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A LOCAL GROTHENDIECK DUALITY THEOREM
FOR COHEN-MACAULAY IDEALS

JOHANNES LUNDQVIST

Abstract
We give a new proof of a recent result due to Mats Andersson and Elizabeth Wulcan, generalizing
the local Grothendieck duality theorem. It can also be seen as a generalization of a previous result
by Mikael Passare. Our method does not require the use of the Hironaka desingularization theorem
and it provides a semi-explicit realization of the residue that is annihilated by functions from the
given ideal.

1. Introduction

Let O0 be the ring of germs of holomorphic functions at 0 ∈ Cn and let �n0
denote the germs of holomorphic (n, 0)-forms. The ring O0 is Noetherian and
hence all ideals J ⊂ O0 will be finitely generated. Assume first that J is
generated by n functions f = (f1, . . . , fn) and that their common zero set
consists of one single point, the origin. Then the Grothendieck residue, Resf ,
is defined as

(1) Resf (ξ) =
(

1

2πi

)n ∫
|fi (z)|=ε

ξ(z)

f1(z) . . . fn(z)
, ξ ∈ �n0,

and is independent of ε. Observe that we can multiply Resf with a holomorphic
germ ϕ by letting ϕ Resf (ξ) = Resf (ϕξ). There is a well known theorem, see
for example [9], saying that J is equal to the annihilator ideal of Resf , i.e.,

(2) ϕ Resf (ξ) = 0, ∀ξ ∈ �n0, iff ϕ ∈ J .

We will refer to that theorem as the local Grothendieck duality theorem.
There is a cohomological interpretation of the Grothendieck residue. Let�

be an open neighborhood of 0 such that fj , j = 1, . . . , n, and ξ are defined
there. Let Dj = {z; fj (z) = 0} and Uj = � \ Dj . Then ξ/f1 . . . fn can be
considered as an (n−1)-cochain for the sheaf of holomorphic (n, 0)-forms and
the covering {Uj }j=1,...,n of � \ {0}. Since there are no (n− 1)-coboundaries,
ξ/f1 . . . fn defines a Čech cohomology class and by the Dolbeault theorem, [9],
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we get a Dolbeault cohomology class ωξ of bidegree (n, n− 1). The Grothen-
dieck residue can now be rewritten as integration of ωξ over the boundary of
a small neighborhood, D, of the origin,

(3) Resf (ξ) =
∫
∂D

ωξ .

A proof of this can be seen in [9] where one can also see a proof of the fact
that the class ω can be represented by the explicit form

ωξ =
(

1

2πi

)n
n!

∑
(−1)i−1f̄idf̄1 ∧ · · · ∧ d̂f̄i ∧ · · · ∧ df̄n ∧ ξ(|f1|2 + · · · + |fn|2

)n ,

where d̂f̄i means that df̄i is omitted.
Assume now that the ideal J is generated by p functions f1, . . . , fp and

that we do not have any restrictions on the common zero set Z . With the use
of Hironaka’s desingularization theorem one can define a residue current

(4) ∂̄
1

fp
∧ · · · ∧ ∂̄ 1

f1
· ξ = lim

δ→0

∫
|fi (z)|=εi (δ)

ξ(z)

f1(z) . . . fp(z)
,

for smooth test forms ξ . In order for the limit to exist it has to be taken over a so
called admissible path meaning that εi(δ) tends faster to zero than any power
of εi+1(δ). The current (4) is called the Coleff-Herrera product and was defined
in [5]. In the special case of p = n and Z = {0} we get the Grothendieck
residue if we restrict the Coleff-Herrera product to the holomorphic germs.

In [7] and [10] Dickenstein-Sessa and Passare independently proved that the
Coleff-Herrera product satisfies the duality theorem, i.e., that the annihilator
ideal of (4) is equal to J , in the case when J defines a complete intersec-
tion. That is, the case when the codimension of J is equal to p. Passare also
defines a cohomological residue satisfying the duality theorem in that case
generalizing the Grothendieck duality theorem to complete intersections. In
[2] Andersson and Wulcan construct a residue current that satisfies a duality
theorem for arbitrary ideals and coincides with the Coleff-Herrera product if
the ideal defines a complete intersection. They also show that the residue can
be expressed cohomologically in the Cohen-Macaulay case.

