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THE SECTORIAL PROJECTION DEFINED
FROM LOGARITHMS

GERD GRUBB

Abstract
For a classical elliptic pseudodifferential operator P of orderm > 0 on a closed manifoldX, such
that the eigenvalues of the principal symbol pm(x, ξ) have arguments in ]θ, ϕ[ and ]ϕ, θ + 2π[
(θ < ϕ < θ + 2π), the sectorial projection �θ,ϕ(P ) is defined essentially as the integral of the
resolvent along eiϕR+ ∪ eiθR+. In a recent paper, Booss-Bavnbek, Chen, Lesch and Zhu have
pointed out that there is a flaw in several published proofs that �θ,ϕ(P ) is a ψdo of order 0;
namely that pm(x, ξ) cannot in general be modified to allow integration of (pm(x, ξ) − λ)−1

along eiϕR+ ∪ eiθR+ simultaneously for all ξ . We show that the structure of�θ,ϕ(P ) as a ψdo of
order 0 can be deduced from the formula �θ,ϕ(P ) = i

2π (logθ P − logϕ P ) proved in an earlier
work (coauthored with Gaarde). In the analysis of logθ P one need only modify pm(x, ξ) in a
neighborhood of eiθR+; this is known to be possible from Seeley’s 1967 work on complex powers.

1. Functions of an elliptic operator

Let P be a classical elliptic pseudodifferential operator (ψdo) of order m >

0 acting in an N -dimensional hermitian vector bundle E over a closed n-
dimensional C∞ manifold X.

The construction of functions of P was initiated by Seeley, who in [14]
constructed and analysed the complex powers P s and showed that they are
likewise classical ψdo’s, under the assumption that P has one ray of minimal
growth {λ = reiθ | r ∈ R+}, where (P − λ)−1 is well-defined and is O(λ−1)

for λ → ∞. They are useful in index theory for elliptic operators, and its
generalizations, see also Atiyah and Bott [1]. Greiner [7] defined the heat op-
erator e−tP , when all rays with argument in ]π/2 − δ, 3π/2 + δ[ are rays of
minimal growth (for some δ > 0); it is likewise used in index theory. The sec-
torial projection �θ,ϕ(P ) is defined when P has two rays of minimal growth
eiθR+ and eiϕR+ (θ < ϕ < θ + 2π ), as a projection whose range includes the
generalized eigenspaces for eigenvalues with argument in ]θ, ϕ[, and whose
nullspace contains the generalized eigenspaces for eigenvalues with argument
in ]ϕ, θ+2π [. Burak [5] studied it forP equal to a realizationAB of an elliptic
differential operator A with a boundary condition Bu = 0. A special case, the
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positive eigenprojection �+(P ) for a selfadjoint differential or pseudodiffer-
ential operator, came into focus with the works of Atiyah, Patodi and Singer
[2], [3] on index formulas for Dirac operators with boundary conditions; here
�+(P ) equals (P + |P |)(2|P |)−1 (defined to be zero on the nullspace of P ),
and is a ψdo of order 0 since |P | = (P 2)

1
2 is classical elliptic of order m by

[14]. Wodzicki [15], [16], [17], in his studies of the spectral asymmetry, con-
sidered�+(P ), as well as more general sectorial projections in cases where P
has two rays of minimal growth. The logarithm logθ P is defined when eiθR+
is a ray of minimal growth, and arises e.g. as the derivative of P s at s = 0; it
was analysed in detail by Okikiolu [10], [11] in connection with determinant
formulas.

The sectorial projection can be defined on smooth functions by the formula

(1) �θ,ϕ(P ) = i

2π

∫

θ,ϕ

λ−1P(P − λ)−1 dλ,

where the integration goes along the sectorial contour

(2) 
θ,ϕ = {reiϕ | ∞ > r > r0}
∪ {r0eiω | ϕ ≥ ω ≥ θ} ∪ {reiθ | r0 < r < ∞};

here r0 is taken so small that 0 is the only possible eigenvalue in {|λ| ≤ r0}.
Detailed studies of �θ,ϕ(P ) were also made by Wojciechowski [18] for

applications to the spectral flow for first-order operators, by Nazaikinskii-
Sternin-Shatalov-Schulze [9] for manifolds with singularities, and by Ponge
[12] who wanted to give a simplified proof of the results of Wodzicki. A
recent paper of Booss-Bavnbek, Chen, Lesch and Zhu [4] gives an interesting
observation, namely that there is a flaw in the arguments of the latter three
papers, where the construction of�θ,ϕ(P ) is based on an application of (1) to
the terms in the symbol of (P −λ)−1: When the principal symbol pm(x, ξ) has
eigenvalues both with arguments in ]θ, ϕ[ and in ]ϕ, θ+2π [, one cannot obtain
that (pm(x, ξ)−λ)−1 is nonsingular along the curve 
θ,ϕ for all ξ ∈ Rn; there
is a topological obstruction (see the detailed explanation in [4]). Therefore a
modified proof is needed.

