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SYMPLECTIC CHAIN COMPLEX AND REIDEMEISTER
TORSION OF COMPACT MANIFOLDS

YAŞAR SÖZEN

Abstract
Using symplectic complex, this article proves a formula for computing the Reidemeister torsion
of even dimensional oriented closed connected manifolds. Moreover, it presents applications to
Riemann surfaces and Grassmannians.

Introduction

Reidemeister torsion is a topological invariant and was introduced by Reide-
meister in 1935. Up to PL equivalence, he classified the lens spaces S3/�,
where � is a finite cyclic group of fixed point free orthogonal transformations
[20]. In [8], Franz extended the Reidemeister torsion and classified the higher
dimensional lens spaces S2n+1/�, where � is a cyclic group acting freely and
isometrically on the sphere S2n+1.

In 1964, the results of Reidemeister and Franz were extended by de Rham
to spaces of constant curvature +1 [7]. Kirby and Siebenmann proved the to-
pological invariance of the Reidemeister torsion for manifolds in 1969 [12].
Chapman proved invariance for arbitrary simplicial complexes [5], [6]. Hence,
the classification of lens spaces of Reidemeister and Franz was actually topo-
logical (i.e., up to homeomorphism).

Using the Reidemeister torsion, Milnor disproved Hauptvermutung in 1961.
He constructed two homeomorphic but combinatorially distinct finite simpli-
cial complexes. He identified in 1962 the Reidemeister torsion with the Alex-
ander polynomial which plays an important role in knot theory and links [16],
[18].

In the paper [22], we explained the claim mentioned in [27, p. 187] about
the relation between a symplectic chain complex with ω-compatible bases and
its Reidemeister torsion (Theorem 1.7). Moreover, we applied Theorem 1.7 to
the chain-complex

0 −→ C2(�g; Ad�)
∂2⊗id−−−→ C1(�g; Ad�)

∂1⊗id−−−→ C0(�g; Ad�) −→ 0,
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where �g is a compact Riemann surface of genus g > 1, where ∂ is the usual
boundary operator, and where � : π1(�g) → PSL2(R) is a discrete and faithful
representation of the fundamental group π1(�g) of �g [22].

In the present article, oriented closed connected 2m-manifolds (m ≥ 1) are
considered and the following formula for computing the Reidemeister torsion
of them is proved. Namely,

Theorem 0.1. Let M be an oriented closed connected 2m-manifold (m ≥
1). For p = 0, . . . , 2m, let hp be a basis of Hp(M). Then, the Reidemeister
torsion of M satisfies the following formula:

∣∣T(M, {hp}2m
0 )

∣∣ =
m−1∏
p=0

∣∣det Hp,2m−p(M)
∣∣(−1)p

√∣∣det Hm,m(M)
∣∣ (−1)m

,

where det Hp,2m−p(M) is the determinant of the matrix of the intersection
pairing (·, ·)p,2m−p : Hp(M) × H2m−p(M) → R in bases hp, h2m−p.

Throughout the paper, by manifold we mean smooth manifold.
It is well known that Riemann surfaces and Grassmannians have many

applications in a wide range of mathematics such as topology, differential
geometry, algebraic geometry, symplectic geometry, and theoretical physics
(see, e.g., [1]–[4], [9], [10], [13], [14], [22]–[27], and the references therein).
We also apply Theorem 0.1 to Riemann surfaces and Grassmannians.

The content of the paper is as follows. In §1, we provide the basic definitions
and facts about the Reidemeister torsion of a general chain complex. Moreover,
we explain symplectic chain complexes. §2 concerns the Reidemeister torsion
of a manifold. We explain in §3 the symplectic chain complex associated to
a 2m-manifold with m odd. Furthermore, the proof of Theorem 0.1 is given.
As applications, Theorem 0.1 is applied in §4 to Riemann surfaces and Grass-
manians.

1. Reidemeister torsion of a chain complex

In this section, the required definitions and the basic facts about the Re-
idemeister torsion are given. Detailed proofs and more information can be
found in [19], [22], [27], and the references therein.

We shall reserve F to denote the field of real R or complex C numbers. Let

(C∗, ∂∗) = (Cn

∂n−→ Cn−1 → · · · → C1
∂1−→ C0 → 0)

be a chain complex of finite dimensional vector spaces over F. Let Hp(C∗) =
Zp(C∗)/Bp(C∗) denote the p-th homology of C∗, where Bp(C∗) = Im{∂p+1 :
Cp+1 → Cp}, and Zp(C∗) = ker{∂p : Cp → Cp−1}.
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Clearly, we have the following short-exact sequences: 0 → Zp(C∗) →
Cp → Bp−1(C∗) → 0 and 0 → Bp(C∗) → Zp(C∗) → Hp(C∗) → 0.
Assume that bp, hp are bases of Bp(C∗), Hp(C∗), respectively. Assume also
that �p : Hp(C∗) → Zp(C∗), sp : Bp−1(C∗) → Cp are sections of Zp(C∗) →
Hp(C∗), Cp → Bp−1(C∗), respectively. Then, we obtain a new basis of Cp,
namely bp ⊕ �p(hp) ⊕ sp(bp−1).

Definition 1.1. Let

C∗ : Cn

∂n−→ Cn−1 → · · · → C1
∂1−→ C0 → 0

be a chain complex of finite dimensional vector spaces over F. For p =
0, . . . , n, let cp, bp, hp be bases of Cp, Bp(C∗), Hp(C∗), respectively, and
let �p : Hp(C∗) → Zp(C∗), sp : Bp−1(C∗) → Cp be sections of Zp(C∗) →
Hp(C∗), Cp → Bp−1(C∗), respectively. The Reidemeister torsion of C∗ with
respect to bases {cp}np=0, {hp}np=0 is the alternating product

T
(
C∗, {cp}n0, {hp}n0

) =
n∏

p=0

[
bp ⊕ �p(hp) ⊕ sp(bp−1), cp

](−1)(p+1)

,

where
[
ep, fp

]
denotes the determinant of the change-base-matrix from basis

fp to ep of Cp.

Remark 1.2. Milnor proved that the Reidemeister torsion does not depend
on bases bp, sections sp, �p [17]. Let c′

p, h′
p be other bases respectively for Cp,

Hp(C∗). Then, by an easy computation we have the following change-base-
formula:

(1.1) T
(
C∗, {c′

p}n0, {h′
p}n0

) =
n∏

p=0

(
[c′

p, cp]

[h′
p, hp]

)(−1)p

T
(
C∗, {cp}n0, {hp}n0

)
.

By the independence of the Reidemeister torsion from bp and sections
sp, �p, formula (1.1) is easily obtained. Note that if, for example, [c′

p, cp] = 1,
[h′

p, hp] = −1, then the torsions are the same for odd n, and torsions have
opposite sign for even n.

It follows from the Snake Lemma that a short-exact sequence of chain
complexes

(1.2) 0 → A∗
ı−→ B∗

π−→ D∗ → 0
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yields a long-exact sequence of vector spaces C∗ of length 3n + 2. Namely,

(1.3) C∗: · · · → Hp(A∗)
ıp−→ Hp(B∗)

πp−→ Hp(D∗)
δp−→ Hp−1(A∗) → · · · ,

where C3p = Hp(D∗), C3p+1 = Hp(A∗), and C3p+2 = Hp(B∗).
Clearly, the bases hD

p , hA
p , and hB

p serve as bases for C3p, C3p+1, and C3p+2,
respectively.

The following result of Milnor states that the alternating product of the
torsions of the chain complexes in (1.2) is equal to the torsion of (1.3). More
precisely,

Theorem 1.3 ([17]). Let cA
p , cB

p , and cD
p be bases respectively for Ap,

Bp, and Dp. Let hA
p , hB

p , and hD
p be bases of Hp(A∗), Hp(B∗), and Hp(D∗),

respectively. If, moreover, cA
p , cB

p , cD
p are compatible in the sense that

[
cB
p , cA

p ⊕
c̃D
p

] = ±1, where π
(
c̃D
p

) = cD
p , then

T
(
B∗, {cB

p }n0, {hB
p }n0

) = T
(
A∗, {cA

p }n0, {hA
p }n0

)
T
(
D∗, {cD

p }np=0, {hD
p }n0

)
× T

(
C∗, {c3p}3n+2

0 , {0}3n+2
0

)
,

where [ep, fp] is the determinant of the change-base-matrix from basis fp to
ep of Bp.

For future reference, let us prove the following sum-lemma:

Lemma 1.4. Let A∗, D∗ be two chain complexes. Let cA
p , cD

p , hA
p , and hD

p be
bases of Ap, Dp, Hp(A∗), and Hp(D∗), respectively. Then,

T
(
A∗ ⊕ D∗, {cA

p ⊕ cD
p }n0, {hA

p ⊕ hD
p }n0

)
= T

(
A∗, {cA

p }n0, {hA
p }n0

)
T
(
D∗, {cD

p }n0, {hD
p }n0

)
.