In this paper we find a new proof of the result of Andersson and Wulcan in
the Cohen-Macaulay case avoiding using Hironaka desingularization used in
[2]. The residue is similar to (3) and is obtained from a double complex defined
from a free resolution of J . In the special case of a complete intersection it
coincides with the cohomological residue in [10].
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2. Set up and statement

Remember that a local Noetherian ring R is called Cohen-Macaulay if the
maximal length of a regular sequence in R is equal to the dimension of R.
An ideal J ⊂ R is called Cohen-Macaulay if R/J is Cohen-Macaulay. All
ideals in O0 whose variety is zero-dimensional are Cohen-Macaulay. Also,
all ideals in O0 that define a complete intersection are Cohen-Macaulay but
the converse is not true. For example, the ideal 〈z2, zw,w2〉 ⊂ O0 is Cohen-
Macaulay (because its variety is zero-dimensional) but do not define a complete
intersection.

Assume that the common zero set Z of f1, . . . , fm ∈ O0 has pure codi-
mension p and that J = 〈f1, . . . , fm〉 is Cohen-Macaulay. The fact that J is
Cohen-Macaulay is equivalent (because of the Auslander-Buchsbaum formula
[8]) to the existence of a minimal free resolution of O0/J

(5) 0 −→ O
⊕rp
0

f p−→ O
⊕rp−1

0
f p−1−→ · · · f 2−→ O

⊕r1
0

f 1−→ O0 −→ O0/J −→ 0

having length p. Here f 1 can be represented as the row-matrix where the the
i’th column is fi and f k, k > 1, are matrices with holomorphic functions as
entries. Oka’s lemma, [9], implies that there exists a small neighborhood �
around 0 such that the complex

(6) 0 −→ O
⊕rp
z

f p−→ O
⊕rp−1
z

f p−1−→ · · · f 2−→ O⊕r1
z

f 1−→ Oz −→ Oz/J −→ 0

is exact for all z ∈ �.
If we let Ej be a trivial vector bundle of rank rj over � we get an induced

complex of trivial vector bundles

(7) 0 −→ Ep
f p−→ Ep−1

f p−1−→ · · · f 2−→ E1
f 1−→ E0 −→ 0.

Note that Oz/J = 0 if z ∈ � \ Z and that the complex (7) is pointwise exact
there. Indeed, assume that k < p and that (z0, x) ∈ (� \ Z ) × Crk is a point
such that f k(z0)x = 0. Note first that there exist a non-zero function ϕ ∈ O⊕rk

z0

such that f kϕ = 0 because otherwise Ker f k = {0} and hence k = p which
is a contradiction since we assumed that k < p. Take such a ϕ. We know from
the exactness of (6) that there exists ψ ∈ O

⊕rk+1
z0 such that f k+1ψ = ϕ. By

scaling we can assume that ϕ(z0) = x and by choosing y = ψ(z0) we get that
the point (z0, y) ∈ (� \ Z )× Crk+1 is mapped to (z0, x).

The exactness of (7) and a simple induction over k shows that f k has con-
stant rank in � \ Z and thus Ker f k is a sub-bundle of Ek . Since f k+1 is
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a pointwise surjection to the sub-bundle Ker f k we get that the correspond-
ing complex of smooth sections is exact. We have just proved the following
proposition.

Proposition 2.1. Let E0,q(�,Ek) denote the set of smooth (0, q)-sections
of Ek over �. With f k, Ek,� and Z as above, the complex

0 −→ E0,q(� \ Z , Ep)
f p−→ E0,q(� \ Z , Ep−1)

f p−1−→ · · · f 1−→ E0,q(� \ Z , E0) −→ 0

is exact for all q.

We are now ready to define the complex that will give us the cohomology
classes we need in order to state the main theorem. The operators f j and ∂̄
define the double complex

(8)

...
...

∂̄ ∂̄

· · · f k+1

E0,q+1(� \ Z , Ek)
f k

E0,q+1(� \ Z , Ek−1)
f k−1 · · ·

∂̄ ∂̄

· · · f k+1

E0,q(� \ Z , Ek)
f k

E0,q(� \ Z , Ek−1)
f k−1 · · ·

∂̄ ∂̄

...
...

.

