right)^{-1 / n(n-j-1)}
\end{align*}
$$

with equality if and only if D and D^{\prime} are homothetic and $\left(V\left(\Pi_{j}^{*} K\right), V\left(\Pi_{j}^{*} L\right)\right)=$ $\mu\left(V\left(\Pi_{j}^{*} D\right), V\left(\Pi_{j}^{*} D^{\prime}\right)\right)$, where μ is a constant.

4.2. Minkowski-type inequalities

In the following we establish the Minkowski inequality for volume differences of Blaschke-Minkowski homomorphisms stated in the introduction.

In fact, Theorem C^{\prime} is just the special case $j=1$ of
Theorem 4.3. Let $\Phi: \mathscr{K}^{n} \rightarrow \mathscr{K}^{n}$ be an even Blaschke-Minkowski homomorphism. Let D, D^{\prime}, K and L be convex bodies in $\mathrm{R}^{n}, V\left(\Phi^{*}(D)\right) \leq$ $V\left(\Phi^{*}(K)\right)$ and $V\left(\Phi^{*}\left(D^{\prime}\right)\right) \leq V\left(\Phi^{*}(L)\right)$, and let L is a dilated copy of $K . \overline{I f}$ $1 \leq j<n-1$, then

$$
\begin{align*}
& D_{V}\left(\Phi_{j}^{*}(K, L), \Phi_{j}^{*}\left(D, D^{\prime}\right)\right) \tag{4.6}\\
& \quad \geq\left(V\left(\Phi^{*} K\right)-V\left(\Phi^{*} D\right)\right)^{(n-j-1) /(n-1)}\left(V\left(\Phi^{*} L\right)-V\left(\Phi^{*} D^{\prime}\right)\right)^{j /(n-1)}
\end{align*}
$$

with equality if and only if D and D^{\prime} are homothetic and $\left(V\left(\Phi^{*} K\right), V\left(\Phi^{*} L\right)\right)=$ $\mu\left(V\left(\Phi^{*} D\right), V\left(\Phi^{*} D^{\prime}\right)\right)$, where μ is a constant.

Proof. By Lemma 3.3, we have

$$
V\left(\Phi_{j}^{*}\left(D, D^{\prime}\right)\right)^{n-1} \leq V\left(\Phi^{*} D\right)^{n-j-1} V\left(\Phi^{*} D^{\prime}\right)^{j}
$$

with equality if and only if D and D^{\prime} are homothetic. Since L is a homothetic copy of K, note that

$$
V\left(\Phi_{j}^{*}(K, L)\right)^{n-1}=V\left(\Phi^{*} K\right)^{n-j-1} V\left(\Phi^{*} L\right)^{j}
$$

Therefore, in view of $\frac{n-j-1}{n-1}+\frac{j}{n-1}=1$ by Lemma 3.4, we obtain

$$
\begin{aligned}
D_{V}\left(\Phi_{j}^{*}\right. & \left.(K, L), \Phi_{j}^{*}\left(D, D^{\prime}\right)\right) \\
\geq & V\left(\Phi^{*} K\right)^{(n-j-1) /(n-1)} V\left(\Phi^{*} L\right)^{j /(n-1)} \\
& \quad-V\left(\Phi^{*} D\right)^{(n-j-1) /(n-1)} V\left(\Phi^{*} D^{\prime}\right)^{j /(n-1)} \\
\geq & \left(V\left(\Phi^{*} K\right)-V\left(\Phi^{*} D\right)\right)^{(n-j-1) /(n-1)}\left(V\left(\Phi^{*} L\right)-V\left(\Phi^{*} D^{\prime}\right)\right)^{j /(n-1)}
\end{aligned}
$$

By the equality conditions of Lemma 3.3 and (3.4), equality holds if and only if D and D^{\prime} are homothetic and $\left(V\left(\Phi^{*} K\right), V\left(\Phi^{*} L\right)\right)=\mu\left(V\left(\Phi^{*} D\right), V\left(\Phi^{*} D^{\prime}\right)\right)$, where μ is a constant.