Proof. Clearly, we have the following short exact sequence

(1.4) 0 → A∗
ı−→ A∗ ⊕ D∗

π−→ D∗ → 0,

where for p = 0, . . . , n, ıp : Ap → Ap ⊕ Dp is the inclusion, and πp :
Ap ⊕ Dp → Dp is the projection.

Note also that the bases cA
p , cA

p ⊕ cD
p , and cD

p are compatible, where one
can consider the inclusion as a section of πp : Ap ⊕ Dp → Dp. Then,
by Theorem 1.3, we obtain that T(A∗ ⊕ D∗, {cA

p ⊕ cD
p }n0, {hA

p ⊕ hD
p }n0) =

T(A∗, {cA
p }n0, {hA

p }n0)T(D∗, {cD
p }n0, {hD

p }n0)T(C∗, {c3p}3n+2
0 , {0}3n+2

0 ), where C∗
is the long exact sequence obtained from short-exact sequence (1.4). Namely,

C∗ : 0 → Hn(A∗)
ın−→ Hn(A∗ ⊕ D∗)

πn−→ Hn(D∗)
δn−→ Hn−1(A∗) → · · · .
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Considering the projection Hp(A∗ ⊕ D∗) → Hp(A∗) as a section for
Hp(A∗) → Hp(A∗ ⊕ D∗), the inclusion Hp(D∗) → Hp(A∗ ⊕ D∗) for
Hp(A∗ ⊕ D∗) → Hp(D∗), and the zero map Hp−1(A∗) → Hp(D∗) for
Hp(D∗) → Hp−1(A∗), we get T(C∗) = 1.

This completes the proof of Lemma 1.4.

Independently, it is explained in [1], [22] that a general chain complex can
(unnaturally) be split as a direct sum of an acyclic and ∂-zero chain com-
plexes. Moreover, it is proved independently in [1, Proposition 1.5] and [22,
Theorem 2.0.4] that the Reidemeister torsion T(C∗) of a general complex C∗
can be interpreted as an element of

⊗n
p=0(det(Hp(C∗)))(−1)p+1

. For detailed
proof and further information, we may refer the readers to [1], [22].

Definition 1.5. A symplectic chain complex of length q is (C∗, ∂∗,
{ω∗,q−∗}), where

C∗ : 0 → Cq

∂q−→ Cq−1 → · · · → Cq/2 → · · · → C1
∂1−→ C0 → 0

is a chain complex with q ≡ 2 (mod 4), and for p = 0, . . . , q, ωp,q−p :
Cp × Cq−p → R is a ∂-compatible anti-symmetric non-degenerate bilinear
form. To be more precise,

ωp,q−p(∂p+1a, b) = (−1)p+1ωp+1,q−(p+1)(a, ∂q−pb),

ωp,q−p(a, b) = (−1)p(q−p)ωq−p,p(b, a).

Note that by q ≡ 2 (mod 4), we easily have ωp,q−p(a, b) =
(−1)pωq−p,p(b, a). It follows from the ∂-compatibility of the non-degenerate
anti-symmetric bilinear maps ωp,q−p : Cp × Cq−p → R that one can easily
extend these to homologies [22].

Definition 1.6. Let C∗ be a symplectic chain complex. We say that bases
cp of Cp and cq−p of Cq−p are ω-compatible if the matrix of ωp,q−p in bases
cp, cq−p equals the k × k identity matrix Ik×k when p less than q

2 and[
0l×l Il×l

−Il×l 0l×l

]
when p = q/2, where k = dim Cp = dim Cq−p and 2l = dim Cq/2.

Similarly, considering [ωp,q−p] : Hp(C∗) × Hq−p(C∗) → R, one can also
define the [ω]-compatibility of bases hp of Hp(C∗) and hq−p of Hq−p(C∗).

The existence of ω-compatible bases enabled us to prove in [22] that a
symplectic chain complex C∗ can be split ω-orthogonally as a direct sum of an
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exact and ∂-zero symplectic complexes. Moreover, we proved Theorem 1.7,
which is one of the main results of [22]. Namely,

Theorem 1.7 ([22]). Let C∗ be a symplectic chain complex. For p =
0, . . . , q, let cp, hp be any bases of Cp, Hp(C∗), respectively. Then, for the
Reidemeister torsion of C∗ with respect to {cp}q0 , {hp}q0 , the following formula

T
(
C∗, {cp}q0, {hp}q0

) =
(q/2)−1∏

p=0

(
det[ωp,q−p]

)(−1)p√
det[ωq/2,q/2]

(−1)q/2

holds, where det[ωp,q−p] is the determinant of the matrix of the non-degenerate
pairing [ωp,q−p] : Hp(C∗) × Hq−p(C∗) → R in bases hp, hq−p.

The proof and unexplained subjects can be found in [22]. For further ap-
plications of Theorem 1.7, we refer the reader to [23], [24].

2. The Reidemeister Torsion of a Manifold

Let M be an m-manifold with a cell decomposition K . If cp = {cp

1 , . . . , c
p
np

}
is the geometric basis for the p-cells Cp(K; Z), p = 0, . . . , m, then one can
associate to M the following chain complex

0 → Cm(K)
∂m−→ Cm−1(K) → · · · → C1(K)

∂1−→ C0(K) → 0,

where Z is the set of integers and ∂p is the usual boundary operator.

Definition 2.1. Let M be an m-manifold with a cell decomposition K . For
p = 0, . . . , m, let cp and hp be bases of Cp(K; Z) and Hp(M; Z), respectively.
T
(
C∗(K), {cp}m0 , {hp}m0

)
is called the Reidemeister torsion of M .

Using similar arguments introduced in [22, Lemma 2.0.5], one can prove:

Lemma 2.2. The Reidemeister torsion of M is independent of cell decom-
position.

Hence, the Reidemeister torsion T
(
C∗(K), {cp}m0 , {hp}m0

)
of M is well-

defined. Thus, we let T(M, {hp}m0 ) denote the Reidemeister torsion of M in the
bases hp of Hp(M), p = 0, . . . , m.

By [1, Proposition 1.5] and [22, Theorem 2.0.4], one concludes that the
Reidemeister torsion of M is an element of the dual of 1-dimensional vector
space

⊗n
p=0(det(Hp(M))(−1)p .
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3. Proof of The Main Result

In this section, we provide the proof of Theorem 0.1. To alleviate the notation,
let us introduce the following which is used throughout the paper. Let Y be
an oriented closed connected manifold of dimension d. For p = 0, . . . , d, let
hY

p and hY
d−p be bases of Hp(Y ) and Hd−p(Y ), respectively. We denote the

matrix of the intersection pairing (·, ·)p,d−p : Hp(Y ) × Hd−p(Y ) → R in the
bases hY

p and hY
d−p by Hp,d−p(Y ). As convention, we let Hp,d−p(Y ) = 1 when

Hp(Y ) = Hd−p(Y ) = 0.

3.1. Torsion of oriented closed connected 2m-manifold with m odd,
χ ≡ 0 (mod 4)

This section will explain the symplectic chain complex associated to compact
even dimensional manifolds. Moreover, we provide the proof of Theorem 0.1
for oriented closed connected 2m-manifolds with m odd and Euler character-
istic χ ≡ 0 (mod 4). Namely,

Theorem 3.1. Let M be an oriented closed connected 2m-manifold with m

odd and χ(M) ≡ 0 (mod 4). For p = 0, . . . , 2m, let hp be a basis of Hp(M).
Then,

∣∣T(M, {hp}2m
0 )

∣∣ =
m−1∏
p=0

∣∣det Hp,2m−p(M)
∣∣(−1)p √

det Hm,m(M)
(−1)m

.

Proof. Let K be a cell decomposition of M . Let K ′ be the corresponding
dual cell decomposition of M associated to K .

Recall that one can get the dual cell decomposition K ′ as follows. Let
K = {σ k

α }α,k and let {τ k
α }α,k denote the first barycentric subdivision of K . Then,

for each vertex σ 0
α ∈ K , associate the 2m-cell (σ 0

α )′ = ⋃
σ 0

α ∈τ 2m
β

τ 2m
β given as

the union of all 2m-simplices τ 2m
β in the subdivision with σ 0

α as a vertex. For
each k-simplex in the cell decomposition K , let (σ k

α )′ = ⋂
σ 0

β ∈σ k
α
(σ 0

β )′ be the

intersection of the 2m-cells (σ 0
β )′ associated to the k + 1 vertices of σ k

α .
This enables us to obtain the dual cell decomposition K ′ = {�2m−k

α =
(σ k

α )′} of M corresponding to K . Since �2m−k
α = (σ k

α )′ and σ k
α meet trans-

versely, by giving an orientation on σ k
α , one can take the dual orientation on

�2m−k
α to be the one such that at P ∈ σ k

α ∩ (σ k
α )′, ıP (σ k

α , (σ k
α )′) = 1, where ıP

denotes the intersection number index at P .
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Note that the intersection pairings (·, ·)k,2m−k : Ck(K; Z)×C2m−k(K
′; Z) →

R satisfy the following: for all α ∈ Ck(K; Z), β ∈ C2m−k(K
′; Z)

(i) (α, β)k,2m−k = (−1)k(2m−k)(β, α)2m−k,k ,

(ii) (α, ∂2m−kβ)(k+1),2m−(k+1) = (−1)2m−k+1(∂k+1α, β)k,2m−k ,

where ∂ denotes the boundary operator.
From the similar property of the intersection number index (i) follows.