Let L be the total complex of (8), i.e.,

(9) L : · · · ∇f−→ L r (� \ Z )
∇f−→ L r+1(� \ Z )

∇f−→ · · · .
where

L r (� \ Z ) =
⊕
k

E0,k+r (� \ Z , Ek)

and

∇f : L r (� \ Z ) −→ L r+1(� \ Z ) is defined as ∇f = f − ∂̄ .

Here f should be interpreted as (−1)qf k on E0,q(� \ Z , Ek). We know from
Proposition 2.1 that the double complex (8) has exact rows and by a standard
spectral sequence argument we see that the total complex L is exact.
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Now, let ϕ ∈ O0. Then we can view ϕ as an element in L 0(� \ Z ) for
some � such that the complex L is exact. Moreover, ∇f ϕ = 0 so there exists
an element v in L −1(�\Z ) such that ∇f v = ϕ. If we write v = v1 +· · ·+vp
where vk ∈ E0,k−1(� \ Z , Ek) we see that f v1 = ϕ and f vj = ∂̄vj−1 for
j = 2, . . . , p. Especially we get that ∂̄vp = 0. Now, if v,w ∈ L −1(� \ Z )

are such that ∇f v = ∇f w = ϕ, then there exists an element u ∈ L −2(� \Z)
such that ∇f u = v−w and thus ∂̄up = vp −wp. This means that vp (a vector
of rp ∂̄-closed smooth (0, p − 1)-forms) is a representative of a Dolbeault
cohomology class ωϕ of bidegree (0, p − 1) depending only on ϕ and f , i.e.,
we have a map

O0 � ϕ �→ ωϕ = [α1, α2, . . . , αrp ] ∈ (
H
(0,p−1)
∂̄

(� \ Z )
)⊕rp

.

Note that these cohomology classes form a O0-module and that ϕω1 = ωϕ for
ϕ ∈ O0.

LetX be a subset of Cn and denoteω1 byω. By Dp,q(X)we mean the space
of all (p, q)-forms that have compact support on X.

Definition 2.2. The residue

Resf :
{
ξ ∈ D

n,n−p
0 (�); ∂̄ξ = 0 close to Z

} → C

is given by

(10) Resf (ξ) =
∫
∂̄ξ ∧ ω.

The fact that Resf is well-defined, i.e., does not depend on the choice of
representant ofω, is a direct consequence of Stokes’ theorem. We define multi-
plication with a holomorphic germ ϕ analogous to the case of the Grothendieck
residue, i.e., ϕ Resf (ξ) = Resf (ϕξ) and we thus get

ϕ Resf (ξ) = Resf (ϕξ) =
∫
∂̄(ϕξ) ∧ ω =

∫
(∂̄(ξ)) ∧ ϕω =

∫
∂̄ξ ∧ ωϕ.

Remark 2.3. If Z consists of one single point we can rewrite Resf in a
different way. Let ξ ∈ D

n,0
0 such that ∂̄ξ = 0 close to 0. Then there exists a

compact set D ⊂ �, with 0 in the interior, such that ∂̄ξ = 0 on D. If ξ̃ is a
holomorphic (n, 0)-form that satisfy ξ̃ = ξ on D we get∫

∂̄ξ ∧ ω =
∫

Cn\D
∂̄ξ ∧ ω = −

∫
∂D

ξ ∧ ω = −
∫
∂D

ξ̃ ∧ ω.

We will use this in Example 2.6 below.
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The following theorem is the main result in this paper.

Theorem 2.4. Assume that f1, . . . , fm ∈ O0 and that the ideal J generated
by the fi:s is Cohen-Macaulay. Then the following are equivalent:

(i) ϕ ∈ J

(ii) ωϕ = 0

(iii) ϕ Resf = 0

We postpone the proof to the next section.

Remark 2.5. The operator ∇f was first introduced by MatsAndersson in [1]
and was later used in several papers to define residue currents that coincide with
the Coleff-Herrera product in the case of complete intersection. The advantage
of using ∇f to define the residue Resf is that much of the work in the proof of
Theorem 2.4 is hidden in the construction of the cohomology classes ωϕ .

