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SIEBECK CURVES AND TWO REFINEMENTS
OF THE GAUSS-LUCAS THEOREM

EDUARDO CASAS-ALVERO∗

Abstract
We prove two results which improve the well known Gauss-Lucas theorem by locating the roots
of the derivative of a complex polynomial f in sets smaller than the convex hull of the roots of f .

1. Introduction

Assume that f ∈ C[z] is a complex polynomial and let z1, . . . , zm be its distinct
roots, viewed as points of the complex plane. The Gauss-Lucas theorem assures
that the roots of df/dz belong to the convex hull of z1, . . . , zm (see for instance
[10], 1.2.1). An old result due to J. Siebeck ([12], see also [10], 1.2.2) asserts
that if f has degree three and its roots are the vertices of a triangle z1z2z3,
then the roots of df/dz are the foci of the only conic C tangent to the sides of
z1z2z3 at their midpoints. In his paper [7], B. Z. Linfield extended Siebeck’s
result to arbitrary polynomials: he proved that the roots of df/dz which are
not roots of f are the foci of an algebraic curve S , of class m− 1, determined
by a set of tangential conditions (see 2.1 below; further details are in [4]). In
the sequel the curve S , which plays the role of the conic C in Siebeck’s result,
will be called the Siebeck curve of f . In the same paper, Linfield stated the
refinement of the Gauss-Lucas theorem described next.

For simplicity assume that the roots z1, . . . , zm of f are simple and non-
aligned (for the general claim see Theorem 7.1 below). Fix an arbitrary direc-
tion w and, for j = 1, . . . , m, let �j be the line projecting zj in the direction w.
Assume that �j has equation ax +by + cj = 0, and take g =:

∏m
j=1(X − cj ) ∈

R[X]. Let c′
1, . . . , c

′
m−1 be the roots of dg/dX. Consider the lines, also in the

direction w,

�′
j : ax + by + c′

j = 0, j = 1, . . . , m − 1.

By Rolle’s theorem, they are real and each lies between two of the lines �j .
After a suitable reordering, assume that �′

1 and �′
m−1 are the extremal lines
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among the �′
i . Linfield’s claim is that all the roots of df/dz which are not

roots of f lie in the open stripe �w bounded by �′
1 and �′

m−1. Then, by the
arbitrariness of w, the roots of df/dz other than the roots of f belong to the
set � := ⋂

w �w.
Let wi, . . . , wr be the directions of the sides of the convex hull T of

z1, . . . , zm. Then �w1 ∩· · ·∩�wr
is the interior of T , as each side of T appears

at least twice among the lines �j , and so it is one of the �′
j . It follows that �

is included in the interior of T and it is not difficult to see that in general this
inclusion is strict (see 7.7). Therefore, Linfield’s claim improves Gauss-Lucas’
theorem.

Linfield’s proof makes strong use of the Siebeck curve. Unfortunately it
makes also use of a number of wrong claims about real plane curves. This
may be probably the reason why no mention of Linfield’s refinement seems to
appear in posterior literature.

The purpose of this paper is to set a number of especial properties of the
Siebeck curve and use them to make a correct proof of Linfield’s result ex-
plained above. We will also obtain a second refinement of the Gauss-Lucas
theorem, stronger than Linfield’s one, but at the price of involving the Siebeck
curve in its claim: the Siebeck curve S being bounded, we will prove that no
root of df/dz other than the roots of f lies in the closure of the unbounded
connected component of the complementary of S .

I’m indebted to C. D’Andrea, J. C. Naranjo, M. Sombra and G. Welters for
fruitful conversations on this subject.

2. Preliminaries

Planes: To avoid any confusion, we will denote by E the field of the complex
numbers C viewed as a real Euclidean plane (with the metric induced by the
complex absolute value). The projective closure of E will be denoted P, � :=
P − E being its improper line. We will make intensive use of the dual plane P∨
of P: if p∗ denotes the pencil of lines through the point p ∈ P, the points of
P∨ are the lines of P and its lines are the pencils p∗, p ∈ P. Unless otherwise
said we will take the real and imaginary part x, y of any z = x + yi ∈ C as its
affine coordinates in E. The homogeneous coordinates (in P) of the same point
are (1, x, y) and the homogeneous coordinates of a line � : ax + by + c = 0
(as a point of P∨) are (c, a, b). We will pass to the complex extensions of these
planes by just allowing the coordinates to take complex values, and so we will
deal with imaginary points and imaginary lines. In particular, the cyclic points
of E are the imaginary improper points I = [0, 1, i] and J = [0, 1, −i].

Pencils of parallel lines p∗, p ∈ �, will be always taken with their natural
structure of affine line, in which the improper element is the improper line �.
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Groups of points: A group of points (or effective divisor) of degree r is
a formal sum of r points G = p1 + · · · + pr . The multiplicity of pj in G
is the number of times that pj appears in the sum. If the points pj belong
to an affine line and have coordinates aj , j = 1, . . . , r , then any equation
a(x − a1) . . . (x − ar) = 0, a �= 0, will be called an equation of G.