Using ∂2m−k(�
2m−k
α ) = (−1)2m−k+1(∂k(α

k
α))′, (ii) is obtained, (see, e.g., [10,

p. 55]).
Thus, the intersection pairings (·, ·)k,2m−k are ∂-compatible anti-symmetric

bilinear maps.
Let Dp = Cp(K; Z) ⊕ Cp(K ′; Z). By defining (·, ·)p,2m−p as 0 on

Cp(K; Z) × C2m−p(K; Z), and Cp(K ′; Z) × C2m−p(K ′; Z), the chain-complex
0 → D2m → D2m−1 → · · · → Dm → · · · → D1 → D0 → 0 becomes a
symplectic chain complex.

Clearly, the intersection pairings can be extended to homologies
(·, ·)p,2m−p : Hp(M) × H2m−p(M) → R.

It follows from Theorem 1.7 that

(3.1) T
(
D∗, {cp ⊕ c′

p}2m
0 , {hp ⊕ hp}2m

0

)
=

m−1∏
p=0

(
det[ωp,2m−p]

)(−1)p √
det[ω

m,m
]

(−1)m

,

where det[ωk,2m−k] is the determinant of

[ωk,2m−k] =
[

0 (·, ·)k,2m−k

(·, ·)k,2m−k 0

]
: Hk(D∗) × H2m−k(D∗) → R

in the bases hk ⊕ hk , h2m−k ⊕ h2m−k , where (·, ·)k,2m−k : Hk(M) ×
H2m−k(M) → R is the extension of the intersection pairing (·, ·)k,2m−k :
Ck(K; Z) × C2m−k(K

′; Z) → R.
Note that for p = 0, . . . , m,

(3.2) det[ωp,2m−p] = (−1)dim Hp(M) det Hp,2m−p(M)2.

Note also that since (·, ·)m,m : Hm(M) × Hm(M) → R is non-degenerate
anti-symmetric, the matrix Hm,m(M) has positive determinant.
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Hence, combining equations (3.1) and (3.2), we have

(3.3) T
(
D∗, {cp ⊕ c′

p}2m
0 , {hp ⊕ hp}2m

0

)
= (−1)χ(M)/2

(m−1∏
p=0

det Hp,2m−p(M)(−1)p
)2

det Hm,m(M)(−1)m ,

where χ(M) is the Euler characteristic of M .
For an oriented closed connected 2m-manifold M with m odd, χ(M) is

even (see, e.g., [15, p. 164]). By the assumption χ(M) ≡ 0 (mod 4), (3.3)
becomes

(3.4) T
(
D∗, {cp ⊕ c′

p}2m
0 , {hp ⊕ hp}2m

0

)
=

(m−1∏
p=0

det Hp,2m−p(M)(−1)p
)2

det Hm,m(M)(−1)m .

Now, if we consider the inclusion Cp(K; Z) → Dp and the projection
Dp → Cp(K ′; Z), then we obtain the following short-exact sequence of chain
complexes 0 → C∗(K; Z) → D∗ → C∗(K ′; Z) → 0.

Let us take the inclusion sp : Cp(K ′; Z) → Dp as a section of Dp →
Cp(K ′; Z). Then, the determinant of the change-base-matrix from cp ⊕ sp(c′

p)

to cp ⊕ c′
p is equal to 1, and hence the bases cp of Cp(K; Z), cp ⊕ sp(c′

p) of
Dp, and c′

p of Cp(K ′; Z) are compatible.
Thus, by Lemma 1.4 and Lemma 2.2, we get

(3.5) T
(
D∗, {cp ⊕ c′

p}2m
0 , {hp ⊕ hp}2m

0

) = (
T(M, {hp}2m

p=0)
)2

.

Combining (3.4) and (3.5), we conclude the proof of Theorem 3.1.

3.2. The torsion of oriented closed connected 4k-manifold with χ even

Theorem 3.2. If M is an oriented closed connected 2m-manifold with m even
and χ(M) even, and if hp is a basis of Hp(M), p = 0, . . . , 2m, then

∣∣T(M, {hp}2m
0 )

∣∣ =
m−1∏
p=0

∣∣det Hp,2m−p(M)
∣∣(−1)p

√∣∣det Hm,m(M)
∣∣ (−1)m

.

Proof. Let us consider N = M ×S2, where S2 is the unit 2-sphere. Clearly,
N is an oriented closed connected 2(m + 1)-manifold with m + 1 odd and
χ(N) = 0 (mod 4). Let us also consider the usual CW structure of S2 with
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two cells, say, c′
0, c′

2. Let h′
0 and h′

2 be bases of homologies of S2 so that
(h′

0, h′
2)0,2 = 1.

For p = 2m+1, 2m+2, Cp(N) = Cp−2(M)⊗C2(S2), for p = 2, . . . , 2m,
Cp(N) = Cp−2(M)⊗C2(S2)⊕Cp(M)⊗C0(S2), and for p = 0, 1, Cp(N) =
Cp(M) ⊗ C0(S2).

Clearly, we have
(3.6)

0 0 0−→ −→ −→

0 −→ C2m(M) ⊗ C2(S2)
ı2m+2−−→ C2m+2(N)

π2m+2−−→ 0 −→ 0−→ −→ −→

0 −→ C2m−1(M) ⊗ C2(S2)
ı2m+1−−→ C2m+1(N)

π2m+1−−→ 0 −→ 0−→ −→ −→

0 −→ C2m−2(M) ⊗ C2(S2)
ı2m−−→ C2m(N)

π2m−−→ C2m(M) ⊗ C0(S2) −→ 0

↓ ↓ ↓
...

...
...

↓ ↓ ↓
0 −→ Cm−1(M) ⊗ C2(S2)

ım+1−−→ Cm+1(N)
πm+1−−→ Cm+1(M) ⊗ C0(S2) −→ 0

↓ ↓ ↓
...

...
...

↓ ↓ ↓
0 −→ C0(M) ⊗ C2(S2)

ı2−−→ C2(N)
π2−−→ C2(M) ⊗ C0(S2) −→ 0−→ −→ −→

0 −→ 0
ı1−−→ C1(N)

π1−−→ C1(M) ⊗ C0(S2) −→ 0−→ −→ −→

0 −→ 0
ı0−−→ C0(N)

π0−−→ C0(M) ⊗ C0(S2) −→ 0−→ −→ −→

0 0 0,

where ıp is the inclusion, πp is the projection p = 0, . . . , 2m + 2.
Note that the bases of the chain complexes in (3.6) are compatible. Cp(M)⊗

C0(S2) ∼= Cp(M) and Cp(M)⊗C2(S2) ∼= Cp(M). From Lemma 1.4 it follows
that T(C∗(N)) = (T(C∗(M))2.

Using the Künneth formula (see, e.g., [11, p. 275]), we get for p = 0, 1,
hN

p = hp ⊗ h′
0, hN

2m+2−p = h2m−p ⊗ h′
2, for p = 2, . . . , m, hN

p = hp−2 ⊗ h′
2 ⊕

hp ⊗ h′
0, hN

2m+2−p = h2m−p ⊗ h′
2 ⊕ h2m+2−p ⊗ h′

0, and hN
m+1 = hm−1 ⊗ h′

2 ⊕
hm+1 ⊗ h′

0 are bases of Hp(N), H2m+2−p(N), for p = 0, 1, p = 2, . . . , m,
and p = m + 1, respectively.
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It follows from Theorem 3.1 that
(3.7)

T
(
N, {hN

p }2m+2
0

) =
m∏

p=0

∣∣det Hp,2m+2−p(N)
∣∣(−1)p √

det Hm+1,m+1(N)
(−1)m+1

.