Example 2.6. Consider the case when J = 〈f1, . . . , fp〉 defines a com-
plete intersection. It is well known, [3], that the Koszul complex with coeffi-
cients in O0, i.e., the complex

0 −→ O0 ⊗�pE
δf−→ · · · δf−→ O0 ⊗�2E

δf−→ O0 ⊗ E
δf−→ C −→ 0,

whereE is a complex vector space of dimension p with a basis e1, . . . , ep and
where δf is defined as

δf : O0 ⊗�kE −→ O0 ⊗�k−1E,

δf (ψ ⊗ el1 ∧ · · · ∧ elk ) = ψ

n∑
j=1

(−1)j+1fj ⊗ el1 ∧ · · · ∧ êlj ∧ · · · ∧ elk

is a minimal resolution of O0/J . This means that the resolution (5) is iso-
morphic to the Koszul complex since all minimal resolutions are isomorphic.
In this case L r (� \ Z ) and ∇f in the total complex (9) become

L r (� \ Z ) =
⊕
k

E0,k+r (� \ Z , Ek) and ∇f = δf − ∂̄

where Ek is the trivial bundle �×�kE. We define the operator

∩ : E0,r (� \ Z , Ek)× E0,s(� \ Z , El) −→ E0,r+s(� \ Z , Ek+l)

by letting
dzI ⊗ eJ ∩ dzK ⊗ eL = dzI ∧ dzK ⊗ eJ ∧ eL.
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Let us try to calculate the cohomology class ω in this case. Let

σ =
∑p

j=1 f̄j ⊗ ej

|f |2 and v = σ ∩ (1 + ∂̄σ + (∂̄σ )∩2 + · · · + (∂̄σ )∩(p−1)).

Then v ∈ L −1(� \ Z ) and since ∇f σ = 1 and (∂̄σ )∩p = 0 we get that
∇f v = 1. This means that a representative for the class ω is given by vp =
σ ∩ (∂̄σ )∩(p−1), and by using that

(∑p

j=1 f̄j ⊗ ej
)∩2 = 0 we get that

vp =
∑
f̄j ⊗ ej ∩ (∑

∂̄ f̄j ⊗ ej
)∩(p−1)

|f |2p .

Now, ∂̄ f̄j ⊗ ej ∩ ∂̄ f̄k ⊗ ek = ∂̄ f̄k ⊗ ek ∩ ∂̄ f̄j ⊗ ej for all j, k = 1, . . . , p and
since ∂̄ f̄k = df̄k we get

vp = p!

∑
(−1)j−1f̄j df̄1 ∧ · · · ∧ d̂f̄j ∧ · · · ∧ df̄p ⊗ e1 ∧ · · · ∧ ep(|f1|2 + · · · + |fn|2

)p .

This shows that in the case of a complete intersection the residue coincide with
the cohomological residue in [10] and together with Remark 2.3 this shows
that Resf indeed is a generalization of the Grothendieck residue (3).

3. The proof of Theorem 2.4

We will need a result that describes when we can solve the ∂̄-equation in our
situation and also a variant of Hartogs’ phenomenon. To prove those results
we use an integral representation of smooth (p, q)-forms called Koppelman’s
formula.

Let � = {(z, z); z ∈ Cn} ⊂ Cn × Cn and

b(z) = ∂|z|2
2πi|z|2 .

A form s(ζ, z) in � × � on the form s(ζ, z) = ∑
sj (ζj , zj )d(ζj − zj ) that

satisfies 2πi
∑
sj (ζj , zj )(ζj − zj ) = 1 outside the diagonal � and s(ζ, z) =

b(ζ − z) in a neighborhood of � is called an admissible form (in the sense of
Andersson) [1]. For an admissable form s one can prove thatK = s ∧ (∂̄s)n−1

is ∂̄-closed outside�. ByKp,q we mean the component ofK that has bidegree
(p, q) in z and (n− p, n− q − 1) in ζ . If f is a smooth (p, q)-form then for
z ∈ D it has the representation

f (z) = ∂̄z

∫
ζ∈D
Kp,q−1(ζ, z)∧f (ζ )+

∫
ζ∈D
Kp,q(ζ, z)∧∂̄f (ζ )+

∫
ζ∈∂D

Kp,q(ζ, z)∧f (ζ ).
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This representation is referred to as Koppelman’s formula. If we want to solve
the equation ∂̄u = f , where f is ∂̄-closed in some region D, Koppelman’s
formula tells us that it is possible if we can make the boundary integral disap-
pear.