Curves: Unless otherwise said, the word curve will mean plane algebraic
curve, affine or projective. We will write C : f = 0 to indicate that C is
the curve defined by the equation f = 0. The degree of f is the order (or
degree) of C. Curves will be allowed to have multiple components and the
curve C : f1 . . . fr = 0, composed of the curves Cj : fj = 0, j = 1, . . . , r ,
will be written C = C1 +· · ·+Cr . The intersection multiplicity of two curves
C and C ′ at a point p will be denoted [C · C ′]p. If C, C ′ share no component,
then C · C ′ will denote the intersection group of C, C ′, namely the group of
points

C · C ′ =
∑

p∈C∩C ′
[C · C ′]pp.

Envelopes: A line � is taken as tangent to a curve C at a point p ∈ C if
and only if the intersection multiplicity [� · C]p is higher than the multiplicity
of C at p. Let C be an irreducible curve of a real or complex projective plane
P2, deg C > 1. The lines tangent to C describe an irreducible curve C∗ of the
dual plane P∨

2 , with deg C∗ > 1, called the envelope of C. The map C �→ C∗
readily extends by linearity to a bijection between the sets of curves of P2 and
P∨

2 containing no real or imaginary line as component. The image of a curve
C is still denoted C∗ and called the envelope of C, while C itself is called the
curve enveloped by C∗.

Augmented curves: In order to extend the above map C �→ C∗ to a
bijection covering all curves of P∨

2 , we will consider augmented curves: an
augmented curve of P2 is the formal sum of a group of points G = p1+· · ·+pr

and a curve C, both of P2, noted C = G + C. We will refer to G and C as the
zero- and the one-dimensional part of C , respectively. The points of either of
these parts will be said to be the points of (or belonging to) C . We will refer
to the points of G as the nested points of C , their multiplicities in G will be
taken as their multiplicities in C . Curves and groups of points will be taken as
augmented curves with empty zero- and one-dimensional part, respectively. By
definition, a line � is tangent to the above augmented curve C at one of its points
p if and only if either � is tangent to C at p, or p ∈ G and p ∈ �. Consequently,
we will take the envelope of C to be curve C ∗ = p∗

1 + · · · + p∗
r + C∗ and it

is direct to check that C �→ C ∗ defines a bijection between augmented curves
of P2 with no real or imaginary line in its one-dimensional part and the curves
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of P∨
2 . Then C will be called the augmented curve enveloped by C ∗. As for

ordinary curves, the class of an augmented curve C is defined as being the
order of its envelope C ∗: if, as above, C = G + C, its class is the sum of the
class of C and the degree of G.

Foci: We will restrict ourselves to consider (real) curves of P containing
no real or imaginary lines and not tangent to �. According to the classical
definition (see [5], X.2), the foci of such a curve C are the intersections of pairs
of conjugate tangents to C drawn from the cyclic points I and J . Equivalently,
a point p ∈ E is a focus of C if and only if p∗, as a line of P∨, joins two
conjugate � ∈ C∗ ∩ I ∗ and �̄ ∈ C∗ ∩ J ∗. Note that p is real; its multiplicity as
a focus is defined to be

[C∗ · I ∗]� = [C∗ · J ∗]�̄.

The foci of C, repeated according to multiplicities, compose the focal group
of C. The degree of the focal group (the number of foci, if they are simple) is
then the class of C. In this form, the above definitions apply without changes to
the augmented curves C containing no real or imaginary line and non-tangent
to �. It is direct to check that the real nested points of C appear, with their
multiplicities, as foci of C .

Harmonic group: Assume that A1 is a real affine line, and Q = ν1q1 +
· · · + νrqr a group of real points of A1, qi �= qj for i �= j . The polar group Q′
of Q relative to the improper point is defined in the projective closure of A1 as
follows: if qj has affine coordinate aj , j = 1, . . . , r , then h = ∏

j (x−aj )
νj = 0

is an equation of Q and Q′ is the group of points whose coordinates are the
zeros of dh/dx, repeated according multiplicities. It directly follows from
elementary properties of the derivative that H(Q) := Q′ − ∑

j (νj − 1)qj is a
group of r−1 different points, all real and each placed between two consecutive
points of Q. We will call H(Q) the harmonic group of Q. Its property of having
one point between each two consecutive points of Q will become fundamental
in the sequel. We will refer to it as the separation property of the harmonic
group. For instance the harmonic group of a group of two points ν1q1 + ν2q2

has as its only point the point dividing the segment q1q2 in the ratio ν2/ν1, its
midpoint if ν1 = ν2.

Siebeck curve: Assume as above that f ∈ C[z] has different roots
z1, . . . , zm ∈ E, m ≥ 2, and let μj be the multiplicity of zj , j = 1, . . . , m.
The pencils z∗

1, . . . , z
∗
m, of the lines through each of the roots zj , are lines of

P∨; repeated according to the multiplicities of their corresponding roots, they
compose the algebraic curve of P∨ Z∗ := μ1z

∗
1 + · · · + μmz∗

m. In other words,



16 eduardo casas-alvero

Z∗ is the envelope of the group of roots Z = μ1z1 +· · ·+μmzm seen as an aug-
mented curve without one-dimensional part. On the other hand, the improper
line � of P is a distinguished point of P∨. Since all the zj are proper points,
� is not a point of Z∗ and we are allowed to consider the polar P�(Z∗) of
Z∗ relative to the point �. By an easy and well known property of the polars,
each line z∗

j appears as a component of multiplicity μj − 1 of P�(Z∗). After
discarding from the polar these obvious components, we are left with

S ∗ := P�(Z∗) −
m∑

j=1

(μj − 1)z∗
j ,

an algebraic curve in P∨, of degree m − 1. Following Linfield, we take the
Siebeck curve of f to be the augmented curve S of P enveloped by S ∗. We
will refer to S ∗ as the Siebeck envelope of f . Using this definition, Linfield
obtained the following general version of Siebeck’s theorem, see [4], 6.1 and
7.3, for the proof:

Theorem 2.1. If f ∈ C[z] has different roots z1, . . . , zm, m ≥ 2, with
respective multiplicities μ1, . . . , μm, then

(1) The Siebeck curve of f is the only augmented curve of class m−1 which,
for each line � joining two roots of f , is tangent to � at the points of the
harmonic group of the group of roots of f lying on �.