By an easy computation, we get for p = 0, 1,

(3.8)
∣∣det Hp,2m+2−p(N)

∣∣ = ∣∣det Hp,2m−p(M)
∣∣,

for p = 2, . . . , m,

(3.9)
∣∣det Hp,2m+2−p(N)

∣∣ = ∣∣det Hp,2m−p(M)
∣∣∣∣det Hp−2,2m+2−p(M)

∣∣,
(3.10)

√
det Hm+1,m+1(N) = ∣∣det Hm−1,m+1(M)

∣∣.
From (3.7)–(3.10) it follows that

(3.11) T
(
N, {hN

p }2m+2
0

) =
m−1∏
p=0

∣∣det Hp,2m−p(M)(−1)p
∣∣2∣∣det Hm,m(M)

∣∣(−1)m

Thus, by (3.11) and the fact that T(C∗(N)) = (T(C∗(M))2, we conclude
the proof Theorem 3.2.

3.3. The torsion of oriented closed connected 4k-manifold

Theorem 3.3. Let M be an oriented closed connected 2m-manifold with
m even and for p = 0, . . . , 2m, let hp be a basis of Hp(M). Then, for the
Reidemeister torsion of M , the formula

∣∣T(M, {hp}2m
0 )

∣∣ =
m−1∏
p=0

∣∣det Hp,2m−p(M)
∣∣(−1)p

√∣∣det Hm,m(M)
∣∣ (−1)m

is valid.

Proof. Let N denote M×S2×S2. N is a closed oriented 2(m+2)-manifold
with m + 2 even, and χ(N) = 0 (mod 4). Let us also consider the usual CW
structure of S2 with two cells, say, c′

0, c′
2. Let h′

0 and h′
2 be bases for homologies

of S2 so that (h′
0, h′

2)0,2 = 1.
Clearly, for p = 2m+3, 2m+4, Cp(N) = Cp−4(M)⊗C4(S2×S2), for p =

2m+1, 2m+2, Cp(N) = Cp−4(M)⊗C4(S2 ×S2)⊕Cp−2(M)⊗C2(S2 ×S2),
for p = 4, . . . , 2m, Cp(N) = Cp−4(M)⊗C4(S2 × S2)⊕Cp−2(M)⊗C2(S2 ×
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S2) ⊕ Cp(M) ⊗ C0(S2 × S2), for p = 2, 3, Cp(N) = Cp−2(M) ⊗ C2(S2 ×
S2) ⊕ Cp(M) ⊗ C0(S2 × S2), for p = 0, 1, Cp(N) = Cp(M) ⊗ C0(S2 × S2).

Note that Cp(M) ⊗ C4(S2 × S2) ∼= Cp(M), Cp(M) ⊗ C2(S2 × S2) ∼=
Cp(M)⊕Cp(M), and Cp(M)⊗C0(S2×S2) ∼= Cp(M). Using the compatibility
of the bases, and Lemma 1.4, we have T(C∗(N)) = (T(C∗(M))4.

From the Künneth formula it follows that for p = 2m + 3, 2m + 4, hN
p =

hp−4 ⊗ (h′
2 ⊗ h′

2), for p = 2m + 1, 2m + 2, hN
p = hp−4 ⊗ (h′

2 ⊗ h′
2) ⊕

hp−2 ⊗ (h′
2 ⊗ h′

0 ⊕ h′
0 ⊗ h′

2), for p = 4, . . . , 2m, hN
p = hp−4 ⊗ (h′

2 ⊗
h′

2) ⊕ hp−2 ⊗ (h′
2 ⊗ h′

0 ⊕ h′
0 ⊗ h′

2) ⊕ hp ⊗ (h′
0 ⊗ h′

0), for p = 2, 3, hN
p =

hp−2⊗(h′
2⊗h′

0⊕h′
0⊗h′

2)⊕hp⊗(h′
0⊗h′

0), and forp = 0, 1, hN
p = hp⊗(h′

0⊗h′
0)

are bases of Hp(N), respectively for p = 2m+3, 2m+4, p = 2m+1, 2m+2,
p = 4, . . . , 2m, for p = 2, 3, and p = 0, 1.

By Theorem 3.2, we get

(3.12)
∣∣T(N, {hN

p }2m+4
0 )

∣∣
=

m+1∏
p=0

∣∣det Hp,2m+4−p(N)
∣∣(−1)p

√∣∣det Hm+2,m+2(N)
∣∣.

An easy computation results that for p = 0, 1,

(3.13)
∣∣det Hp,2m+4−p(N)

∣∣ = ∣∣det Hp,2m−p(M)
∣∣,

for p = 2, 3,

(3.14)
∣∣det Hp,2m+4−p(N)

∣∣ = ∣∣det Hp−2,2m−p+2(M)
∣∣2∣∣det Hp,2m−p(M)

∣∣,
for p = 4, . . . , m,∣∣det Hp,2m+4−p(N)

∣∣ = ∣∣det Hp,2m−p(M)
∣∣∣∣det Hp−2,2m−p+2(M)

∣∣2
(3.15)

× ∣∣det Hp−4,2m−p+4(M)
∣∣,∣∣det Hm+1,m+3(N)

∣∣ = ∣∣det Hm−3,m+3(M)
∣∣∣∣det Hm−1,m+1(M)

∣∣3
,(3.16) √∣∣det Hm+2,m+2(N)

∣∣ = ∣∣det Hm−2,m+2(M)
∣∣∣∣det Hm,m(M)

∣∣.(3.17)

Hence, (3.12)–(3.17), and the fact T(C∗(N)) = (T(C∗(M))4 complete the
proof of Theorem 3.3.



reidemeister torsion of compact manifolds 77

3.4. Torsion of oriented closed connected 2m-manifold with m odd,
χ ≡ 2 (mod 4)

The Euler characteristic χ(M) of an oriented closed connected 2m-manifold M

with m odd is even. In Theorem 3.1, we obtained a formula for the Reidemeister
torsion of such M with χ(M) ≡ 0 (mod 4). In this section, we consider the
case when χ(M) ≡ 2 (mod 4).

Theorem 3.4. Let M be an oriented closed connected 2m-manifold with m

odd and χ(M) ≡ 2 (mod 4). For p = 0, . . . , 2m, let hp be a basis of Hp(M).
Then,

∣∣T(M, {hM
p }2m

0 )
∣∣ =

m−1∏
p=0

∣∣det Hp,2m−p(M)
∣∣(−1)p

√∣∣det Hm,m(M)
∣∣ (−1)m

.

Proof. Let us consider N = M×S2, where we take the usual CW structure
of S2 with two cells, say, c′

0, c′
2. Let h′

0 and h′
2 be bases for homologies of S2

so that (h′
0, h′

2)0,2 = 1.
N is an oriented closed connected 2(m + 1)-manifold with m + 1 even and

χ(N) ≡ 0 (mod 4). By Theorem 3.2, we get

(3.18)
∣∣T(N, {hN

p }2m+2
0 )

∣∣
=

m∏
p=0

∣∣det Hp,2m+2−p(N)
∣∣(−1)p

√∣∣det Hm+1,m+1(N)
∣∣.

For p = 2m+1, 2m+2, Cp(N) = Cp−2(M)⊗C2(S2), for p = 2, . . . , 2m,
Cp(N) = Cp−2(M)⊗C2(S2)⊕Cp(M)⊗C0(S2), and for p = 0, 1, Cp(N) =
Cp(M) ⊗ C0(S2).

We obtain a chain complex like (3.6). From the compatibility of the bases of
the chain complexes, the fact Cp(M)⊗C0(S2) ∼= Cp(M), Cp(M)⊗C2(S2) ∼=
Cp(M), and Lemma 1.4 it follows that T(C∗(N)) = (T(C∗(M))2.

Using (3.8)–(3.10), (3.18) becomes

(3.19)
∣∣T(N, {hN

p }2m+2
0 )

∣∣ =
m−1∏
p=0

∣∣det Hp,2m−p(M)(−1)p
∣∣2∣∣det Hm,m(M)

∣∣(−1)m

By (3.19) and the fact that T(C∗(N)) = (T(C∗(M))2, we conclude the proof
of Theorem 3.4.

Theorem 3.1, Theorem 3.3, and Theorem 3.4 terminate the proof of The-
orem 0.1.
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In the following section, we discuss the Reidemeister torsion of oriented
closed connected odd dimensional manifolds.

3.5. The torsion of oriented closed connected odd dimensional manifold

Theorem 3.5. Let M be an oriented closed connected m-manifold with m

odd. Let hp be a basis for Hp(M), p = 0, . . . , m. Then, |T(M, {hp}m0 )| = 1.

Proof. Consider N = M × Sm, where Sm is the unit m-sphere. N is an
oriented closed connected 2m-manifold with m odd. Clearly χ(N) = 0. Con-
sider also the usual CW structure of Sm with two cells, say, c′

0, c′
m. Let h′

0 and
h′

m be bases for homologies of Sm so that (h′
0, h′

m)0,m = 1.
Then, we get Cm(N) = Cm(M) ⊗ C0(Sm) ⊕ C0(M) ⊗ Cm(Sm), for p =

0, . . . , m − 1, Cp(N) = Cp(M) ⊗ C0(Sm), and for p = m + 1, . . . , 2m,
Cp(N) = Cp−m(M) ⊗ Cm(Sm).

