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MINIMIZING ROOTS OF MAPS INTO
THE TWO-SPHERE

MARCIO COLOMBO FENILLE∗

Abstract
This article is a study of the root theory for maps from two-dimensional CW-complexes into the 2-
sphere. Given such a map f : K → S2 we define two integers ζ(f ) and ζ(K, df ), which are upper
bounds for the minimal number of roots of f , denote be μ(f ). The number ζ(f ) is only defined
when f is a cellular map and ζ(K, df ) is defined whenK is homotopy equivalent to the 2-sphere.
When these two numbers are defined, we have the inequality μ(f ) ≤ ζ(K, df ) ≤ ζ(f ), where
df is the so-called homological degree of f . We use these results to present two very interesting
examples of maps from 2-complexes homotopy equivalent to the sphere into the sphere.

1. Introduction

The purpose of this article is to present some results and, in particular, two
interesting examples involving the root problem for maps from finite and con-
nected two-dimensional CW-complexes into the 2-sphere. The root problem
consists in determining the minimal number of roots of maps in a determined
homotopy class, namely, given a map f : K → S2, where K is a finite and
connected 2-complex, and fixed a point a ∈ S2, the minimum number of roots
of f is defined by

μ(f ) = min{ #ϕ−1(a) such that ϕ is homotopic to f }.
where # denotes cardinality. Since the range of f is a manifold it is easy to
prove that the minimum number of roots is independent of the selected point
a ∈ S2. Moreover, by Theorems 2.10 and 2.12 of [5], μ(f ) is really a number,
that is, it is finite. When μ(f ) = 0 we say that the map f is root free, and
since the range is the 2-sphere, this occurs if and only if f is homotopic to a
constant map. If f is not root free, we say also that f is strongly surjectivity.
If this is the case, we would like to determine exactly the minimum number of
roots μ(f ), or at least to make a good estimate of it. In the Nielsen root theory

∗ I would like to express my thanks to Oziride Manzolli Neto and Daciberg Lima Gonçalves for
their encouragement of the project which led up to this article. This work was partially sponsored
by FAPESP-Grant 2007/05843-5. I thank to referee for his comments and suggestions.

Received 7 March 2011.



minimizing roots of maps into the two-sphere 93

one defines N(f ), the Nielsen root number of f , which is a lower bound for
μ(f ).

By using the concept of vector-degree of a cellular map f : K → S2

presented in [3], we define, in Section 2 of this article, a number ζ(f ) satisfying
the inequality μ(f ) ≤ ζ(f ). We also present some conditions for the identity
μ(f ) = ζ(f ) to occur.

In Section 3, we study roots of maps from a 2-complex homotopy equivalent
to the 2-sphere into the 2-sphere. Here, contrary to what occurs for self-maps
of the 2-sphere, a strongly surjectivity map may have minimum root number
strictly greater than 1. (It is well known that a strongly surjectivity self-map of
S2 is homotopic to a map with a single root). We define the number ζ(K, df ),
which is an upper bound for μ(f ). Its definition uses the generator of the
infinite cyclic group H2(K) and the so-called homological degree df of the
map f . When both the numbers ζ(f ) and ζ(K, df ) are defined, we have the
inequality

μ(f ) ≤ ζ(K, df ) ≤ ζ(f ).

In Section 4 we present two interesting examples. The questions presented
in the first example (Example 4.1) are completely answered by using the latter
inequality and some simple arguments. It is a more complete version of Ex-
ample 4 given by D. L. Gonçalves in [6]. The second example (Example 4.2)
is more complicated and requires a deeper study. It provides an example in
which μ(f ) < ζ(K, df ) = ζ(f ).

Throughout the text, we use the capital letter K to denote a finite and
connected two-dimensional CW-complex. We also simplify two-dimensional
CW-complex to 2-complex. Given such a 2-complex K , we write #2(K) to
denote the number of cells of dimension two. We also simplifyf is a continuous
map to f is a map.

2. The number ζ(f )

Let K be a finite and connected 2-complex and let f : K → S2 be a cellular
map. We consider the sphere S2 with its minimal cellular decomposition with
a 0-cell e0∗ and a 2-cell e2∗, henceforth adopted, S2 = e0∗ ∪ e2∗. Next, we define
the vector-degree and the cellular factorization of f as in [3].

Suppose that K has m = #2(K) two-dimensional cells, say e2
1, . . . , e

2
m.