(2) The foci of the Siebeck curve of f agree, multiplicities included, with
the roots of df/dz which are not roots of f .

The reader may see the example in Figure 1 below, and also the easier
examples 6.8 and 7.8 in [4].

Actually, Linfield presented in [7] an even more general version dealing
with rational functions. Although he was clear at the key point of defining the
Siebeck curves, many of his proofs are obscure. The new proofs provided in
[4] are for the polynomial case only.

We will make frequent use of the following two additional facts:

Proposition 2.2 ([4], 8.1). The group of tangents to S from an improper
point p is

S ∗ · p∗ = H(Z∗ · p∗) +
∑

�∈p∗,e�>0

(e� − 1)�,

where H denotes harmonic group (in p∗, taken as an affine line) and e� is the
number of different roots of f on �.



siebeck curves and the gauss-lucas theorem 17

-3 -2 -1 1 2

0.5

1

1.5

2

Figure 1. The roots of f = z(z + 1)(z − 2)(z + 3)(z − 1 − i)(z − 1 − 2i), the lines
joining them, the corresponding Siebeck curve and the foci of the latter, which are the
roots of df/dz.

Remark 2.3. Proposition 2.2 has a number of direct consequences, namely:

(1) � /∈ S ∗; in particular all nested points of S are proper.

(2) All the intersection points of S ∗ and p∗ are real. They all are simple, but
for p being the improper point of a line containing three or more roots
of f .

(3) S ∗ has no imaginary or multiple component, which in particular applies
to the lines contained in S ∗ showing that the nested points of S are real
and have multiplicity one.

Proposition 2.4 ([4], 7.3, 7.7, 8.5). Each line � of E containing e ≥ 2
different roots of f is an ordinary (e − 1)-fold point (a smooth point if e = 2)
of S ∗ and the tangent cone to S ∗ at � (up to identification by biduality) is
the harmonic group of the group of roots of f on �. S ∗ has no other real
singularities.

Remark 2.5. The tangent at a flex of an algebraic curve C is a non-ordinary
singularity of the envelope of C (see [6], 5.4, for instance). Therefore, pro-
position 2.4 asserts in particular that (the one-dimensional part of) S has no
flexes.

Although usually not mentioned in the old literature, there are Siebeck
curves with non-empty zero-dimensional part, and so considering augmented
curves cannot be avoided. For instance, if the roots of f are simple and placed
at the vertices of a parallelogram �, then the corresponding Siebeck curve is
composed of the ellipse tangent to the sides of � at their midpoints and the
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intersection point of the diagonals of �. The reader may see also Examples
6.6 and 6.7 in [4]. We will study the zero-dimensional part of a Siebeck curve
in Section 4. Next is a further example covering an exceptional and rather
obvious case that will appear often in the sequel: we will refer to it as the
collinear case.

Example 2.6. Assume that all roots of f belong to a line �. Then � is a(∑
j μj

)
-fold point of Z∗ and so the polar P�(Z∗) has multiplicity at least∑

j μj − 1 at �. Since, on the other hand, P�(Z∗) has degree
∑

j μj − 1,
it is composed of lines of P∨ through � too, and therefore so is the Siebeck
envelope S ∗. Consequently, the Siebeck curve consists of m−1 points and has
no one-dimensional part. Furthermore, both Z∗ and S ∗ equal their respective
tangent cones at �, after which, by 2.4, the Siebeck curve equals the harmonic
group, in �, of the group of roots of f .

3. Variation of numbers of real points and real tangents

In this section we will examine the local variation of the number of real inter-
sections of a fixed algebraic curve and a variable line in a pencil, intersection
points being always counted according to multiplicities. By duality, this will
apply to the local variation of the number of real tangents to a fixed augmented
curve from a point varying on a line. Before this, we state a fairly well known
fact we will need in the sequel. For the convenience of the reader we sketch
its proof.

Lemma 3.1. Assume that C is an algebraic curve of a real projective plane
P2 which contains no imaginary line. Then the set of (real) points of P2 from
which there is an imaginary tangent to C is open.