We also have

(3.20)

0 0 0−→ −→ −→

0 −→ 0
ı2m−−→ C2m(N)

π2m−−→ Cm(M) ⊗ Cm(Sm) −→ 0

↓ ↓ ↓
...

...
...

↓ ↓ ↓
0 −→ 0

ım+1−−→ Cm+1(N)
πm+1−−→ C1(M) ⊗ Cm(Sm) −→ 0−→ −→ −→

0 −→ Cm(M) ⊗ C0(Sm)
ım−−→ Cm(N)

πm−−→ C0(M) ⊗ Cm(Sm) −→ 0−→ −→ −→

0 −→ Cm−1(M) ⊗ C0(Sm)
ım−1−−→ Cm−1(N)

πm−1−−→ 0 −→ 0

↓ ↓ ↓
...

...
...

↓ ↓ ↓
0 −→ C0(M) ⊗ C0(Sm)

ı0−−→ C0(N)
π0−−→ 0 −→ 0−→ −→ −→

0 0 0,

where ıp is the inclusion, πp is the projection p = 0, . . . , 2m.
Clearly, the bases of the chain complexes in (3.20) are compatible. Note

also that Cp(M) ⊗ Cm(Sm) ∼= Cp(M) and Cp(M) ⊗ C0(Sm) ∼= Cp(M). From
Lemma 1.4 it follows that T(C∗(N)) = (T(C∗(M))2.

By the Künneth formula, hN
p = hp ⊗ h′

0, hN
2m−p = hm−p ⊗ h′

m, and hN
m =

hm⊗h′
0⊕h0⊗h′

m are bases of Hp(N), H2m−p(N), p = 0, . . . , m, respectively.
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It follows from Theorem 3.1 that

(3.21) T
(
N, {hN

p }2m
0

) =
m−1∏
p=0

∣∣det Hp,2m−p(N)
∣∣(−1)p√

det Hm,m(N)
(−1)m

.

Note that

(3.22)
∣∣det H0,2m(N)

∣∣ = ∣∣det H0,m(M)
∣∣.

For p = 1, . . . , m − 1,

(3.23)
∣∣det Hp,2m−p(N)

∣∣ = ∣∣det Hm−p,m+p(N)
∣∣ = ∣∣det Hp,m−p(M)

∣∣.
Note also that since

Hm,m(N) =
[

0 (hm, h0)m,0

−(h0, hm)0,m 0

]
,

we have

(3.24) det Hm,m(N) = det H0,m(M)2.

Combining (3.21)–(3.24), and the fact that T(C∗(N)) = (T(C∗(M))2, we
get T(M, {hM

p }m0 )2 = 1. This proves Theorem 3.5.

4. Application

In this section, we apply Theorem 0.1 to Riemann surfaces and Grassmannians.

4.1. Compact Riemann surfaces

Let �g be a compact oriented Riemann surface of genus g ≥ 1 without bound-
ary. Let � = {�1, . . . , �g, �1+g, . . . , �2g} be a canonical basis for H1(�g),
i.e., �i intersects �i+g once positively and does not intersect others. Then, we
have

Theorem 4.1. Let h0, h1 = {�i}2g

1 , and h2 be bases of H0(�g), H1(�g),
and H2(�g), respectively. Then,

∣∣T(�g, {hp}2
0)

∣∣ =
∣∣∣∣detH0,2(�g)

det℘(�1, �)

∣∣∣∣,
where h1 = {ωi}2g

1 is the Poincaré dual basis of H 1(�g) corresponding to the
basis h1 of H1(�g), where ℘(h1, �) = [∫

�i
ωj

]
is the period matrix of h1 with

respect to the canonical basis � = {�i}2g

i=1 of H1(�g).
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Proof. From Theorem 0.1 it follows that |T(�g, {hp}2
0)| = |detH0,2(�g)|√

det H1,1(�g)
.

For h1 = {�j }2g

j=1, the non-degenerate skew-symmetric 2g×2g-square matrix
H1,1(�g) is [�ij ], where �ij = (�i, �j )1,1. By Poincaré duality, we also
have �ij = ∫

�g
ωi ∧ωj . Change-base-formula results that

√
det(H1,1(�g)) =

| det[(�j , �i)1,1]|. If, moreover, we let γi ∈ H 1(�g) denote the Poincaré dual
of �i ∈ H1(�g), then we have (�i, �j )1,1 = ∫

�g
ωi ∧ γj = ∫

�i
ωj .

This completes the proof of Theorem 4.1.

Before ending this section, we also would like to apply Theorem 0.1 to
M × N , where M = �g , N = �g′ are compact oriented Riemann surfaces of
genus g, g′ ≥ 1 without boundary.

Let us start with the following well-known properties of tensor (or Kro-
necker) product of square matrices. Recall that if A = [aij ] is an m × m and
B = [bij ] is an n × n matrix with real entries, then the tensor product of A

and B is the mn × mn block matrix A ⊗ B = [aijB], where aijB is the n × n

matrix obtained by multiplying the matrix B with the scalar aij .
Recall that if A, B, C, D are square matrices such that the products AC and

BD exist, then (A⊗B)(C ⊗D) exists and (A⊗B)(C ⊗D) = (AC)⊗ (BD)

(see, e.g., [21, p. 350]). Let A be an n×n and B be an m×m invertible matrix.
Then, we clearly have (A⊗B)(A−1 ⊗B−1) = Im×m ⊗ In×n, where Id×d is the
d × d identity matrix. Note also that for the square matrices A and B, we have
(A ⊗ B)T = AT ⊗ BT , where AT is the transpose of A. Finally, it is known
that det(A ⊗ B) = det(A)n det(B)m; however, for the sake of completeness,
we provide a proof for our case. More precisely,

Lemma 4.2. Let A = [aij ] be 2g × 2g and B = [bij ] be a 2g′ × 2g′
symmetric or skew-symmetric matrices with real entries. Then, det(A ⊗ B) =
det(A)2g′

det(B)2g .

Proof. By the spectral theorem of normal matrices, symmetric and skew-
symmetric matrices are orthogonally diagonalizable. Thus, there exist ortho-
gonal 2g × 2g real matrix P and 2g′ × 2g′ real matrix Q so that PAP −1 =
D1 = diag(λ1, . . . , λ2g), QBQ−1 = D2 = diag(μ1 . . . , μ2g′), respect-
ively, where λ1, . . . , λ2g and μ1, . . . , μ2g′ are real. Then, we have A ⊗ B =
(PD1P

−1) ⊗ (QD2Q
−1) = (P ⊗ Q)(D1 ⊗ D2)(P ⊗ Q)−1.

Hence, det(A ⊗ B) = det(D1 ⊗ D2) = det(D1)
2g′

det(D2)
2g =

det(A)2g′
det(B)2g .

This is the end of the proof of Lemma 4.2.

Corollary 4.3. Let M = �g and N = �g′ be closed oriented Riemann
surfaces of genus g, g′ ≥ 1, respectively. For p = 0, 1, 2, let hp and h′

p be
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bases of Hp(M) and Hp(N), respectively. Then,

(4.1)

∣∣∣∣T(
M × N,

{ ⊕
i+j=p

hi ⊗ h′
j

}4

p=0

)∣∣∣∣=∣∣T(M, {hp}2
0)

∣∣χ(N)∣∣T(N, {h′
p}2

0)
∣∣χ(M)

.

Proof. From the Künneth formula it follows that h0⊗h′
0, h1⊗h′

0⊕h0⊗h′
1,

h0 ⊗ h′
2 ⊕ h1 ⊗ h′

1 ⊕ h2 ⊗ h′
0, h1 ⊗ h′

2 ⊕ h2 ⊗ h′
1, and h2 ⊗ h′

2 are bases of
H0(M × N), H1(M × N), H2(M × N), H3(M × N), and H4(M × N),
respectively.

Using Theorem 0.1, we obtain

(4.2)

∣∣∣∣T(
M × N,

{ ⊕
i+j=p

hi ⊗ h′
j

}4

p=0

)∣∣∣∣
= ∣∣det H0,4(M × N)

∣∣∣∣det H1,3(M × N)
∣∣−1

√∣∣det H2,2(M × N)
∣∣.

It follows from Lemma 4.2 that

(4.3)
∣∣det H0,4(M × N)

∣∣ = ∣∣det H0,2(M)
∣∣∣∣det H0,2(N)

∣∣
∣∣det H1,3(M × N)

∣∣ = ∣∣det H0,2(M)
∣∣dim H1(N)∣∣det H1,1(M)

∣∣(4.4)

× ∣∣det H0,2(N)
∣∣dim H1(M)∣∣det H1,1(N)

∣∣
(4.5)

∣∣det H2,2(M × N)
∣∣

= ∣∣det H0,2(M)
∣∣2∣∣det H0,2(N)

∣∣2∣∣det H1⊗1(M × N)
∣∣,

where H1⊗1(M × N) = [(·, ·) in h1 ⊗ h′
1].