Let K1 be the 1-skeleton of K . We define ω : K → K/K1 to be the natural
quotient map which collapsesK1 to a single point e0. ThenK/K1 is isomorphic
to the bouquet

∨m
i=1 S

2
i ofm two-dimensional spheres with its minimal cellular

decomposition. Since all of K1 is mapped by f onto e0∗, there exists a unique
map f̄ : K/K1 → S2 such that f = f̄ ◦ ω. Consider the homomorphism
f̄ ∗ : H 2(S2) → H 2(K/K1) induced by f on second integral cohomology
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groups. Let � be a fixed generator of the infinite cyclic group H 2(S2) and let
�1, . . . , �m be fixed generators of the abelian free group H 2(K/K1) of rank
m. There exists integer numbers df1 , . . . , d

f
m such that

f̄ ∗(�) = d
f

1 �1 + · · · + dfm�m.

The integer vector-column
−→
deg(f ) = (d

f

1 , . . . , d
f
m)

T, where the superscript
T indicates transposition of matrices, is called the vector-degree of f . It is
invariant by homotopy relative to the 1-skeleton K1, but it is not a homotopy
invariant. As in [3], a geometric interpretation of the vector-degree can be
given in the following way: The map f̄ can be seen as a map from the bouquet∨m
i=1 S

2
i into S2. Then, for each 1 ≤ i ≤ m, the restriction map f̄i = f̄ |S2

i
:

S2
i → S2 has degree deg(f̄i) = d

f

i . The maps f̄1, . . . , f̄m are called the
cellular factorization of f .

If X is a 2-complex, then since S2 is simply connected, the based homo-
topy classes [X, S2]∗ of based maps from X into S2 and the homotopy classes
[X, S2] of maps from X into S2 are in one-to-one correspondence. Further-
more, by theorems of Hopf (see [2] and [7]), given a map ϕ : X → S2, the
assignment ϕ �→ ϕ∗(�) sets up an one-to-one correspondence between the
homotopy classes of the maps ϕ : X → S2 and the elements of the integral
cohomology groupH 2(X). This implies that, for a cellular map f : K → S2,
the condition

−→
deg(f ) = 0 implies that f̄ is homotopic to a constant map,

which in turn implies that also f is homotopic to a constant map. Now, for
each 1 ≤ i ≤ m, the map f̄i is homotopic to a constant map if and only if
d
f

i = 0. If the degree dfi 	= 0, then every map homotopic to f̄i is surjective
and μ(f̄i) = 1. Moreover, in this case, there exists a cellular map ḡi based
homotopic to f̄i such that ḡ−1

i (−e0∗) is a single point situated in the interior
of the 2-cell corresponding to ω(e2

i ), where −e0∗ is the antipodal point of e0∗.
Since a based homotopy {h̄t } : K/K1 → S2 can be lifted to a homotopy
{ht } : K → S2, it proves that the number μ(f ) is less than or equal to the
number of non-zero coordinates of the vector-degree

−→
deg(f ).

To facilitate future references, we define ζ(f ) = number of non-zero co-
ordinates of

−→
deg(f ). We have proved the following lemma:

Lemma 2.1. For every cellular map f : K → S2 we have μ(f ) ≤ ζ(f ).

In order to see that the identity μ(f ) = ζ(f ) may be false, let D2 be the
(closed) 2-disc with the minimal cellular decomposition e0

1 ∪ e1
1 ∪ e2

1 and let
f : D2 → S2 be the canonical map which identifies the boundary of the disc
at a single point, which we have chosen to be the 0-cell e0∗ of S2. We have
μ(f ) = 0 but ζ(f ) = 1.
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Lemma 2.1 implies that for each (not necessarily cellular) mapf : K → S2,
we have μ(f ) ≤ #2(K). In fact, such a map has a cellular approximation
fcel : K → S2 for which we have μ(f ) = μ(fcel) ≤ ζ(fcel) ≤ #2(K).
Actually, something stronger can be shown, namely, we can prove that the
number μ(f ) is less than or equal to the number of 2-cells of any subcomplex
L such that K ′ collapses to L, where K ′ is any cellular subdivision of K .

The following proposition presents conditions for the identityμ(f ) = ζ(f )

to occur. Following it we present an example showing that the assumption in
this proposition is not superfluous.