Proof. Since the imaginary tangents to C remain unaffected after dropping
real lines contained in C, we are allowed to assume that C contains no real or
imaginary line. Then the set of tangents to C from a point p ∈ P2 is just C∗∩p∗.
Take projective coordinates in P2 and the corresponding dual coordinates in P∨

2 .
Assume that there is an imaginary tangent from p = [a0, a1, a2] to C. Up to
renumbering the coordinates we assume a0 = 1, after which p∗ has equation,
in dual coordinates, u0 +a1u1 +a2u2 = 0. If F(u0, u1, u2) = 0 is an equation
of C∗, by the hypothesis F(−a1u1 − a2u2, u1, u2) has a factor u1 − bu2 with
b ∈ C − R and so F(−a1u − a2, u, 1), as a polynomial in u, has the imaginary
root b. By the continuity of the roots (see [8], Th. (1,4), for instance), for any
x1, x2 close enough to a1, a2, F(−x1u − x2, u, 1) has also an imaginary root
and so F(−x1u1 − x2u2, u1, u2) has an imaginary linear factor. This in turn
proves that from all points [1, x1, x2] in a suitable neighbourhood of p in P2,
there is an imaginary tangent to C, as wanted.
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Remark 3.2. As the reader may check, the thesis of 3.1 does not hold for
C : ((x1 − 2x0)

2 + x2
2 − x2

0 )(x2
1 + x2

2 ) = 0, which, indeed, contains imaginary
lines.

Next we recall a few facts about the branches of a real curve at a point which
will be used later on. Our considerations being local, assume that C : h = 0,
h ∈ R[x, y], is an affine algebraic curve, the affine coordinates x, y being
chosen so that the point O ∈ C we are interested in is O = (0, 0). Assume
that h decomposes in irreducible factors

h = uh
α1
1 . . . hαr

r ,

where u, h1, . . . , hr ∈ C{x, y}, hj (0, 0) = 0 and u is invertible. Then there
is an open neighbourhood U of O so that each hj defines in U an irreducible
complex analytic curve γj , in such a way that two different γj share no point
other than O and C ∩ U = ⋃

j γj . Each γj (taken up to restriction to smaller
neighbourhoods of O) is said to be a branch of C. The positive integer αj is
called the multiplicity of γj (as a branch of C). Puiseux’s theorem asserts that,
for a suitable U and each j , the points of γj are given by a parameterization
(Puiseux parameterization)

x = tnj , y = sj (t)

where sj (t) ∈ C{t}. We fix j and write s = sj , n = nj for simplicity. The
intersection multiplicity of the branch γj and a second curve C ′ : h′ = 0 is

[γj · C ′] = ordt h
′(tn, s(t)).

If n′ = ordt s(t), it follows in particular that for all lines � through O but a
single one, it is

[γj · �] = min{n, n′},
which is called the order of γj . The line �′ excepted above is, by definition, a
tangent to C at O, usually called the tangent to γj ; the difference

[γj · �′] − min{n, n′}
is called the class of the branch γj . In particular, if n > n′, the tangent line is
x = 0 and γj has order n′ and class n − n′; in case n < n′, the tangent line
is y = 0 and γj has order n and class n′ − n, while for n = n′ neither of the
coordinate axes is tangent to γj .

The branch γj is called imaginary if and only if it has no real points other
than O in a neighbourhood of O. Otherwise it is called real. In the first case
it is clear that sj (t) /∈ R{t}, while in the second one an easy argument (see [9],
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Lemma 3.3 and the note following it) shows that, up to reversing the orientation
of the first axis, the series s(t) may be taken in R{t}.

Proposition 3.3. Assume that C is an algebraic curve and p∗ a pencil of
lines of a real projective plane P2. Fix an absolute coordinate λ in p∗ and write
�λ the line of p∗ with absolute coordinate λ. Assume that �0 is not tangent to
C at p. For any positive and small enough real number ε:

(1) The number of real intersections of C and �λ is independent of λ for
−ε < λ < 0, and also for 0 < λ < ε. Denote these numbers by ν− and
ν+, respectively, and by ν0 the number of real intersections of C and �0.

(2) ν0 ≥ max{ν−, ν+}.
(3) ν− = ν+ unless either

(a) there is an even order real branch of C which is not tangent to �0

and whose origin belongs to �0 and is not p, or
(b) there is a real branch of C which is tangent to �0 and whose order

and class have the same parity.

Proof. Since �0 is assumed not to be tangent to C at p, neither is any of the
�λ for |λ| small enough, and therefore the number of times p has to be counted
in the intersection of C and �λ is independent of λ. Hence, to prove the claim
it will be enough to consider the numbers of real intersections other than p.

Fix an affine chart of P2 and affine coordinates x, y on it in such a way
that p is the improper point on the y-axis and the line �λ has equation x = λ,
λ ∈ R. In particular �0 is the y-axis. By the above, we will reduce ourselves
to counting the intersections lying in the affine chart. Let h ∈ R[x, y] be an
equation of the affine part of C. If d = degy h, there is a non-zero monomial
a0,dy

d in h, as otherwise C would be tangent to �0 at p. This assures (see for
instance [3], ex. 1.9) that there is ε ∈ R+ for which all points (x, y) of C with
0 < |x| < ε belong to one and only one of the branches of C with origin at a
point of C on the y-axis. We may thus make our counts branch by branch and
just add-up afterwards. Fix a branch γ of C with origin at a (real) point O on
the y-axis.

If γ is imaginary, then it has no real intersection with �λ for λ �= 0.
If, otherwise, γ is real, then, after moving the origin, shrinking ε and taking

−x instead of x (and therefore −λ instead of λ) if needed, we may assume
without restriction that O = (0, 0) and the points of γ are given by a Puiseux
parameterization

x = tn, y = tn
′
u(t)

with u(t) ∈ R{t}, u(0) �= 0. On one hand it is clear that O is the only inter-
section point of γ and �0 : x = 0, their intersection multiplicity at O being n.
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On the other, for λ �= 0 small enough, γ and �λ : x − λ = 0 have n different
complex intersections, all of them simple. A single one of these intersections
is real if n is odd, while for n even there are two real intersections for λ > 0
and no one for λ < 0.