By Lemma 4.2, we get

(4.6) det H1⊗1(M × N) = (det H1,1(M))dim H1(N)(det H1,1(N))dim H1(M).

From (4.3)–(4.6) it follows that (4.2) is equal to∣∣∣∣T(
M × N,

{ ⊕
i+j=p

hi ⊗ h′
j

}4

p=0

)∣∣∣∣
= ∣∣det H0,2(M)

∣∣χ(N)∣∣det H1,1(M)
∣∣−χ(N)/2

× ∣∣det H0,2(N)
∣∣χ(M)∣∣det H1,1(N)

∣∣−χ(M)/2

= ∣∣T(M, {hp}2
p=0)

∣∣χ(N)∣∣T(N, {h′
p}2

p=0)
∣∣χ(M)
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This concludes the proof of Corollary 4.3.

Next, let us compute the Reidemeister torsion of the cartesian product
×n

i=1�gi
of closed Riemann surfaces �g1 , . . . , �gn

of genus g1, . . . , gn ≥ 1,
respectively. To do that, we shall first prove that formula (4.1) is valid for
M × N , where M is an oriented closed connected 2n-manifold with n ≥ 1
and N = �g′ is a closed oriented Riemann surfaces of genus g′ ≥ 1. Namely,

Corollary 4.4. Let M be an oriented closed connected 2n-manifold with
n ≥ 1 and N = �g′ be a closed oriented Riemann surface of genus g′ ≥ 1.
For i = 0, . . . , 2n, let hi be a basis of Hi(M). Let h′

j be a basis of Hj(N),
j = 0, 1, 2. Then,

(4.7)

∣∣∣∣T(
M × N,

{ ⊕
i+j=p

hi ⊗ h′
j

}2n+2

p=0

)∣∣∣∣
= ∣∣T(M, {hp}2n

0 )
∣∣χ(N)∣∣T(N, {h′

p}2
0)

∣∣χ(M)
.

Proof. Using the Künneth formula, we get h0 ⊗ h′
0, h2n ⊗ h′

2, h1 ⊗ h′
0 ⊕

h0 ⊗ h′
1, h2n−1 ⊗ h′

2 ⊕ h2n ⊗ h′
1, and for p = 2, . . . , n + 1, hp ⊗ h′

0 ⊕
hp−1 ⊗ h′

1 ⊕ hp−2 ⊗ h′
2, h2n−p ⊗ h′

2 ⊕ h2n−p+1 ⊗ h′
1 ⊕ h2n−p+2 ⊗ h′

0 are
bases of H0(M × N), H2n+2(M × N), H1(M × N), H2n+1(M × N), and for
p = 2, . . . , n + 1, Hp(M × N), H2n+2−p(M × N), respectively.

It follows from Theorem 0.1 that

(4.8)

∣∣∣∣T(
M × N,

{ ⊕
i+j=p

hi ⊗ h′
j

}2n+2

p=0

)∣∣∣∣
=

n∏
p=0

∣∣det Hp,2n+2−p(M × N)
∣∣(−1)p

√∣∣det Hp,2n+2−p(M × N)
∣∣ (−1)n+1

.

Using Lemma 4.2, we get

(4.9)
∣∣det H0,2n+2(M × N)

∣∣
= ∣∣det H0,2n(M)

∣∣dim H0(N)∣∣det H0,2(N)
∣∣dim H0(M)

,

(4.10)
∣∣det H1,2n+1(M × N)

∣∣
= ∣∣det H1,2n−1(M)

∣∣dim H0(N)∣∣det H0,2(N)
∣∣dim H1(M)

× ∣∣det H0,2n(M)
∣∣dim H1(N)∣∣det H1,1(N)

∣∣dim H0(M)
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for p = 2, . . . , n,

(4.11)
∣∣det Hp,2n+2−p(M × N)

∣∣ = ∣∣det Hp,2n−p(M)
∣∣dim H0(N)

× ∣∣det Hp−1,2n−p+1(M)
∣∣dim H1(N)∣∣det Hp−2,2n−p+2(M)

∣∣dim H0(N)

× ∣∣det H0,2(N)
∣∣dim Hp(M)+dim Hp−2(M)∣∣det H1,1(N)

∣∣dim Hp−1(M)
,

(4.12)

√∣∣det Hn+1,n+1(M × N)
∣∣ = ∣∣det Hn−1,n+1(M)

∣∣dim H0(N)

× ∣∣det H0,2(N)
∣∣dim Hn−1(M)∣∣det Hn,n(M)

∣∣dim H1(N)/2

× ∣∣det H1,1(N)
∣∣dim Hn(M)/2

.

Using (4.9)–(4.12), (4.8) is equal to

n∏
p=2

{∣∣det Hp,2n−p(M)
∣∣dim H0(N)∣∣det Hp−1,2n−p+1(M)

∣∣dim H1(N)
(4.13)

× ∣∣det Hp−2,2n−p+2(M)
∣∣dim H0(N)

}(−1)p
n∏

p=2

{∣∣det H0,2(N)
∣∣dim Hp(M)

× ∣∣det H1,1(N)
∣∣dim Hp−1(M)∣∣det H0,2(N)

∣∣dim Hp−2(M)
}(−1)p

× ∣∣det H0,2n(M)
∣∣dim H0(N)∣∣det H0,2(N)

∣∣dim H0(M)

× ∣∣det H0,2n(M)
∣∣− dim H1(N)∣∣det H1,1(N)

∣∣− dim H0(M)

× ∣∣det H1,2n−1(M)
∣∣− dim H0(N)∣∣det H0,2(N)

∣∣− dim H1(M)

×
{∣∣det Hn−1,n+1(M)

∣∣dim H0(N)∣∣det H0,2(N)
∣∣dim Hn−1(M)

× ∣∣det Hn,n(M)
∣∣dim H1(N)/2∣∣det H1,1(N)

∣∣dim Hn(M)/2
}(−1)n+1

.

An easy computation gives us

n∏
p=2

{∣∣det Hp,2n−p(M)
∣∣∣∣det Hp−1,2n−p+1(M)

∣∣dim H1(N)
(4.14)

× ∣∣det Hp−2,2n−p+2(M)
∣∣}(−1)p ∣∣det H0,2n(M)

∣∣dim H0(N)−dim H1(N)

× ∣∣det H1,2n−1(M)
∣∣− dim H0(N)∣∣det Hn−1,n+1(M)

∣∣(−1)n+1 dim H0(N)
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× ∣∣det Hn,n(M)
∣∣(−1)n+1 dim H1(N)/2

=
(n−1∏

p=0

∣∣det Hp,2n−p(M)
∣∣(−1)p

)χ(N)(∣∣det Hn,n(M)
∣∣((−1)n+1)/2)χ(N)

= ∣∣T(M, {hp}2n
p=0)

∣∣χ(N)
.

Clearly, we have
(4.15)

n∏
p=2

{∣∣det H0,2(N)
∣∣dim Hp(M)+dim Hp−2(M)∣∣det H1,1(N)

∣∣dim Hp−1(M)
}(−1)p

× ∣∣det H0,2(N)
∣∣dim H0(M)−dim H1(M)∣∣det H1,1(N)

∣∣− dim H0(M)

× ∣∣det H0,2(N)
∣∣(−1)n+1 dim Hn+1(M)/2∣∣det H0,2(N)

∣∣(−1)n+1 dim Hn−1(M)/2

× ∣∣det H1,1(N)
∣∣(−1)n+1 dim Hn(M)/2

= ∣∣det H0,2(N)
∣∣χ(M)∣∣det H1,1(N)

∣∣−χ(M)/2 = ∣∣T(N, {h′
p}2

p=0)
∣∣χ(M)

Combining (4.14) and (4.15), we obtain (4.7).
This finishes the proof of Corollary 4.4.

In particular, considering the cartesian product of closed oriented Riemann
surfaces of genus ≥ 1 and applying Corollary 4.4, we have

Corollary 4.5. Let �g1 , . . . , �gn
be closed oriented Riemann surfaces of

genus g1, . . . , gn ≥ 1, respectively. For p = 0, 1, 2, and i = 1, . . . , n, let hp,i

be a basis of Hp(�gi
). Then,∣∣∣∣T(

×n
i=1�gi

,

{⊕
|α|=p

hα1,1 ⊗ · · · ⊗ hαn,n

}2n

p=0

)∣∣∣∣
=

n∏
i=1

∣∣T(�gi
, {hp,i}2

p=0)
∣∣χ(�g1 )... ̂χ(�gi

)...χ(�gn )
,

where ×n
i=1�gi

is the cartesian product of �g1 , . . . , �gn
, where |α| = α1 +

· · · + αn is the length of the multi-index α = (α1, . . . , αn), and wherê in the
product χ(�g1) . . . ̂χ(�gi

) . . . χ(�gn
) is deletion of χ(�gi

).