Proposition 2.2. Let f : K → S2 be a map. Suppose that f has a cellular
approximationϕ : K → S2 such that, for some point a ∈ S2,μ(f ) = #ϕ−1(a)

with ϕ−1(a) ⊂ K −K1. Then μ(f ) = ζ(ϕ).

Proof. Since ϕ is a cellular approximation of f , we have μ(f ) = μ(ϕ) ≤
ζ(ϕ), where the inequality comes from Lemma 2.1. We will prove now that
μ(ϕ) ≥ ζ(ϕ). Let ϕ̄ : K/K1 → S2 be defined such that ϕ = ϕ̄ ◦ ω. Suppose
that the equation ϕ(x) = a has no roots in some 2-cell e2

j of K . Then the
equation ϕ̄(y) = a has no roots in the 2-cell corresponding to the image
ω(e2

j ). This implies that dϕj = 0. It follows that the equation ϕ(x) = a has at
least ζ(ϕ) roots, each one of them belong to the interior of a different 2-cell of
K . Therefore, sinceμ(ϕ) = μ(f ) = #ϕ−1(a), we conclude thatμ(ϕ) ≥ ζ(ϕ).

In Definition 5.3 of [4], a map f satisfying the assumptions in the previous
proposition is said to be of type ∇3. By Proposition 5.5 of [4], every map
between closed surfaces is of type ∇3, therefore, so is a map from a closed
surface into the 2-sphere. We use this result in the proof of the next proposition.

Let f : K → S2 be a map and suppose that ϕ : K → S2 is a (not
necessarily cellular) map homotopic to f such that μ(f ) = #ϕ−1(a) for
some a ∈ S2, with ϕ−1(a) ⊂ K − K1. Up to composition of ϕ with a self-
homeomorphism of S2 homotopic to the identity map, we can consider a 	= e0∗.
Moreover, it is clear that a /∈ ϕ(K1). Let V be a closed neighborhood of a in
S2 homeomorphic to a closed 2-disc and not intersecting the set {e0∗} ∪ϕ(K1).
Let ϑ : V → S2 be the quotient map which identifies the boundary of V to
e0∗. Let h : S2 → S2 be the map defined so that h|V = ϑ and h(S2 −V ) = e0∗.
It is easy to see that h is homotopic to the identity map and, moreover, the
map ψ : K → S2 defined by the composition ψ = h ◦ ϕ is a cellular
approximation of f satisfying μ(f ) = #ψ−1(a) with ψ−1(a) ⊂ K − K1.
Thus, by Proposition 2.2, μ(f ) = ζ(ψ).

However, in general, it may occur that the pre-image ϕ−1(a) is not con-
tained in K − K1, whatever the map ϕ : K → S2 homotopic to f with
μ(f ) = #ϕ−1(a). In this case, in general, we can not conclude the equal-
ity of Proposition 2.2. We present now an example to illustrate this fact: Let
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K = S2
1 ∨ S2

2 be the bouquet of two 2-spheres with the minimal cellular de-
composition with one 0-cell e0 and two 2-cell e2

1 and e2
2. Let f : K → S2 be a

map with restricted to each one of the spheres is homotopic to the identity map.
Consider the surface S2 with its minimal cellular decomposition S2 = e0∗ ∪ e2∗.
Then, certainly, there exists a cellular map ϕ : K → S2 homotopic to f such
that ϕ−1(e0∗) = {e0}. Thus, #ϕ−1(e0∗) = 1 = μ(f ). Now, it is clear that each
map g homotopic to f , restricted to each S2

i , i = 1, 2, is surjective. So, for all
these maps g, the equation g(x) = a has at least one root in each S2

i , i = 1, 2,
for any point a ∈ S2. Therefore, if a root x0 of g(x) = a belongs to the interior
of a 2-cell ofK , then the equation g(x) = a should have a second root, which
must be in the closure of the other 2-cell of K . But in this case #g−1(a) ≥ 2
and thus #g−1(a) 	= μ(f ). This shows that the number of roots of any map
homotopic to f whose roots are not in K1 is strictly greater than μ(f ).

Proposition 2.3. Every map f : M → S2 from a closed surface into S2

has a cellular approximation ϕ such that #ϕ−1(a) = μ(f ) = ζ(ϕ), for some
a ∈ S2.