Remark 3.1. Koppelman’s formula is often stated so that the form s(ζ, z)

is equal to b(ζ − z), see for example [6]. The formula above follows from the
ordinary Koppelman’s formula. One way to see this is to first fix z0 ∈ D and
then write f = χf + (1 − χ)f where χ is a cutoff function with suppport
in a small neighborhood U of z0 such that s(ζ, z) = b(ζ − z) in U . The
formula now follows from the ordinary Koppelman’s formula because of the
∂̄-closeness of K .

Lemma 3.2. Write Cn = Cn−k × Ck and z = (z′, z′′), ζ = (ζ ′, ζ ′′). Assume
that f is a ∂̄-closed smooth (0, q)-form in B = B′ × B′′, where B′ and B′′ are
the Euclidean (n − k) and k-balls, and that f has compact support in the z′′
direction. Then there exists a solution to ∂̄u = f in a possibly smaller set with
compact support in the z′′ direction if q < k. If q = k such a solution exists if
and only if

(11)
∫
ξ ∧ f = 0

for all ∂̄-closed (n, n− k)-forms ξ with compact support in the z′ direction.

Proof. The “only if” part of the statement when q = k is clear because if
there is a solution u to ∂̄u = f with compact support in the z′′ direction then∫

ξ ∧ f =
∫
ξ ∧ ∂̄u =

∫
∂̄(ξ ∧ u) = 0

for all ∂̄-closed (n, n− k)-forms ξ with compact support in the z′ direction by
Stokes’ theorem, since ξ ∧ u has compact support.

Let χ ′ be a cutoff function in B′ that is equal to 1 in a neighborhood of
rB′, where r < 1 and let χ ′′ be a cutoff function in B′′ that is equal to 1 in a
neighborhood of rB′′. Set

s(ζ, z) = χ ′(ζ ′)
[
χ ′′(z′′)b(ζ − z)+ (1 − χ ′′(z′′))

z̄′′ · d(ζ − z)

2πi(|z′′|2 − ζ ′′ · z̄′′)
]

+ (1 − χ ′(ζ ′))
[

ζ̄ ′ · d(ζ − z)

2πi(|ζ ′|2 − z′ · ζ̄ ′)

]
.

Then s(ζ, z) is admissible for |z′| ≤ r and for |ζ ′′| ≤ r .
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Note that we can extend s to an admissible form for |ζ ′′| < 1 simply by
considering χs + (1 − χ)b where χ is a cutoff function in rB. Since we can
assume thatχ is 1 in supp f this extension will be of no interest sinceK∧f = 0
outside the suppport of f . This means that for our s, Koppelman’s formula
will work for all z′′.

If |ζ ′| is close to 1 we get

s(ζ, z) = ζ̄ ′ · d(ζ − z)

2πi(|ζ ′|2 − z′ · ζ̄ ′)
,

which is holomorphic in z. Therefore the boundary integral in Koppelman’s
formula vanishes if q ≥ 0 since f has compact support in the ζ ′′ direction.
Thus u(z) = ∫

K0,q−1 ∧ f is a solution to ∂̄u = f . It remains to show that the
solution has compact support in the z′′ direction. Let |z′′| be close to 1. Then

s(ζ, z) = χ ′(ζ ′)
[

z̄′′ · d(ζ − z)

2πi(|z′′|2 − ζ ′′ · z̄′′)
]
+ (1 −χ ′(ζ ′))

[
ζ̄ ′ · d(ζ − z)

2πi(|ζ ′|2 − z′ · ζ̄ ′)

]

=: s1(ζ, z)+ s2(ζ, z).

We see that ∂̄zs2 = 0 and that both s1 and s2 are ∂̄ζ ′′ -closed. This means that
K0,q−1 = 0 if q < k because of degree reasons since then n − q > n − k

and K0,q−1 have bidegree (n, n − q) in ζ . In the case q = k we will show
thatK0,q−1 is ∂̄ζ -closed and has compact support in the ζ ′-direction. This will
actually end the proof since then we can use (11) with ξ = K0,k−1.