The reader is referred to the paper of Booss-Bavnbek et al. for their strategy
to circumvent the mentioned difficulty. They show that �θ,ϕ(P ) is Hs-boun-
ded, when P has a homogeneous principal symbol and a lower-order part in
Sm−1

1,0 . They use their estimates to show that the norm of�θ,ϕ(P ) inHs-spaces
depends continuously on P in a certain symbol/operator topology coarser than
the full symbol topology.

We shall here show, when P is classical, that a very easy proof of the fact
that �θ,ϕ(P ) is a classical ψdo of order 0 (in particular Hs-bounded) comes
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from the relation between the sectorial projection and logarithms of P , as
worked out in detail in Gaarde-Grubb [6].

2. Preliminaries on the logarithm of P

The present author’s interest in the logarithm stems from reading the paper of
Scott [13], where it was shown that C0(P ) = − 1

m
res(logP); here C0(P ) =

ζ(P, 0)+ dim ker P , where ζ(P, s) is the meromorphic extension of Tr P−s ,
and the residue of logP is as defined in Okikiolu [11]. SinceC0(P ) is also equal
to the coefficient of −λ−1 in the expansion of the resolvent trace Tr(P − λ)−1

(take m > n for simplicity in this motivating explanation), this coefficient
is related in the same way to res(logP). We wanted to give a direct proof
of the last fact without having to calculate complex powers – for the sake
of a generalization to boundary value problems where complex powers are
difficult to use. The outcome is explained in [8], where the point of departure
is a simple key lemma (Lemma 1.2) that shows how the logarithm comes into
the resolvent trace calculations. This was used to show Scott’s formula directly
from resolvent trace expansions, and the method was generalized to get similar
results for manifolds with boundary. Related observations were used to deduce
the results in [6] that we appeal to in Section 3 below.

Assume in this section that P is elliptic of order m ∈ R+, having a ray of
minimal growth eiθR+ for some θ ∈ [0, 2π [. This means that the principal
symbol pm(x, ξ), homogeneous of degree m in ξ for |ξ | ≥ 1 and smooth in
(x, ξ), has no eigenvalues on eiθR+ when |ξ | ≥ 1. Then (P −λ)−1 exists and is
O(λ−1) for large λ on the ray, and since the hypotheses are valid also for rays
with argument close to θ , one can assume that the ray is free of eigenvalues of
P .

The principal symbol of the resolvent isq−m(x, ξ, λ) = (pm(x, ξ)−λ)−1 for
|ξ | ≥ 1, assumed to be extended in a smooth way for |ξ | ≤ 1. The smoothing
can be done for each λ e.g. by multiplication of (phm(x, ξ) − λ)−1 (where
phm(x, ξ) denotes the strictly homogeneous symbol) by an excision function
ζ(ξ) (a nonnegative C∞ function that equals 1 for |ξ | ≥ 1, 0 near ξ = 0). In
some cases it suffices to modify pm(x, ξ) itself for small ξ .

The lower order terms q−m−j in the symbol q(x, ξ, λ) of (P − λ)−1 are
defined in local coordinates by recursive formulas known from [14]; they are
finite sums of terms with the structure

(3) r(x, ξ, λ) = b1q
ν1−mb2q

ν2−m . . . bMq
νM−mbM+1,

where the bk are homogeneous ψdo symbols independent of λ, the νk are
positive integers with sum ≥ 2. (P − λ)−1 has the full symbol q(x, ξ, λ) ∼
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∑
j≥0 q−m−j (x, ξ, λ). The terms q−m−j are quasi-homogeneous (homogen-

eous of degree −m− j in (ξ, |λ| 1
m ) on each ray).

Now logθ P can be defined on smooth functions by

(4) logθ P = lim
s↘0

i
2π

∫
C

λ−s
θ logθ λ(P − λ)−1 dλ.