The above clearly proves claims (1) and (2) and shows that claim (3) is
satisfied if all branches are either imaginary or real with n odd. Assume that
there is a real branch γ as above with n even. If n ≤ n′, then γ has order n

and is not tangent to the y-axis (i.e., to �0), which is the case excluded in (a).
If still n is even and n > n′, then γ is tangent to the y-axis, has order n′ and
class n − n′, which has been excluded in (b).

Proposition 3.4. Assume that C is an algebraic curve containing no line
and � a line of a real projective plane P2. Fix an absolute coordinate λ in �

and write pλ the point of � with absolute coordinate λ. Assume that � is not
tangent to C at p0. For any positive and small enough real number ε:

(1) The number of real tangents to C from pλ is independent of λ for −ε <

λ < 0, and also for 0 < λ < ε. Denote these numbers by τ− and τ+,
respectively, and by τ0 the number of real tangents to C from p0.

(2) τ0 ≥ max{τ−, τ+}.
(3) τ− = τ+ unless either

(a) there is an even class real branch of C which has not origin p0

and whose tangent goes through p0 and is not �, or
(b) there is a real branch of C which has origin p0 and whose order

and class have the same parity.

Proof. Since C contains no line, there is a one to one correspondence
γ �→ γ ∗, between the sets of branches of C and its envelope C∗, so that if γ

has origin p, tangent T , order n and class n̄, then γ ∗ has origin T , tangent p∗,
order n̄ and class n (see for instance [13] or [6]). Furthermore, by definition,
the number of times a line � is counted among the tangents to C through a
point p is the multiplicity of intersection [p∗ · C∗]�. After this, it is enough to
apply 3.3 to the envelope C∗.

Remark 3.5. As the reader may check, the numbers of tangents to the cubic
y = x3 from points above and below the x-axis are different, which shows
that the claim 3.4(3) may fail in the excepted case (a). Regarding the need of
exception (b), just consider a smooth conic and let the point move on a line
transverse to it.
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4. The zero-dimensional part of S

In this section we characterize the nested points of S and prove that, the
collinear case excepted, a Siebeck curve has at most a single nested point. We
already know from 2.3 that the nested points of S are real, proper and have
multiplicity one. The characterization of the nested points is as follows:

Proposition 4.1. A point p ∈ E is a nested point of the Siebeck curve S of
a polynomial f if and only if there are lines �1, . . . , �r through p such that:

(1) Each root of f belongs to one of the lines �j and each �j contains at
least two different roots of f .

(2) For each j = 1, . . . , r , p belongs to the harmonic group (in �j ) of the
group of the roots of f lying on �j , taken with their multiplicities as
roots.

Proof. Let p be a nested point. Then the line p∗ of P∨ is part of the
polar P�(Z∗) and therefore, by a well known property of the polar curves,
its intersections with Z∗ are either contact points of tangents to Z∗ from �,
or singular points of Z∗. Since Z∗ is composed of lines missing �, the first
case does not occur and so all the intersections of p∗ and Z∗ are points of P∨
common to at least two components of Z∗; equivalently, the lines of P through
p and one of the roots of f contain at least another root. Take �1, . . . , �r to be
these lines; then condition (1) of the claim is clearly satisfied and condition
(2) follows from 2.4.

For the converse, assume that the conditions of the claim are satisfied and
let ej be the number of distinct roots of f on �j , ej ≥ 2 by the hypothesis. Let
us pay some attention to the intersection multiplicities of p∗ and S ∗ at each
�j . By 2.4, p∗ is part of the tangent cone to S ∗ at �j and so its intersection
multiplicity with S ∗ at �j is strictly higher than the multiplicity of S ∗ at �j ,
which by 2.4 is ej − 1. In other words,

[p∗ · S ∗]�j
≥ ej .

By condition (2) p is not a root of f and therefore no two different �j share a
root; so adding up te above inequalities gives

r∑
j=1

[p∗ · S ∗]�j
≥

r∑
j=1

ej = m.

Bezout’s theorem forces then p∗ ⊂ S ∗ as wanted.

The reader may check the cases of nested points already mentioned in
Section 2.
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Remark 4.2. If no three different roots of f are aligned, the conditions
of 4.1 are satisfied if and only if the roots of f may be arranged in disjoint
unordered pairs of distinct roots in such a way that for each pair, say {zj , zr},
p belongs to the segment zj zr and divides it in the ratio μr/μj . In particular,
in this case, the number of roots m needs to be even and the nested point is
obviously unique, as it is the center of gravity of the roots weighted according
to multiplicities.

Nested points may also appear when the number of roots is odd; then, by
4.2, there should be at least three aligned roots. Next is an example that may
be directly checked using 4.1.

Example 4.3. If the polynomial f has roots −2, −1, 2/3, i, −i, all simple,
then its Siebeck curve has 0 as nested point.

-2 -1.5 -1 -0.5 0.5

-1

-0.5

0.5

1

Figure 2. The Siebeck curve of Example 4.3. The origin is a nested point.