If we take the projection body operator Π as the Blaschke-Minkowski homomorphism in Theorem 4.3, we have the following

Corollary 4.4. Let D, D^{\prime}, K and L be convex bodies in $\mathrm{R}^{n}, K \subseteq D$, $L \subseteq D^{\prime}$, and let L be a homothetic copy of K. If $1 \leq j<n-1$, then

$$
\begin{aligned}
& D_{V}\left(\boldsymbol{\Pi}_{j}^{*}(K, L), \boldsymbol{\Pi}_{j}^{*}\left(D, D^{\prime}\right)\right) \\
& \quad \geq\left(V\left(\boldsymbol{\Pi}^{*} K\right)-V\left(\boldsymbol{\Pi}^{*} D\right)\right)^{(n-j-1) /(n-1)}\left(V\left(\boldsymbol{\Pi}^{*} L\right)-V\left(\boldsymbol{\Pi}^{*} D^{\prime}\right)\right)^{j /(n-1)}
\end{aligned}
$$

with equality if and only if D and D^{\prime} are homothetic and $\left(V\left(\boldsymbol{\Pi}^{*} K\right), V\left(\boldsymbol{\Pi}^{*} L\right)\right)=$ $\mu\left(V\left(\Pi^{*} D\right), V\left(\Phi^{*} D^{\prime}\right)\right)$, where μ is a constant.

4.3. Aleksandrov-Fenchel-type inequalities

The Aleksandrov-Fenchel inequality for volume differences of polar mixed Blaschke-Minkowski homomorphisms stated in the introduction will be established as follows:

Theorem 4.5. Let $\Phi: \mathscr{K}^{n} \rightarrow \mathscr{K}^{n}$ be an even Blaschke-Minkowski homomorphism. If K_{i} and $D_{i}(1 \leq i \leq n-1)$ are convex bodies in R^{n},

$$
\begin{aligned}
V(\Phi^{*}(\underbrace{K_{j}, \ldots, K_{j}}_{r}, K_{r+1}, \ldots, & \left.\left.K_{n-1}\right)\right) \\
& \geq V(\Phi^{*}(\underbrace{D_{j}, \ldots, D_{j}}_{r}, D_{r+1}, \ldots, D_{n-1})),
\end{aligned}
$$

and $K_{j}(j=1, \ldots, r)$ be homothetic copies of each other, then

$$
\begin{align*}
& {\left[V\left(\Phi^{*}\left(K_{1}, \ldots, K_{n-1}\right)\right)-V\left(\Phi^{*}\left(D_{1}, \ldots, D_{n-1}\right)\right)\right]^{r}} \tag{4.7}\\
& \quad \geq \prod_{j=1}^{r} D_{V}(\Phi^{*}(\underbrace{K_{j}, \ldots, K_{j}}_{r}, K_{r+1}, \ldots, K_{n-1}) \\
& \Phi^{*}(\underbrace{D_{j}, \ldots, D_{j}}_{r}, D_{r+1}, \ldots, D_{n-1}))
\end{align*}
$$

Proof. By Lemma 3.5, we have

$$
V\left(\Phi^{*}\left(D_{1}, \ldots, D_{n-1}\right)\right)^{r} \leq \prod_{j=1}^{r} V(\Phi^{*}(\underbrace{D_{j}, \ldots, D_{j}}_{r}, D_{r+1}, \ldots, D_{n-1})) .
$$

Suppose $K_{j}(j=1, \ldots, r$ are homothetic copies of each other, we have

$$
V\left(\Phi^{*}\left(K_{1}, \ldots, K_{n-1}\right)\right)^{r}=\prod_{j=1}^{r} V(\Phi^{*}(\underbrace{K_{j}, \ldots, K_{j}}_{r}, K_{r+1}, \ldots, K_{n-1})) .
$$