Here λ−s
θ and logθ λ are taken with branch cut eiθR+, and C is a contour in

C \ eiθR+ going around the nonzero spectrum of P in the positive direction;
for precision we can take a Laurent loop

(5) Cθ = {reiθ | ∞ > r > r0}
∪ {r0eiω | θ ≥ ω ≥ θ − 2π} ∪ {rei(θ−2π) | r0 < r < ∞},

with r0 so small that 0 is the only possible eigenvalue in {|λ| ≤ r0}. As shown
in Okikiolu [10], the symbol of logθ P is calculated in local coordinates from
the resolvent symbol q(x, ξ, λ) by integration with logθ λ around the spectrum
of the principal symbol pm. The terms q−m−j contribute as follows:

(6)

i

2π

∫
Cθ (x,ξ)

logθ λq−m(x, ξ, λ) dλ

= i

2π

∫
Cθ (x,ξ)

logθ λ(pm(x, ξ)− λ)−1 dλ

= logθ pm(x, ξ) = logθ ([ξ ]m)+ logθ ([ξ ]−mpm(x, ξ))

= m log[ξ ] + lθ,0(x, ξ),

i

2π

∫
Cθ (x,ξ)

logθ λq−m−j (x, ξ, λ) dλ = lθ,−j (x, ξ) for j > 0,

where Cθ (x, ξ) is a closed curve in C\eiθR+ around the spectrum of pm(x, ξ),
and [ξ ] stands for a smooth positive function on Rn equal to |ξ | for |ξ | ≥ 1.
It is a point here that the Laurent loop used for logθ P is replaced by a closed
curve (by replacement of the rays outside a large R by an arc with radius R)
and λ−s is replaced by its limit 1, since the spectrum is bounded at each (x, ξ).
If, more generally, θ = θ0 + 2πk with θ0 ∈ [0, 2π [ and k integer, then lθ,0
contains an additional constant 2πik.

Each lθ,−j is homogeneous in ξ of degree −j for |ξ | ≥ 1; for j = 0 it
follows since [ξ ]−mpm(x, ξ) is so, and for j ≥ 1 it is seen e.g. as follows



122 gerd grubb

(where we set λ = tm�, t ≥ 1):

(7)

lθ,−j (x, tξ)

= i

2π

∫
Cθ (x,ξ)

logθ λq−m−j (x, tξ, λ) dλ

= i

2π

∫
t−mCθ (x,ξ)

(logθ � +m log t)t−m−j q−m−j (x, ξ, �)tm d�

= t−j lθ,−j (x, ξ)+mt−j log t
i

2π

∫
t−mCθ (x,ξ)

q−m−j (x, ξ, �) d�,

where the last term is zero since q−m−j isO(|�|−2) for |�| → ∞ when j > 0.
In the proof that the full symbol of logθ P is

(8) m log[ξ ] + lθ (x, ξ), lθ (x, ξ) ∼
∑
j≥0

lθ,−j (x, ξ),

one uses the observation by Seeley [14] that the symbol pm(x, ξ) can be mod-
ified smoothly near ξ = 0 in such a way that pm(x, ξ)− λ is invertible for all
λ in a keyhole region {λ ∈ C | arg λ ∈ ]θ − δ, θ + δ[ or |λ| < r}, all (x, ξ),
when r and δ are sufficiently small positive numbers.

3. The relation between the sectorial projection and logarithms

For a general closed, densely defined operator A in a Hilbert space H , with
compact resolvent and two rays eiθR+ and eiϕR+ in the resolvent set, where
‖(A−λ)−1‖ isO(λ−1) for λ → ∞ on the rays, one defines�θ,ϕ(A) onD(A),
to begin with, by

(9) �θ,ϕ(A)x = i

2π

∫

θ,ϕ

λ−1A(A− λ)−1x dλ, x ∈ D(A);

here the integration goes along the sectorial contour (2). If the hereby defined
operator �θ,ϕ(A) is bounded in H -norm, we extend it by continuity to H .

Similarly, ifA has compact resolvent and one ray eiθR+ in the resolvent set,
where ‖(A − λ)−1‖ is O(λ−1) for λ → ∞ on the ray, one can define logθ A
by the formula

(10) logθ Ax = lim
s↘0

i

2π

∫
C

λ−s
θ logθ λ(A− λ)−1x dλ, x ∈ D(A).

The results in the following theorem were shown in [6] (Lemma 4.3 and
Prop. 4.4).
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Theorem 3.1. 1◦ Let f (λ) be a continuous (possibly vector-valued) func-
tion on the “punctuated double keyhole region”

(11) Vr0,δ = {λ ∈ C | |λ| < 2r0 or | arg λ− θ | < δ or | arg λ−ϕ| < δ} \ {0},
such that f (λ) is O(λ−1−ε) for |λ| → ∞ in Vr0,δ . Then

(12)
∫

Cθ

logθ λf (λ) dλ−
∫

Cϕ

logϕ λf (λ) dλ = −2πi
∫

θ,ϕ

f (λ) dλ.

2◦ For x ∈ D(A),

(13) logθ Ax − logϕ Ax =
∫

θ,ϕ

λ−1A(A− λ)−1x dλ = −2πi�θ,ϕ(A)x.

When �θ,ϕ(A) is bounded, so is logθ A− logϕ A (and vice versa), and then

(14) �θ,ϕ(A) = i

2π
(logθ A− logϕ A).