Corollary 4.4. With the notations being as in 4.1, assume that S has a
nested point p and that, up to renumbering, the roots of f lying on the line �j

are z1, . . . , ze, 2 ≤ e < m. If f̄ = f/(z − z1)
μ1 . . . (z − ze)

μe , then f̄ has at
least two roots and the Siebeck curve of f̄ also has p as nested point.

Proof. Direct from 4.1, as the conditions on the other roots remain the
same after dropping z1, . . . , ze.

The uniqueness of the nested point holds in all cases but in the collinear
one, namely:

Proposition 4.5. If f has three non-aligned roots, then its Siebeck curve
has at most one nested point.
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Proof. Assume that p and p′ are different nested points of S . Then the
line � joining them is a multiple tangent to S and therefore, by 2.4, contains at
least three different roots of f . Assume that the roots of f on � are z1, . . . , ze,
e ≥ 3, and take f̄ = f/(z − z1)

μ1 . . . (z − ze)
μe . Since e < m due to the

hypothesis of non-alignement of the roots, 4.4 applies and assures that both p

and p′ are nested points of the Siebeck curve of f̄ . Then still � is a multiple
tangent to the Siebeck curve of f̄ , against the fact that no root of f̄ lies on �.

Corollary 4.6. The Siebeck curve has no one-dimensional part if and only
if the roots of f are aligned.

Proof. The if part has been seen in Example 2.6. For the converse, the
nested points having multiplicity one, if S has a single nested point and no one-
dimensional part, then m = 2 and the claim is obviously satisfied. Otherwise
there are at least two nested points and 4.5 applies.

Proposition 4.7. If not all roots of f are collinear and S has nested point
p, then there are imaginary tangents from p to the one-dimensional part of S .

Proof. Denote by S̃ the one-dimensional part of S and assume that � is
a real tangent to S̃ from p. Then � is a multiple tangent to S and therefore
(2.4) a line joining e ≥ 3 roots of f : it is thus one of the lines �j of 4.1 with
ej ≥ 3. Conversely, any �j with ej ≥ 3 is, by 2.4, an (ej − 1)-fold tangent to
S and hence, the nested point being simple, a (ej − 2)-fold tangent to S̃ . The
number of real tangents from p to S̃ (counted with multiplicities) is thus

r∑
j=1

(ej − 2),

the terms with ej = 2 being of course irrelevant. As above,
∑r

j=1 ej = m and
so the number of real tangents is m − 2r , strictly less than the class m − 2 of
S̃ except for r = 1, which clearly is the collinear case.

5. The topology of S ∗

In this section we will describe the topology of the Siebeck envelope S ∗ in
order to obtain some results relative to numbers of real tangents. The usual
results on the topology of real curves (such as those in [2]) being for the non-
singular case, they do not apply here and so we will proceed directly. Along the
whole section we will be placed on the dual plane P∨ and so, unless otherwise
stated, the words point and line will mean point and line of P∨.

As before we fix f ∈ C[z], with m different roots, z1, . . . , zm, m ≥ 2, the
multiplicity of zj being μj . Since z1, . . . , zm are proper points of P, � /∈ z∗

j ,
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j = 1, . . . , m, and we may take in P∨ homogeneous coordinates u0, u1, u2

so that the third vertex of the reference is [0, 0, 1] = � and the side u0 = 0
contains no intersection point of two different z∗

j . We will consider the affine
chart u0 �= 0 as an affine plane A with coordinates X = u1/u0 and Y = u2/u0

and we conventionally assume that the X-axis and the Y -axis are, respectively,
horizontal, oriented from left to right, and vertical, oriented from bottom to
top. The line �∞ : u0 = 0 is then the improper line of A and we assign to each
of its points [0, u1, u2] absolute coordinate M = u2/u1; in this way the point
� has coordinate 1/0 = ∞ and the lines of A with slope M have as improper
point the point with absolute coordinate M .

Consider again the curve Z∗ = μ1z
∗
1 + · · · + μmz∗

m of P∨. As noted above,
� /∈ z∗

j , j = 1, . . . , m, and so the lines z∗
j are proper and non-vertical. Let ᾱj

be the absolute coordinate of the improper point (or, equivalently, the slope)
of z∗

j , All these coordinates are finite and our choice of the coordinate frame
assures that they are distinct. Thus, up to renumbering the roots of f , we will
assume in the sequel that

(1) ᾱ1 > · · · > ᾱm.

For each x ∈ R, let �x be the vertical line whose points have abscissa x.
For each q ∈ �x , let eq be the number of distinct lines z∗

j through q. Denote
by

α1(x), . . . , αm(x)

the ordinates of the points q ∈ �x lying in one of the lines z∗
1, . . . , z

∗
m, each

repeated eq times and the whole of them numbered so that

(2) α1(x) ≥ · · · ≥ αm(x).

Note that there is no reason for having (x, αj (x)) ∈ z∗
j .