Proof. By Proposition 2.2 and the considerations made after its proof, it
is enough to prove that there exists a map ψ : M → S2 homotopic to f with
μ(f ) = #ψ−1(a) and ψ−1(a) ⊂ M − M1, for some a ∈ S2, where M1 is
the 1-skeleton ofM . (Here we consider the closed surfaceM with its minimal
cellular decomposition). But this is Proposition 5.5 of [4].

Before concluding this section, we wish to observe that the number ζ(f )
is defined for every cellular map f : K → S2. However, this number is
not a homotopy invariant (it is only invariant by homotopies relative to the
1-skeleton). It may occur that we have f, g : K → S2 two cellular maps,
with f homotopic to g, but ζ(f ) 	= ζ(g). Therefore, given a (not necessarily
cellular) map f : K → S2, each cellular approximation fcel of f may provides
a different number ζ(fcel). Thus, we can not define the number ζ(f ) for non-
cellular maps. When f is not cellular, we can guarantee only that

μ(f ) ≤ min{ ζ(fcel) : fcel is a cellular approximation of f }
In the next section we will define a new upper bound for μ(f ), which is

defined not only for cellular maps. However, another restriction is necessary,
namely, we will suppose that the 2-complex K is homotopy equivalent to the
2-sphere.

3. Maps from complexes homotopy equivalent to the 2-sphere

We study in this section the special case of maps f : K → S2 where K is a
2-complex homotopy equivalent to S2. In this case,K is connected and simply
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connected and the infinite cyclic group H2(K) has a generator of the form

ζK = a1e
2
1 + · · · + ame

2
m,

where m = #2(K) and e2
i , for 1 ≤ i ≤ m, are exactly the 2-cells of K . We

define the homological degree of a map f : K → S2 to be the integer number
df which satisfies the equation

f∗(ζK) = df · ζS2 ,

where f∗ : H2(K) → H2(S
2) is the homomorphism induced by f on second

homology groups and ζS2 is the fundamental class of S2. When we consider a
map g : S2 → K , its homological degree is defined similarly to be the integer
number dg such that g∗(ζS2) = dg · ζK .

It is very important to note that two maps from K into S2 are homotopic if
and only if its homological degree are equal. A proof for this result is straight-
forward.

If we assume that f : K → S2 is a cellular map and we consider ζK as the
integer m-vector (a1, . . . , am), then the homological degree of f is equal to
the product ζK · −→

deg(f ), that is

df = a1d
f

1 + · · · + amd
f
m.

Since, moreover, there are mapsK → S2 with arbitrary homological degrees,
we have the following: For each integer d, there are integers d1, . . . , dm such
that

d = a1d1 + · · · + amdm.

If (d1, . . . , dm) is anm-tuple of integers, we define
∫
(d1, . . . , dm) = number

of non-zero coordinates of the vector (d1, . . . , dm). Finally, we define

ζ(K, d) = min

{∫
(d1, . . . , dm) such that d = a1d1 + · · · + amdm

}
.

Obviously, for each cellular map f : K → S2 with homological de-
gree df , we have the inequality ζ(K, df ) ≤ ζ(f ). The reader may extract
from Example 4.2 below some examples where we have the strict inequality
ζ(K, df ) < ζ(f ). We shall return to comment on that.

We will now state and prove the main result of this section.

Theorem 3.1. Let K be a 2-complex homotopy equivalent to the 2-sphere
and let f : K → S2 be a map with homological degree df . Then μ(f ) ≤
ζ(K, df ).
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Proof. Certainly, f has a cellular approximation fcel and the homological
degree of fcel is equal to df . So we can assume that f itself is a cellular map.

Let (d1, . . . , dm) be anm-uple of integers satisfying ζ(K, df ) = ∫
(d1, . . . ,

dm). Let ϕ̄ : K/K1 → S2 be a cellular map such that ϕ̄∗(�) = d1�1 + · · · +
dm�m, whose restriction ϕ̄i is the constant map at e0∗ if di = 0. (We use the
notation of the previous section). Such map lifts through ω : K → K/K1 to
a cellular map ϕ : K → S2 such that

dϕ = a1d1 + · · · + amdm = d and ζ(ϕ) =
∫
(d1, . . . , dm).

By Lemma 2.1, μ(ϕ) ≤ ζ(ϕ) = ∫
(d1, . . . , dm) = ζ(K, df ). Now, since

the homological degree of ϕ is equal to df , it follows that ϕ is homotopic to
f . Therefore μ(f ) = μ(ϕ) ≤ ζ(K, df ).