We now assume that P is elliptic of order m ∈ R+, having two rays of
minimal growth eiθR+ and eiϕR+ (with θ ∈ [0, 2π [, θ < ϕ < ϕ + 2π ). Then
(P − λ)−1 exists and is O(λ−1) for large λ on the rays, and we can assume
that the rays are free of eigenvalues of P . The considerations in Theorem 3.1
will be applied to P , entering as a closed unbounded operator in H = L2(X)

with domain D(P ) = Hm(X).

Theorem 3.2.�θ,ϕ(P ) equals i
2π (logθ P − logϕ P ), and is a classicalψdo

of order ≤ 0. It has the symbol

(15) πθ,ϕ(x, ξ) = i

2π
(lθ (x, ξ)− lϕ(x, ξ)),

in local coordinates.

Proof. As recalled in Section 2, logθ P and logϕ P are log-polyhomogen-
eous ψdo’s with symbols as described in (8). Then logθ P − logϕ P has the
symbol

(16) lθ (x, ξ)− lϕ(x, ξ),

where the log-termsm log[ξ ] have cancelled out. Hence it is a classicalψdo of
order ≤ 0; in particular it is bounded on L2(X). By Theorem 3.1 2◦, �θ,ϕ(P )

is then also bounded on L2(X); and it equals i
2π (logθ P − logϕ P ) and is a
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classical ψdo on X of order ≤ 0 whose symbol is found as the corresponding
linear combination of the symbols of the logarithms, namely (15).

We can also show that the terms in the symbol of�θ,ϕ(P ) have the expected
form as integrals of terms in the resolvent symbol:

Theorem 3.3. In local coordinates, the symbol

πθ,ϕ(x, ξ) ∼
∑
j≥0

πθ,ϕ,−j (x, ξ)

of �θ,ϕ(P ) satisfies, for each x, each |ξ | ≥ 1:

(17)

πθ,ϕ,−j (x, ξ) = i

2π
(lθ,−j (x, ξ)− lϕ,−j (x, ξ))

= i

2π

∫
Cθ,ϕ (x,ξ)

q−m−j (x, ξ, λ) dλ,

for all j . Here Cθ,ϕ(x, ξ) is a closed curve in the open sector

�θ,ϕ = {λ ∈ C | θ < arg λ < ϕ}
going in the positive direction around the spectrum of pm(x, ξ) lying in that
sector.

Proof. The first equality in (17) follows immediately from (15). For the
second equality we use (6). For j = 0, we obtain the formula by applying
Theorem 3.1 2◦ to the bounded operator pm(x, ξ) in CN :

lθ,0 − lϕ,0 = logθ pm − logϕ pm =
∫

θ,ϕ

λ−1pm(pm − λ)−1 dλ

=
∫

C

λ−1pm(pm − λ)−1 dλ =
∫

C

(λ−1 + (pm − λ)−1) dλ

=
∫

C

(pm − λ)−1 dλ,

where the curve 
θ,ϕ could be replaced by a closed curve C = Cθ,ϕ(x, ξ) in
�θ,ϕ , since the integrand was O(λ−2) and the spectrum of pm(x, ξ) in �θ,ϕ

is a finite set of points. For j ≥ 1, we obtain the formula by application
of Theorem 3.1 1◦ with f (λ) equal to the j ’th term q−m−j (x, ξ, λ) in the
resolvent symbol (recall the structure as a sum of terms (3)); it is O(λ−2),
allowing reduction to a closed curve C .
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In relation to the problem raised in [4], we note that the calculations in
Theorem 3.3 take place at individual points (x, ξ), where there is no problem
with singularities on the curve
θ,ϕ . Calculations global in ξ are only performed
in the constructions of the logarithms, where the argument of Seeley [14] is
valid.

In [6] we relied on the account of Ponge [12] referring to five works of
Wodzicki from the 80’s (two in Russian), for the knowledge that �θ,ϕ(P ) is
a zero-order ψdo. Although Ponge’s own formulation of a proof has the flaw
pointed out in [4], we see no reason to doubt the original statement, which is
further supported by the formula P sθ − P sϕ = (1 − e2iπs)�θ,ϕ(P )P

s
θ in [12]

Sect. 4, ascribed to Wodzicki.
At any rate, it seems to be useful that the present paper gives an independent

proof which avoids the mentioned pitfall, and is based directly on resolvents
and logarithms.

The formula �θ,ϕ(P ) = i
2π (logθ P − logϕ P ) allows a direct application

of the procedures and results in Okikiolu [10], Sect. 4, to show that the norm
inHs-spaces depends continuously and even smoothly on the symbol of P , in
dependence on a parameter t in an open subset T of Rd . As mentioned earlier,
[4] shows the continuity in terms of a certain symbol/operator topology on P .
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