4.2. Grassmannians and Schubert varieties

We provide the basic definitions and necessary facts about the Grassmannians,
Lagrangian Grassmannians, Orthogonal Grassmannians, and Isotropic Grass-
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mannians. For unexplained subject and further information, we refer the reader
to [3], [4], [9], [10], [25]–[14], and the references therein.

Since the results corresponding to these manifolds are similar, we shall state
for only one of them.

4.2.1. The Grassmannian G(d, N) . Let E be CN and let G(d, E) = G(d, N)

denote the Grassmannian of d-dimensional linear subspaces of E. This is a
smooth algebraic variety of complex dimension dn, where n = N−d. It is well
known that the Schubert cells stratify G(d, N). The closures of these cells are
called the Schubert varieties. More precisely, let F• : 0 = F0 ⊂ F1 ⊂ · · · ⊂
FN = E be a complete flag of subspaces of E with dim Fi = i, i = 0, . . . , N .
Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0) be a decreasing sequence of non-negative
integers with λ1 ≤ n. Then, the Young diagram of the partition λ fits inside a
d × n rectangle and this is denoted as λ ⊂ (nd).

The Schubert variety Xλ(F•) associated to the complete flag F• and the
partition λ is defined by

Xλ(F•) = {� ∈ G(d, N) : dim(� ∩ Fn+i−λi
) ≥ i, i = 1, . . . , d}.

This is a codimension |λ| closed subvariety of G(d, N), where |λ| = ∑
λi is

the weight of λ. By Poincaré duality, Xλ(F•) is associated to the Schubert class
σλ = [Xλ(F•)] ∈ H 2|λ|(G(d, N); Z). From the transitive action of GLN(C)

on G(d, N) and on the flags in E it follows that σλ is independent of the flag
F• used to define Xλ.

As an additive group H ∗(G(d, N); Z) = ⊕
λ⊂(nd ) Z · σλ is a free abelian

group generated by the Schubert classes. Odd dimensional cohomologies are
all zero and the Euler characteristic χ(G(d, N)) = (

N

d

)
. Recall also that by

the Schubert Duality theorem for any λ and μ with |λ| + |μ| = dn, we have∫
G(d,N)

σλσμ = δλ̂,μ, where λ̂ = (λN−d−λd
, . . . , λN−d−λ1) is the dual partition

of λ.
From Theorem 0.1 it follows that

Theorem 4.6. Let M = G(d, N) denote the Grassmannian of d-dimen-
sional linear subspaces of CN . For p = 0, . . . , 2m, let hp be a basis of Hp(M),
where m = d(N − d). Then, the following formulas hold:

(i)
∣∣T(M, {hp}2m

0 )
∣∣ = ∏

p∈Em−1

∣∣det Hp,2m−p(M)
∣∣ for m odd,

(ii)
∣∣T(M, {hp}2m

0 )
∣∣ = ∏

p∈Em−1

∣∣det Hp,2m−p(M)
∣∣ √∣∣det Hm,m(M)

∣∣ for m

even,

where Em−1 is the set of even numbers in {0, . . . , m − 1}.
In particular, let us consider the complex projective space CPm. For p even

Hp(CPm) is generated by ω
p

FS, where ωFS is the Fubini-Study metric of CPm
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and ω
p

FS denotes the p times wedge product of ωFS. Using also the Poincaré
Duality, we have

Corollary 4.7. If for p = 0, . . . , 2m, hp is a basis of Hp(CPm), then

(i)
∣∣T(CPm, {hp}2m

0 )
∣∣ = Vm

∏
p∈Em−1

|λp||λ2m−p| for m odd,

(ii)
∣∣T(CPm, {hp}2m

0 )
∣∣ = Vm

∏
p∈Em−1

|λp||λ2m−p||λm| for m even,

where hp ∈ Hp(CPm) is the Poincaré dual of hp ∈ Hp(CPm) and hp = λp ω
p

FS
for some λp ∈ R, where ωFS is the Fubuni-Study form of CPm, where Em−1 is the

set of even numbers in {0, . . . , m−1}, and where Vm = (
1
m! Vol(CPm)

)χ(CPm)/2
.

We would like to conclude this section with the following example.

Example 4.8. Let M = CP3 and N = CP6. Using the Künneth formula,
we get H0(M × N) = H0(M) ⊗ H0(N), H18(M × N) = H6(M) ⊗ H12(N),
H2(M×N) = H0(M)⊗H2(N)⊕H2(M)⊗H0(N), H16(M×N) = H6(M)⊗
H10(N) ⊕ H4(M) ⊗ H12(N), H4(M × N) = H0(M) ⊗ H4(N) ⊕ H2(M) ⊗
H2(N) ⊕ H4(M) ⊗ H0(N), H14(M × N) = H6(M) ⊗ H8(N) ⊕ H4(M) ⊗
H10(N) ⊕ H2(M) ⊗ H12(N), H6(M × N) = H0(M) ⊗ H6(N) ⊕ H2(M) ⊗
H4(N) ⊕ H4(M) ⊗ H2(N) ⊕ H6(M) ⊗ H0(N), H12(M × N) = H6(M) ⊗
H6(N)⊕H4(M)⊗H8(N)⊕H2(M)⊗H10(N)⊕H0(M)⊗H12(N), H8(M ×
N) = H0(M) ⊗ H8(N) ⊕ H2(M) ⊗ H6(N) ⊕ H4(M) ⊗ H4(N) ⊕ H6(M) ⊗
H2(N), and H10(M ×N) = H6(M)⊗H4(N)⊕H4(M)⊗H6(N)⊕H2(M)⊗
H8(N) ⊕ H0(M) ⊗ H10(N).

From these it follows that

(4.16) |H0,18(M × N)| = |H0,6(M)||H0,12(N)|,

(4.17) |H2,16(M × N)| = |H0,6(M)||H2,4(M)||H0,12(N)||H2,10(N)|,

(4.18) |H4,14(M × N)|
= |H0,6(M)||H2,4(M)|2|H0,12(N)||H2,10(N)||H4,8(N)|,

(4.19) |H6,12(M × N)|
= |H0,6(M)|2|H2,4(M)|2|H0,12(N)||H2,10(N)||H4,8(N)||H6,6(N)|,

(4.20) |H8,10(M × N)|
= |H0,6(M)|2|H2,4(M)|2|H2,10(N)||H4,8(N)|2|H6,6(N)|.

Combining (4.16)–(4.20), we obtain that |T(M × N)| =
|T(M)|χ(N) |T(N)|χ(M).
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4.2.2. The Lagrangian Grassmannian LG(n, 2n) . Let E be C2n equipped with
a symplectic form 〈· , ·〉. A subspace V of E is isotropic if the restriction of the
symplectic form 〈· , ·〉 to V vanishes. Note that the maximal possible dimension
of an isotropic subspace is n, and in this case V is called a Lagrangian subspace
of E. The Lagrangian Grassmannian LG(n, 2n) is a complex manifold of
complex dimension n(n+ 1)/2 parametrizing the Lagrangian subspaces in E.

A complete isotropic flag F• : 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ E of
subspaces of E is a flag of isotropic subspaces of E such that dim Fi = i

for each i. Thus, a complete isotropic flag is a Lagrangian subspace Fn of E

together with a complete flag of subspaces of Fn. In fact, any isotropic flag
F• : 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ E can be completed to a complete flag by
setting Fn+i = F⊥

n−i , i = 1, . . . , n.
Let F• be a complete isotropic flag of E and λ = (λ1 > λ2 > · · · > λ� > 0)

with λ1 ≤ n be a strictly decreasing partition. The codimension |λ| = ∑
λi

Schubert variety Xλ(F•) ⊂ LG(n, 2n) is defined by

Xλ(F•) = {� ∈ LG(n, 2n) : dim(� ∩ Fn+1−λi
) ≥ i, i = 1, . . . , �(λ)},

where �(λ) is the length of λ, i.e., the number of non-zero terms in λ.
Let σλ = [Xλ(F•)] ∈ H 2|λ|(LG(n, 2n); Z) be the cohomology class of

Xλ(F•). H ∗(LG(n, 2n); Z) is a free abelian group generated by the Schubert
classes σλ with strictly decreasing partition λ. Recall the Poincaré duality∫
LG(n,2n)

σλσμ = δλ̌,μ, where λ̌ = ρn − λ is the dual partition of λ, and where
ρn = (n, n − 1, . . . , 1). Recall also that the Euler characteristic of LG(n, 2n)

is 2n.
Moreover, for LG(n, 2n), we have a result similar to Theorem 4.6, where

m = n(n + 1)/2.