As an immediately consequence of this theorem, we have the following
one:

Corollary 3.2. Under the assumption of Theorem 3.1, we have:

1. μ(f ) = 0 if and only if ζ(K, df ) = 0;

2. μ(f ) = 1 if ζ(K, df ) = 1.

Proof. The first part follows from the fact that a map f : K → S2 is root
free if and only if it is homotopic to a constant map, what occurs if and only if
df = 0. The second statement is an immediate consequence of the inequality
μ(f ) = μ(ϕ) ≤ ζ(K, df ) and the first statement.

In the end of the next section, we will extract from Example 4.2, examples of
maps for which the converse of the second statement of the previous corollary
is not true, that is, μ(f ) = 1 does not imply ζ(K, df ) = 1.

4. Two interesting examples

In order to show the applicability of Theorem 3.1, we answer completely the
questions posed by D. L. Gonçalves in Example 4 of [6]. There the author did
some estimates and indicated his belief about the values of μ(f ) for certain
maps f : K → S2, for a special 2-complex K homotopy equivalent to S2.

Example 4.1. Let Ki , i = 1, 2, be the two 2-complexes obtained from S1

by attaching a 2-cell by the maps ξi : S1 → S1, i = 1, 2, of degrees 2 and 3,
respectively. (K1 is just the two-dimensional projective space). Take

K = K1 � (S1 × [0, 1]) �K2

∼
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where we identify the 1-skeleton S1 ⊂ K1 with S1 × 0 and the 1-skeleton
S1 ⊂ K2 with S1 × 1. In order to prove that K is homotopy equivalent to
the sphere S2, we first prove that K is simply connected. Let A be the open
subset ofK corresponding to the image of the setK1 � (S1 × [0, 3/4)) by the
identification, and let B be the open subset of K corresponding to image the
of the set (S1 × (1/4, 1]) � K2 by the identification. Then A ∩ B is the open
subset of K corresponding to S1 × (1/4, 3/4). It is easy to see that A, B and
A ∩ B are path-connected subsets of K and, moreover,

π1(A) = 〈α | α2〉, π1(B) = 〈β | β3〉 and π1(A ∩ B) = 〈σ | ·〉.
By the van Kampen Theorem we have π1(K) = 〈α, β | α2, β3, α = β〉 =

11.
We will now show that H2(K) ≈ Z and determine a generator ζK for this

group. Consider the natural cellular decomposition ofK as shown in Figure 1.

K1

� 2 � 3

K2

e2
1

e1
1

e2
3

e1
2

e0
1 e1

3 e0
2

e2
2

Figure 1. A 2-complexK homotopy equivalent to the 2-sphere.

The cellular chain complex of K ,

0 → 〈e2
1, e

2
2, e

2
3〉 ∂2−→ 〈e1

1, e
1
2, e

1
3〉 ∂1−→ 〈e0

1, e
0
2〉 → 0

is such that

∂2(e
2
1) = 2e1

1, ∂2(e
2
2) = 3e1

2 and ∂2(e
2
3) = e1

1 + e1
2.

Hence, ∂2(αe
2
1 + βe2

2 + γ e2
3) = (2α + γ )e1

1 + (3β + γ )e1
2. Thus, the cellular

chain αe2
1 +βe2

2 +γ e2
3 belongs to ker(∂2) if and only if 2α+γ = 0 = 3β+γ .

Therefore

H2(K) ≈ ker(∂2) = 〈ζK〉 ≈ Z where ζK = 3e2
1 + 2e2

2 − 6e2
3.

We have thus shown thatK is a connected and simply connected 2-complex
with H2(K) ≈ Z. We will conclude that K is homotopy equivalent to S2.
In fact, by the Hurewicz Isomorphism Theorem (Theorem 3.2, page 78 of
[8]), we have π2(K) ≈ H2(K) ≈ Z. Thus, there exists a (based) map F :
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S2 → K representing the generator of π2(K) and, in this case, the induced
homomorphisms F# : π1(S

2) → π1(K) and F# : π2(S
2) → π2(K) are both

isomorphisms. By the Whitehead Theorem (Theorem 2.12, page 74 of [8]), F
is a homotopy equivalence.

We will now discuss the minimizing of the roots of an arbitrary cellular map
f : K → S2, that is, we will determine the number μ(f ). Let us remember
that the requirement that f is a cellular map is not a restriction, since every
map from a complex into S2 = e0∗ ∪ e2∗ has a cellular approximation and the
minimum number of roots is a homotopy invariant.