The definition of the Siebeck envelope S ∗ of f was

S ∗ = P�(Z∗) − (μ1 − 1)z∗
1 − · · · − (μm − 1)z∗

m,

P� meaning polar relative to �. In particular S ∗ has degree m − 1 and
� /∈ S ∗, by 2.3. Then, for all x ∈ R, the (maybe imaginary) intersection
points of �x and S ∗ belong to A: let β1(x), . . . , βm−1(x) be their ordinates,
each repeated according to the corresponding intersection multiplicity. Assume
that the improper points of S∗ are q1, . . . , qm−1, and have absolute coordinates
β̄1, . . . , β̄m−1, respectively. By 2.2, the intersection group of S ∗ and �x , the
case x = ∞ included, is

S ∗ · �x = H(Z∗ · �x) +
∑

q∈�x,eq>0

(eq − 1)q.
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Then the separation property of the harmonic group directly gives:

Lemma 5.1. (a) The numbers βj (x) are all real and may be numbered so
that

(3) α1(x) ≥ β1(x) ≥ α2(x) ≥ · · · ≥ αm−1(x) ≥ βm−1(x) ≥ αm(x).

Furthermore, an equality αj−1(x) = βj−1(x) or βj−1(x) = αj (x) holds if and
only if αj−1(x) = αj (x).

(b) The absolute coordinates β̄1, . . . , β̄m−1 are all real and may be numbered
so that

(4) ᾱ1 > β̄1 > ᾱ2 > · · · > ᾱm−1 > β̄m−1 > ᾱm.

From now on, the real numbers β1(x), . . . , βm−1(x) and β̄1, . . . , β̄m−i will
be assumed to be numbered as allowed by 5.1. By the continuity of the algebraic
functions (see for instance [3], Ex. 1.9), each βj (x) is a continuous function
and we may consider the continuous curves

δj = {(x, βj (x)) | x ∈ R}, j = 1, . . . , m − 1.

all contained in S ∗.
For each j , the closure δ̄j of δj in P∨ is obtained by adding to it improper

points of S ∗, precisely those which have absolute coordinates lim
x→+∞βj (x)/x

and lim
x→−∞ βj (x)/x. In order to handle them, we need:

Lemma 5.2. For j = 1, . . . , m, it holds

lim
x→+∞

αj (x)

x
= ᾱj and lim

x→−∞
αj (x)

x
= ᾱm−j+1

.

Proof. For a fixed j and anyx close enough to+∞, all the points (x, αj (x))

belong to one of the lines z∗
r , and each of these lines has a single point (x, αj (x))

belonging to it. Therefore
{

lim
x→+∞

αj (x)

x

}
j=1,...,m

= {ᾱ1, . . . , ᾱm}.

Furthermore, the inequalities (5) give

lim
x→+∞

α1(x)

x
≥ · · · ≥ lim

x→+∞
αm(x)

x
,
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which, compared with the inequalities (1), prove the equalities on the left. The
same argument, this time being

lim
x→−∞

α1(x)

x
≤ · · · ≤ lim

x→−∞
αm(x)

x
,

proves the equalities on the right.

Regarding the βj (x) we have:

Lemma 5.3. For j = 1, . . . , m − 1,

lim
x→+∞

βj (x)

x
= β̄j and lim

x→−∞
βj (x)

x
= β̄m−j .

Proof. As noted above, limx→+∞ βj (x)/x is one of the β̄r . On the other
hand, the inequalities (3) together with Lemma 5.2 give

ᾱj ≥ lim
x→+∞

βj (x)

x
≥ ᾱj+1.

Since the inequalities (4) assure that no β̄r other than β̄j belongs to [ᾱj+1, ᾱj ],
the first group of equalities follows. A similar argument proves the second one.

We have thus m − 1 arcs δ̄1, . . . , δ̄m−1 in P∨, parameterized by x ∈ [−∞,

+∞], the endpoints of each δ̄j being the improper points qm−j and qj . By
5.1, no proper point of δ̄j−1 is placed below the point of δ̄j with same x,
for j = 2, . . . , m − 1, and the absolute coordinates of the improper points
q1, . . . , qm−1, taken in this order, compose a strictly decreasing sequence. It
is also clear that the arcs δ̄1, . . . , δ̄m−1 cover the set of real points of S ∗; their
intersection points are determined next.

Lemma 5.4. For e ≥ 3, a point p ∈ P∨ belongs to exactly e−1 (necessarily
consecutive) of the arcs δ̄j if and only if exactly e lines among z∗

1, . . . , z
∗
m are

going through p.

Proof. Direct from 5.1 and the inequalities (4).

The points p in the conditions of 5.4 are the lines of P containing e different
roots of f , already described as points of S ∗ in 2.4. We know in particular
that all branches of S ∗ at its singular points have order one and no one has
vertical tangent. It follows that their Puiseux parameterizations may be taken
of the form X = a + t , Y = s(t), where a is the abscissa of the origin of the
branch and s ∈ R{t}. The parts of such a branch defined by the inequalities
t ≤ 0 and t ≥ 0 will be called its half-branches.
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Remark 5.5. Locally at any of the (e−1)-fold points p of S ∗, e ≥ 3, each
arc δ̄j is the union of two half-branches of S ∗ which are not necessarily part
of the same branch. For instance, locally at p, from the arcs δ̄j through p, the
one with minimal j is composed of one half of each of the two branches of S ∗
with extremal slope. In particular the δ̄j need not be analytic at the singular
points of S ∗, see Figure 3.

Figure 3. The first (continuous), second (dashed) and odd (dot-dashed) tangential
loops of the Siebeck curve of Figure 1, sketched in an affine chart of P∨ according
to the conventions set at the beginning of Section 5.