4.2.3. The Orthogonal Grassmannian OG(n + 1, 2n + 2) . Let E be C2n+2

equipped with a non-degenerate symmetric form. The even orthogonal Grass-
mannian OG(n + 1, 2n + 2) parametrizes one component of the locus of
maximal isotropic subspaces of E. This is a complex manifold of complex di-
mension n(n+1)/2. There are two families of such subspaces. As convention,
given a fixed isotropic flag F• in E, only those isotropic � in E with �∩Fn+1

even codimension in Fn+1 are considered. Recall that OG(n + 1, 2n + 2) is
isomorphic to the odd Orthogonal Grassmannian OG(n, 2n + 1).

As in LG(n, 2n), the Schubert varieties Xλ(F•) in OG(n+1, 2n+2) are also
parametrized by strictly decreasing partitions λ = (λ1 > λ2 > · · · > λ� > 0)

with λ1 ≤ n and defined by

Xλ(F•) = {� ∈ OG(n+1, 2n+2) : dim(�∩Fn+1−λi
) ≥ i, i = 1, . . . , �(λ)}
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with respect to a complete isotropic flag F• in E. Let σλ be the cohomo-
logy class of Xλ(F•). The abelian group H ∗(OG(n + 1, 2n + 2); Z) is gener-
ated by the Schubert classes σλ with strictly decreasing partition λ. Moreover,
χ(OG(n + 1, 2n + 2)) = 2n.

Similar result of Theorem 4.6 also holds for OG(n + 1, 2n + 2), where
m = n(n + 1)/2.

4.2.4. The Grassmannian IG(n−k, 2n) . Let us fix a vector space E ∼= C2n with
a non-degenerate skew-symmetric bilinear form 〈· , ·〉, and let d ≤ n be a fixed
non-negative integer. The Isotropic Grassmannian IG(d, 2n) parametrizes d-
dimensional isotropic subspaces of E. This is an algebraic variety of complex
dimension 2d(n − d) + d(d + 1)/2.

Let k be a non-negative integer. The partition λ is said to be k-strict, if no
part of λ greater than k is repeated, namely λi > k ⇒ λi+1 < λi .

Now, let k = n − d. The Schubert varieties in IG(d, 2n) are parametrized
by the set P(k, n) of all k-strict partitions contained in a d × (n+k) rectangle.

Recall that an isotropic flag in E is a complete flag F• : 0 = F0 ⊂ F1 ⊂
· · · ⊂ F2n = E of subspaces such that Fn+i = F⊥

n−i , i = 0, . . . , n. For each
λ ∈ P(k, n), the Schubert variety relative to the isotropic flag F• is

Xλ(F•) = {� ∈ IG(d, 2n) : dim(� ∩ Fpj (λ)) ≥ j, j = 1, . . . , �(λ)},
where pj (λ) = n + k + 1 − λj + �{i < j : λi + λj ≤ 2k + j − i}, and where
�(λ) is the length of λ.

This is a codimension |λ| variety. Let σλ denote [Xλ] ∈ H 2|λ|(IG(d, 2n); Z).
The cohomology ring H ∗(IG(d, 2n); Z) is a free abelian group generated by
these Schubert classes. Moreover, the k-strict partition λ has a unique dual par-
tition λ̌ ∈ P(k, n), for which pj (λ̌) = 2n + 1 − pd+1−j (λ), j = 1, . . . , d. We
also have

∫
IG(d,2n)

σλσμ = δμ,λ̌. Finally, the Euler characteristic of IG(d, 2n)

is the rank of H ∗(IG(d, 2n); Z) = �P(k, n) = 2d
(
n

k

)
.

For IG(d, 2n), we also obtain a result similar to Theorem 4.6 where m =
2d(n − d) + d(d + 1)/2.

4.2.5. The Grassmannian OG(n−k, 2n+1) . Let E ∼= C2n+1 be a vector space
with a non-degenerate symmetric bilinear form on E. For d = n − k < n, let
OG(d, 2n + 1) denote the Odd Orthogonal Grassmannian parametrizing the
d-dimensional isotropic subspaces of E. Like IG(d, 2n), the algebraic variety
OG(n − k, 2n + 1) has also complex dimension 2d(n − d) + d(d + 1)/2.
Furthermore, as in IG(d, 2n), the Schubert varieties are parametrized by the
set of k-strict partitions P(k, n).

Recall that an isotropic flag F• is a complete flag 0 = F0 ⊂ F1 ⊂ · · · ⊂
F2n+1 = E such that Fn+i = F⊥

n+1−i , i = 1, . . . , n + 1. Let F• be an isotropic
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flag and let λ ∈ P(k, n). The Schubert variety associated to F• and λ is

Xλ(F•) = {� ∈ OG(d, 2n + 1) : dim(� ∩ Fpj (λ)) ≥ j, j = 1, . . . , �(λ)},
where pj (λ) = pj (λ) + 1{0,...,k}(λj ), where pj (λ) = n + k + 1 − λj + �{i <

j : λi + λj ≤ 2k + j − i}, and where

1{0,...,k}(λj ) =
{

1, λj ≤ k

0, λj > k.

This variety has codimension |λ|. Let σλ denote the cohomology class of Poin-
caré dual to the cycle given by Xλ(F•). The abelian group H ∗(OG(d, 2n +
1); Z) is generated by these Schubert classes. We also have

∫
OG(d,2n+1)

σλσμ =
δμ,λ̌, where pj (λ̌) = 2n + 2 − pd+1−j (λ). The rank of H ∗(OG(d, 2n + 1); Z)

is equal to the rank of H ∗(IG(n − k, 2n); Z), i.e., �P(k, n) = 2d
(
n

k

)
.

Furthermore, for OG(d, 2n + 1), there is a result similar to Theorem 4.6,
where m = 2d(n − d) + d(d + 1)/2.

4.2.6. The Grassmannian OG(n + 1 − k, 2n + 2) . Let E ∼= C2n+2 be a
vector space with a non-degenerate symmetric bilinear form on E. For d =
n + 1 − k < n, let OG(d, 2n + 2) be the even Orthogonal Grassmannian
parametrizing the d-dimensional isotropic subspaces of E. This is a variety of
complex dimension 2d(n + 1 − d) + d(d − 1)/2.

The subspaces U, V of E are in the same family if dim(U ∩ V ) ≡ (n +
1) (mod 2). Fix an isotropic subspace W of E with dim W = n+1. An isotropic
flag is a complete flag F• of subspaces of E such that Fn+1+i = F⊥

n+1−i ,
i = 0, . . . , n, and Fn+1 and W are in the same family. Since the orthogonal
space F⊥

n /Fn contains only two isotropic lines, to each such flag F•, there is
an alternate isotropic flag F̃• such that for i ≤ n F̃i = Fi but with F̃n+1 in the
opposite family from Fn+1.

Let k = n + 1 − d > 0. The k-strict partition λ is of type 0 if it has no
part equal to k. Otherwise, λ is of type 1 or 2. Type is a multi-valued function.
Let P̃(k, n) be the set of all k-strict partitions contained in a d × (n + k)

rectangle of all three possible types. For λ ∈ P̃(k, n), let us define an index
set P ′ = {p′

1 < · · · < p′
d} ⊂ {1, . . . , 2n + 2} with

p′
j (λ) = n + k − λj + �{i < j : λi + λj ≤ 2k − 1 + j − i}

+
{

1, λj > k or λj = k < λj−1 and n + j + type(λ) is even

2, otherwise.

Let F• be an isotropic flag. For each λ ∈ P̃(k, n), the codimension |λ|
Schubert variety is Xλ(F•) = {� ∈ OG(d, 2n + 2) : dim(� ∩ Fp′

j (λ)) ≥
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j, if p′
j �= n+2, dim(�∩F̃n+1) ≥ j, if p′

j = n+2, for all j = 1, . . . , �(λ)}.
Let σλ be the cohomology class in H 2|λ|(OG(d, 2n + 2); Z) Poincaré dual to
the cycle determined by the Schubert variety associated to λ. The free abelian
group H ∗(OG(d, 2n+2); Z) is generated by the Schubert classes and the rank
of H ∗(OG(d, 2n + 2); Z) is 2n+1−k

(
n+1
k

)
. For each λ ∈ P̃(k, n), define a dual

partition λ̌ ∈ P̃(k, n) by

p′
j (λ̌) =

{
2n + 3 − p′

d+1−j (λ), if n is odd or p′
j (λ) �= n + 1, n + 2

p′
j (λ), if n is even and p′

j (λ) ∈ {n + 1, n + 2}.

Moreover, for λ, μ ∈ P̃(k, n), we have
∫

OG(d,2n+2)
σλσμ = δμ,λ̌.

For OG(d, 2n+2), similar result as Theorem 4.6 holds, where m = 2d(n+
1 − d) + d(d − 1)/2.
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