By what we saw in the previous section, each cellular map f : K → S2

has a homological degree df satisfying the equation df = 3df1 + 2df2 − 6df3 .
We know that μ(f ) = 0 ⇔ df = 0. Consider then df 	= 0. We can assume,
without loss of generality, df > 0. We have:

ζ(K, df ) = min

{∫
(d1, d2, d3) : df = 3d1 + 2d2 − 6d3

}
.

The complete characterization of μ(f ) in terms of df is as follows:

1. If df = 1 then μ(f ) = 2.

In fact, ζ(K, df ) = 2 = ∫
(1,−1, 0) and this show that μ(f ) ≤ 2. On the

other hand, if 1 = 3d1 + 2d2 − 6d3 with d3 	= 0 then also d1, d2 	= 0 and∫
(d1, d2, d3) = 3. It follows that any map of homological degree equal to 1

(and thus any map homotopic to f ) has at least a root in K1 and a root in K2.
Thus μ(f ) ≥ 2, since K1 ∩K2 = ∅.

2. If df is relatively prime to 6, then μ(f ) = 2.

In fact, any integer relatively prime to 6 is of the form 3d1+2d2 with d1, d2 	= 0.
Therefore ζ(K, df ) = 2 and μ(f ) ≤ 2. Now, the same arguments as above
can be applied to prove that μ(f ) ≥ 2. This shows that μ(f ) = 2 and the
roots are located one in K1 and one in K2.

3. If df is relatively prime to 2, then df is odd and we have two cases:

(a) If df ≡ 0 mod 3, then μ(f ) = 1.

In this case df is of the form 3d1 and, since df is odd, it is not a multiple of 6.
Then μ(f ) = ζ(K, df ) = 1, with the root located in K1.

(b) If df ≡ 1 mod 3 or df ≡ 2 mod 3, then μ(f ) = 2.

In this case df is of the form 3d1 + 2d2 with d1, d2 	= 0 or of the form
3d1 +2d2 −6d3 with d1, d2, d3 	= 0. It follows that μ(f ) ≤ ζ(K, df ) = 2. On
the other hand, again the same arguments of the item 1 show that μ(f ) ≥ 2.
Therefore μ(f ) = 2 and the roots are one in K1 and one in K2.

4. If df is relatively prime to 3, then we have the two following cases:
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(a) If df is even, then μ(f ) = 1.

In this case df is of the form 2d2 or of the form 2d2 − 6d3 with d2, d3 	= 0 and
df is not multiple of 6. Then μ(f ) = ζ(K, df ) = 1 and the root is located in
K2.

(b) If df is odd, then μ(f ) = 2.

In this case or df ≡ 1 mod 3 or df ≡ 2 mod 3 and the result is identical to
the case (b) of the previous item.

5. If 6 divides df , then μ(f ) = 1.

In this case df can be of the form 3d1 or 2d2 or −6d3, among other possibilities
involving two or three terms, and it is evident that ζ(K, df ) = 1. Moreover,
the root can be located anywhere in K .

Now, we present a more complicated example. We consider the 2-complex
of the previous example and delete the cells e2

3 and e1
3 and identifies the 1-cells

e1
1 and e1

2 to obtain a new 2-complex homotopy equivalent to the first. Then,
we study the minimum number of roots of maps from this new 2-complex into
the 2-sphere.

Example 4.2. Let RP2 be the projective plane constructed by attaching a
2-cell e2

1, through its boundary, into a 1-sphere by a map S1 → S1 of degree 2.
Also, let P2

3 be the pseudo-projective plane of degree 3, obtained by attaching
a 2-cell e2

2 into a 1-sphere, through its boundary, by a map S1 → S1 of
degree 3. Now, let K be the 2-complex obtained by identifying the sphere S1

corresponding to the 1-skeleton of RP2 with the sphere S1 corresponding to
the 1-skeleton of P2

3. The complex K and its natural cellular decomposition
induced by this construction are illustrated in Figure 2.

K

� 2

� 3

e2
1

e0 e1

e2
2

P2
3

RP2

Figure 2. A 2-complexK homotopy equivalent to the 2-sphere.

It is easy to check that K is homotopy equivalent to the 2-sphere S2 and
ζK = 3e2

1 + 2e2
2 represents a generator of the homology group H2(K) ≈ Z.