Assume q = k. Then K0,k−1 have bidegree (n, n− k) in ζ and thus K0,k−1

is ∂̄ζ -closed since we get too many ζ ′ differentials. Assume now that |ζ ′| and
|z′′| are close to 1. Then

s(ζ, z) = ζ̄ ′ · d(ζ − z)

2πi(|ζ ′|2 − z′ · ζ̄ ′)
,

and since it do not contain ζ ′′, z′′, ζ̄ ′′ or z̄′′, we may regard it as an admissible
form on B′ × B′. In particular, this means that K = s ∧ (∂̄s)n−k−1 is ∂̄-closed
outside of � which means that K0,k−1 = 0.

Proposition 3.3 (Variant of Hartogs’ phenomenon). Let � = �′ × �′′,
where �′′ has dimension k > 1, be an open set in Cn and let K = �′ × rB for
some r < 1 such that rB ⊂ �′′. If q < k − 1 then for each smooth ∂̄-closed
(0, q)-form ν in (� \ K) there exists a ∂̄-closed (0, q)-form ν̂ in � such that
ν̂ = ν in � \ K̂ where K̂ is a slightly bigger set than K . If q = 0 we have
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K̂ = K . If q = k − 1 the above statement is true if∫
∂̄ξ ∧ ν = 0

for all (n, n− k)-forms ξ with compact support that are ∂̄-closed in a neigh-
borhood of K .

Proof. Letχ be a cutoff function in� that is identically 1 in a neighborhood
of K and let g := (−∂̄χ) ∧ ν. Then g is ∂̄-closed in � and∫

ξ ∧ g = −
∫
ξ ∧ ∂̄χ ∧ ν = ±

∫
∂̄(ξ ∧ χ) ∧ ν = 0,

for ∂̄-closed (n, n− q − 1)-forms ξ with compact support in the z′ direction.
This means that we can use Lemma 3.2 with g as f and thus there exists a
solution to ∂̄u = g, with compact support in the z′′ direction, in a possibly
smaller set. Set ν̂ = (1−χ)ν−u. Then ∂̄ ν̂ = 0 and ν̂ = ν close to the boundary
where |z′′| = 1. If q = 0 the uniqueness theorem for analytic functions imply
that ν̂ = ν in � \K .

Proof of Theorem 2.4. (i) ⇒ (ii): Assume that ϕ ∈ J . Let� be an open
neighborhood of the origin such that L is exact for� \ Z and such that there
exist functions ψj ∈ O (�), such that

ϕ =
∑

ψjfj .

Let {ej } be a global frame ofE1 such that f 1(1⊗ej ) = fj and let v = v1+· · ·+
vp ∈ L −1 be defined by letting v1 = ∑

ψj ⊗ ej and v2 = v3 = · · · = vp = 0.
Then ∇f v1 = ϕ and ωϕ = 0 and we are done.

(ii) ⇒ (iii): Trivial.
(iii) ⇒ (i): Assume that ϕ ∈ O0 and that ϕ Resf = 0. Let again � be such

that L is exact for � \ Z and let v = v1 + v2 + · · · + vp ∈ L −1(� \ Z ) be
a solution to ∇v = ϕ. Because of general properties of complex analytic sets
we may assume that� is the set B′ ×B′′, where B′ ⊂ Cn−p and B′′ ⊂ Cp are the
Euclidean balls, and that Z do not touch the boundary of rB′′ for some r < 1,
[4]. According to Proposition 3.3 we can extend vp to a ∂̄-closed form v̂p in�
since vp fulfills the requirement by the assumption that ϕ Resf = 0. We can
now solve the equation ∂̄up = v̂p and since v̂p = vp close to the boundary
where |z′′| = 1 there exists a solution in say � \ K where K is a set of the
same type as in Proposition 3.3. Now, in � \K we get that

∂̄(vp−1 + f pup) = f pvp − f pv̂p = 0.
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This means that there exists a solution to ∂̄up−1 = vp−1 + f pup in � \K and
we note that

∂̄(vp−2+f p−1up−1) = f p−1vp−1+∂̄f p−1up−1 = f p−1vp−1−f p−1vp−1 = 0.

If we repeat the argument above we eventually end up with

∂̄(v1 + f 2u2) = 0

in a smaller set of the same type, call it U. Now,

f 1ψ = f 1v1 + f 1f 2u2 = f 1v1 = ϕ

in U and Proposition 3.3 in the case where q = 0 completes the proof.
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