Hence
(4.8) $\quad V\left(\Phi^{*}\left(K_{1}, \ldots, K_{n-1}\right)\right)-V\left(\Phi^{*}\left(D_{1}, \ldots, D_{n-1}\right)\right)$

$$
\begin{aligned}
\geq\left(\prod_{j=1}^{r} V\right. & (\Phi^{*}(\underbrace{K_{j}, \ldots, K_{j}}_{r}, K_{r+1}, \ldots, K_{n-1})))^{1 / r} \\
& -(\prod_{j=1}^{r} V(\Phi^{*}(\underbrace{D_{j}, \ldots, D_{j}}_{r}, D_{r+1}, \ldots, D_{n-1})))^{1 / r}
\end{aligned}
$$

with equality if and only if D_{1}, \ldots, D_{r} are homothetic.
By using Lemma 3.6 in (4.8), we obtain

$$
\begin{aligned}
D_{V}\left(\Phi^{*}\right. & \left.\left(K_{1}, \ldots, K_{n-1}\right), \Phi^{*}\left(D_{1}, \ldots, D_{n-1}\right)\right) \\
\geq(& \prod_{j=1}^{r}[V(\Phi^{*}(\underbrace{K_{j}, \ldots, K_{j}}_{r}, K_{r+1}, \ldots, K_{n-1})) \\
& \quad-V(\Phi^{*}(\underbrace{D_{j}, \ldots, D_{j}}_{r}, D_{r+1}, \ldots, D_{n-1}))])^{1 / r}
\end{aligned}
$$

$$
\begin{gathered}
=\prod_{j=1}^{r} D_{V}(\Phi^{*}(\underbrace{K_{j}, \ldots, K_{j}}_{r}, K_{r+1}, \ldots, K_{n-1}) \\
\Phi^{*}(\underbrace{D_{j}, \ldots, D_{j}}_{r}, D_{r+1}, \ldots, D_{n-1}))^{1 / r}
\end{gathered}
$$

If we take the projection body operator Π as the Blaschke-Minkowski homomorphism in Theorem 4.5, we have

Corollary 4.6. If K_{i} and $D_{i}, 1 \leq i \leq n-1$, are convex bodies in R^{n}, $K_{i} \subseteq D_{i}$ and $K_{j}(j=1, \ldots, r, 1 \leq r \leq n-1)$ be homothetic copies of each other, then

$$
\begin{align*}
& \left(V\left(\Pi^{*}\left(K_{1}, \ldots, K_{n-1}\right)\right)-V\left(\boldsymbol{\Pi}^{*}\left(D_{1}, \ldots, D_{n-1}\right)\right)\right)^{r} \tag{4.9}\\
& \quad \geq \prod_{j=1}^{r} D_{V}(\Pi^{*}(\underbrace{K_{j}, \ldots, K_{j}}_{r}, K_{r+1}, \ldots, K_{n}) \\
& \Pi^{*}(\underbrace{D_{j}, \ldots, D_{j}}_{r}, D_{r+1}, \ldots, D_{n}))
\end{align*}
$$

Moreover, Zhao [32] defined the volume sum function of polar projection bodies of convex D and K, by

$$
S_{V}\left(\boldsymbol{\Pi}^{*} K, \Pi^{*} D\right)=V\left(\boldsymbol{\Pi}^{*} K\right)+V\left(\boldsymbol{\Pi}^{*} D\right)
$$

We finally remark that inequalities for the sum function of polar of mixed projection bodies were established in [32], inequalities for L_{p}-intersection bodies were established in [3], [6], [7], [26], [28]-[29] and [33], and for $L_{p^{-}}$ mixed intersection bodies in [28].

Acknowledgements. The author express his grateful thanks to the referee for his many very valuable suggestions and comments. The author very admire the referee for his good ideas.