We know that a map f : K → S2 is root free if and only if df = 0. We will
prove now that:

If f : K → S2 has nonzero homological degree, then μ(f ) = 1.
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Note that it is sufficient to prove that this result is true when df = 1. In fact:
Suppose that f : K → S2 has homological degree df = 1 and minimum root
number μ(f ) = 1. Then, let ϕ : K → S2 be a map homotopic to f and let
a ∈ S2 be a point such that #ϕ−1(a) = 1, say ϕ−1(a) = {b}. Given an integer
l 	= 0, there is a map gl : S2 → S2 of degree l such that g−1

l (a) = {a}. Let
ϕl : K → S2 be the map ϕl = gl ◦ ϕ. Then, the homological degree of ϕl is
equal to l and, moreover, ϕ−1

l (a) = {b}. Now, if f ′ : K → S2 is any map with
homological degree l, then f ′ is homotopic to ϕl and so μ(f ′) = 1.

Knowing this, we will prove that:

There exists f : K → S2 with homological
degree df = 1 such that μ(f ) = 1.

The proof of this statement is quite long and, to facilitate the understanding, it
will be divided into several steps.

At first, let x0 ∈ K1 be the point of the 1-skeleton K1 of K corresponding
to the antipodal point of the 0-cell e0.

Step 1: We will define a map f̄1 : RP2 → S2 whose single root is the
point x0.

Note that x0 is a point of the projective plane RP2 which belongs to its
1-skeleton. Let x1 ∈ RP2 be a point in the interior of the 2-cell e2

1 “near” x0.
Then, there is an open subset V of RP2, homeomorphic to the open 2-ball,
containing x0 and x1, and such that the closure of K1 ∩ V in RP2 is a closed
arc σ which does not contain e0. Obviously, x0 is a point in the interior of
σ . Now, Figure 3 illustrates precisely the construction of a homeomorphism
h : RP2 → RP2 homotopic to the identity map, such that h|RP2−V is the identity
map and h(x0) = x1, where V = V1 ∪ V2.

σ

σ

identity identitye0e0 e0e0

x1

h

h (σ)

x0

V1

V2

V1

V2

x0

x1

x0

x0

RP2RP2

Figure 3. A specific homeomorphism of the projective plane.

Let ω1 : RP2 → S2 be the canonical quotient map which collapses the whole
1-skeleton of RP2 onto the 0-cell e0∗ of S2 and identifies the interior of the 2-cell
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e2
1 to the interior of the 2-cell e2∗ of S2. Let a be the image of x1 by ω1, that is,
a = ω1(x1). Then a is a point of the interior of the 2-cell e2∗ of S2 and we have
ω−1

1 (a) = {x1}. Now, define the map f̄1 : RP2 → S2 to be the composition
f̄1 = ω1 ◦ h. Then f̄1 is a continuous (but not cellular) map homotopic to ω1

and such that f̄ −1
1 (a) = {x0}.

Note that f̄1 carries the whole closed subsetK1 − V ofK1 onto e0∗ and the
image of σ by f̄1 is a simple closed path f̄1(σ ) in the sphere S2, with base
point e0∗, containing the point a. See Figure 4.

f̄1(σ) a

e2
*

e0
*

Figure 4. The simple closed path f̄1(σ ) in S2.

Step 2: We will define a map f̄2 : P2
3 → S2, which agrees with f̄1 on K1,

whose single root with respect to a is the point x0.

Let ω2 : RP2 → S2 be the canonical quotient map which collapses the
whole 1-skeleton of P2

3 onto the 0-cell e0∗ of S2 and identifies the interior of the
2-cell e2

2 to the interior of the 2-cell e2∗ of S2.

Let x2 = ω−1
2 (a). (Remember that a = ω1(x1) = f̄1(x0)). Then x2 ∈ P2

3
is a point in the interior of the 2-cell e2

2 “near” x0. Certainly, there exists an
open subset U of P2

3, containing the points x0 and x2, such that the closure
of the intersection U ∩ K1 is exactly the closed arc σ and, moreover, U − σ

is a disjoint union of three open subsets of P2
3, all homeomorphic to the open

2-ball. Figure 5 illustrates the closure of U = U1 ∪ U2 ∪ U3 in P2
3.

σ
Ū1

Ū2
Ū3

Figure 5. Closure of the open neighborhood U of x0 and x2 in P2
3.