REFERENCES

1. Alesker, S., Bernig, A., and Schuster, F. E., Harmonic analysis of translation invariant valuations, Geom. Funct. Anal. 21 (2011), 751-773.
2. Beckenbach, E. F., and Bellman, R., Inequalities, 2nd ed., Ergebn. Math. Grenzgeb. 30, Springer, Berlin 1965.
3. Berck, G., Convexity of L_{p}-intersection bodies, Adv. Math. 222 (2009), 920-936.
4. Gardner, R. J., Geometric Tomography, Encycl. Math. Appl. 58, Cambridge Univ. Press, Cambridge 1996.
5. Haberl, C., Star body valued valuations, Indiana Univ. Math. J. 58 (2009), 2253-2276.
6. Haberl, C., L_{p}-intersection bodies, Adv. Math. 217 (2008), 2599-2624.
7. Haberl, C., and Ludwig, M., A characterization of L_{p} intersection bodies, Int. Math. Res. Not. 2006, Article ID 10548, 29 pages.
8. Haberl, C., and Schuster, F. E., General L_{p} affine isoperimetric inequalities, J. Differential Geom. 83 (2009), 1-26.
9. Hardy, G. H., Littlewood, J. E., and Pólya, G., Inequalities, Cambridge Univ. Press, Cambridge 1934.
10. Kiderlen, M., Blaschke- and Minkowski-endomorphisms of convex bodies, Trans. Amer. Math. Soc. 358 (2006), 5539-5564.
11. Leng, G. S., The Brunn-Minkowski inequality for volume differences, Adv. in Appl. Math. 32 (2004), 615-624.
12. Ludwig, M., Minkowski valuations, Trans. Amer. Math. Soc. 357 (2005), 4191-4213.
13. Ludwig, M., Projection bodies and valuations, Adv. Math. 172 (2002), 158-168.
14. Ludwig, M., Minkowski area and valuations, J. Differential Geom. 86 (2010), 133-161.
15. Lutwak, E., Dual mixed volumes, Pacific J. Math. 58 (1975), 531-538.
16. Lutwak, E., Intersection bodies and dual mixed volumes, Adv. Math. 71 (1988), 232-261.
17. Lutwak, E., Mixed projection inequalities, Trans. Amer. Math. Soc. 287 (1985), 91-105.
18. Lv, S., Dual Brunn-Minkowski inequality for volume differences, Geom. Dedicata 145 (2010), 169-180.
19. Schneider, R., Convex Bodies: The Brunn-Minkowski Theory, Encycl. Math. Appl. 44, Cambridge Univ. Press, Cambridge 1993.
20. Schuster, F. E., Volume inequalities and additive maps of convex bodies, Mathematika 53 (2006), 211-234.
21. Schuster, F. E., Convolutions and multiplier transformations of convex bodies, Trans. Amer. Math. Soc. 359 (2007), 5567-5591.
22. Schuster, F. E., Valuations and Busemann-Petty type problems, Adv. Math. 219 (2008), 344368.
23. Schuster, F. E., Crofton measures and Minkowski valuations, Duke Math. J. 154 (2010), 1-30.
24. Schuster, F. E., and Wannerer, T., GL (n) contravariant Minkowski valuations, Trans. Amer. Math. Soc. (to appear).
25. Wannerer, T., GL(n) equivariant Minkowski valuations, Indiana Univ. Math. J. (to appear).
26. Yuan, J., and Cheung, W., L_{p}-intersection bodies, J. Math. Anal. Appl. 338 (2008), 14311439.
27. Zhang, G., The affine Sobolev inequality, J. Differerential Geom. 53 (1999), 183-202.
28. Zhao, C., L_{p}-mixed intersection bodies, Sci. China (A) 51 (2008), 2172-2188.
29. Zhao, C., and Cheung, W., L_{p}-Brunn-Minkowski inequality, Indag. Mathem. (N.S.) 20 (2009), 179-190.
30. Zhao, C., On Blaschke-Minkowski homomorphisms, Geom. Dedicata 149 (2010), 373-378.
31. Zhao, C., and Cheung, W., On p-quermassintegral differences function, Proc. Indian Acad. Sci. (Math. Sci.) 116 (2006), 221-231.
32. Zhao, C., L_{p}-dual quermassintegral sums, Sci. China (A) 50 (2007), 1347-1360.
33. Zhu, X., and Leng, G., On the L_{p}-intersection body, Appl. Math. Mech. 28 (2007), 16691678.
department of mathematics
China jlilang university
HANGZHOU 310018
P.R. CHINA

E-mail: chjzhao@yahoo.com.cn, chjzhao@163.com

[^0]: * Research is supported by National Natural Sciences Foundation of China (10971205).

 Received 27 January 2011, in final form 18 August 2011.