Now, Figure 6 illustrates precisely the construction of a map g : P2
3 → P2

3,
homotopic to the identity map, such that g|P2

3−U is the identity map and g(x0) =
x2.
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σ

σ

σ

identity

e0

e0

e0

identity

e0

e0

e0

g

g(σ)

U3

U1

U2 U3

U1

U2

x0

x2

x0 x0

x0

x2

x0 x0

P2
3P2

3

Figure 6. A specific self-map of the pseudo-projective plane P2
3.

It is clear that there is a cellular map ω′
2 : P2

3 → S2, homotopic to ω2, carrying
the interior of the 2-cell e2

2 of P2
3 homeomorphically onto the 2-cell e2∗ of S2 and

such that (ω′
2)

−1(a) = {x2} and the closed path, corresponding to the image
ω′

2(g(σ )), coincides with f̄1(σ ).
Let f̄2 : P2

3 → S2 be the map defined by the composition f̄2 = ω′
2 ◦ g.

Then f̄2 is a continuous (but not cellular) map, homotopic to ω2 and such that
f̄ −1

2 (a) = x0.
To finalize this step, we note that, by construction, f̄1|K1 = f̄2|K1 .

Step 3: We will define maps f1 : RP2 → S2 and f2 : P2
3 → S2 using f̄1

and f̄2.
Let γ ⊂ S2 be the path (loop) f̄1(σ ), which coincides with the path (loop)

f̄2(σ ), by Step 2. Let ϕ1 : S2 → S2 be a cellular map of degree 1 such that
ϕ−1

1 (a) = {a} and ϕ1(γ ) is the “geodesic arc” γ ′ connecting e0∗ to a. Similarly,
let ϕ2 : S2 → S2 be a cellular map of degree −1 such that ϕ−1

2 (a) = {a} and
ϕ2(γ ) is also the “geodesic arc” γ ′. See Figure 7.

a a

e2
* e2

*

e0
* e0

*

ϕ1

γ′
γ

ϕ2

Figure 7. Specific self-maps of S2 of degrees 1 and −1.

Define maps f1 : RP2 → S2 and f2 : P2
3 → S2 by the compositions f1 =

ϕ1 ◦ f̄1 and f2 = ϕ2 ◦ f̄2. By construction, we have

f −1
1 (a) = {x0} = f −1

2 (a).

Step 4: Definition of f .
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Note that the maps f1 and f2 coincide onK1, that is, f1(x) = f2(x) for all
x ∈ K1. Moreover, K1 is a closed subset of K = RP2 ∪K1 P2

3. Then, we can
define a continuous map f : K → S2 such that f |RP2 = f1 and f |P2

3
= f2.

Such a map f satisfies
f −1(a) = {x0}.

Now, we will prove that the homological degree of f is equal to 1, that
is, df = 1. Since f is not a cellular map, it is not easy to establish this
assertion directly. However, f has a natural cellular approximation. We will
construct it: Remember that ω1 is a cellular approximation of f̄1 and ω2 is
a cellular approximation of f̄2. We define ϕ : K → S2 as follows: Given
x ∈ K , we chose an index i(x) ∈ {1, 2} such that x ∈ e2

i(x). Then, we define
ϕ(x) = ϕi(x)(ωi(x)(x)). Since each ωi and ϕi , i = 1, 2, is cellular, the map ϕ is
well defined and is also cellular. Moreover, it is easy to see that ϕ is a cellular
approximation of f and the maps ϕ1 and ϕ2 are a cellular factorization of ϕ.
It follows that

df = dϕ = 3 deg(ϕ1)+ 2 deg(ϕ2) = 3 − 2 = 1.

By the reasons presented in the beginning of the example, this completes
what we wanted to demonstrate. Moreover, it is proved that, given a map
ψ : K → S2 of nonzero homological degree, there exists a map homotopic to
it, necessarily not cellular, having a single root, which necessarily belongs to
K1 and can be chosen to be any point of this subcomplex.

Let K be the 2-complex of this latter example. Then, we have proved that
any strongly surjectivity map f : K → S2 may be homotoped to a map with
a single root, that is, μ(f ) = 1. Now, every such a map having homological
degree df = 2a+3b with ab 	= 0 has number ζ(K, df ) = 2. This proves that,
in fact, the converse of the second statement of Corollary 3.2 is not true.
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