For each j with 0 < j < m/2, the arcs δ̄j and δ̄m−j have both the same
endpoints, namely qj and qm−j . They compose thus a closed arc σj , with
improper points qj and qm−j , we name the j -th loop of S ∗ (and also the j -
th tangential loop of S ). If m is even, then δ̄m/2 has coincident endpoints.
Therefore it is a further closed arc with only improper point pm/2. We will call
it the odd loop of S ∗ (and also the odd tangential loop of S ). To unify the
notations, we will write δ̄m/2 = σm/2. The above loops σj , 1 ≤ j < m/2, will
be referred to as the even loops, to distinguish them from the odd one.

Remark 5.6. If no three different roots of f are aligned, then, by 5.4, the
arcs δ̄j and δ̄m−j , j < m/2, composing each even loop are disjoint. Then
the even loops are simple (i.e., with no self-intersections) continuous closed
curves, and obviously so is the odd loop in all cases, provided m is even. If there
are three aligned roots, the arcs composing an even loop may have common
points, which we will call the self-intersecting points of the loop. There is an
obvious occurrence of self-intersecting points in the collinear case, as then the
line of P containing all roots belongs, as a point of P∨, to all the δ̄j .

Remark 5.7. The loops σj , 1 ≤ j ≤ m/2, cover the set of all real points of
S ∗. If no three roots are aligned, they are the connected components of S ∗,
by 5.6.

Remark 5.8. By 5.4, a simple point p of S ∗ lies on a unique loop, both S ∗
and this loop having the same points in a neighbourhood of p. If p is a singular
point of S ∗, then it may lie on many loops, each of them being composed in
a neighbourhood of p by half-branches of possibly different branches of S ∗
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(5.5). Due to this fact, if S ∗ has singular points, the loops introduced here do
not correspond with the connected components of a non-singular model of S ∗
(the circuits composing S ∗, in the terminology of [5]). See Figure 3.

In the sequel we will say that a branch γ of S ∗ is partially contained in the
loop σj if and only if at least one of the half-branches of γ is contained in σj .

For each j , 1 ≤ j < m/2, take Ij to be the set of all improper points
whose absolute coordinate is either ∞, or strictly greater than β̄j , or strictly
smaller than β̄m−j . In other words, from the two open segments determined
by qj , qm−j in �∞, Ij is the one containing �. Then take

Vj = {p = (x, y) ∈ A | y > βj (x)} ∪ {p = (x, y) ∈ A | y < βm−j (x)} ∪ Ij .

It is clear that � ∈ Vj for 1 ≤ j < m/2, and also that Vj−1 ⊂ Vj for
2 ≤ j < m/2.

Lemma 5.9. Any line of P∨ containing a point of Vj contains either two
distinct points or a self-intersecting point of σj .

Proof. The cases of the improper and the vertical lines being clear, we
assume our line � to have the equation y = Mx + N . We have β̄j > β̄m−j ;
assume first M > β̄j . Then

lim
x→+∞(Mx + N − βj (x)) = lim

x→+∞ x

(
M + N

x
− βj (x)

x

)
= +∞,

due to the fact that limx→+∞(βj (x)/x) = β̄j (5.3). Similarly,

lim
x→−∞(Mx + N − βj (x)) = −∞.

This shows that � has at least one point (x, y) with y = βj (x), and so belonging
to δj . The same equalities hold if βm−j (x) is taken instead of βj (x), proving
that � ∩ δm−j �= ∅, and hence the claim in this case.

A similar argument covers the case M < β̄m−j , so we will assume β̄m−j ≤
M ≤ β̄j in the sequel. Then, due to these inequalities, �∩ Ij = ∅ and the point
of � in Vj is a proper one, say with coordinates x0, y0, and so that either

(5) y0 = Mx0 + N > βj(x0) or y0 = Mx0 + N < βm−j (x0).

We will assume that the first inequality holds. The other case may be dealt with
similarly, using δ̄m−j instead of δ̄j . If M < β̄j , arguing as above

(6) lim
x→+∞(Mx + N − βj (x)) = lim

x→+∞ x

(
M + N

x
− βj (x)

x

)
= −∞
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while for β̄m−j < M ,

(7) lim
x→−∞(Mx + N − βj (x)) = lim

x→−∞ x

(
M + N

x
− βj (x)

x

)
= −∞.

If β̄m−j < M < β̄j , then both (6) and (7) hold and, together with the first
inequality in (5), they assure that there are two different points of δ̄j on �. In
case of being β̄m−j = M or M = β̄m, then the improper point of � belongs to
δ̄j and the existence of a second intersection point results as above from either
(6) or (7), one of them being still true because β̄j �= β̄m−j .

Lemma 5.10. If m is even, then any line of P∨ contains at least one point
of the odd loop σm/2.

Proof. Left to the reader, who may proceed like in 5.9.

Proposition 5.11. Any real line of P∨ containing a point of V1 has a total
of m − 1 real intersection points with S ∗, each counted as many times as the
number of real tangents to S ∗ at the intersection point.

Proof. Let � be a line through a point in V1: since this point does not
belong to S ∗, � �⊂ S ∗. By Lemmas 5.9 and 5.10, adding up the numbers of
intersection points of � and each of the loops composing S ∗, self-intersecting
points counted twice, gives a total of at least m − 1 intersection points. Let us
check how many times each point p ∈ � ∩ S ∗ appears repeated in this count.
Let τp be the multiplicity of S ∗ at p (τp = ep − 1 if p is singular); since the
real singularities of S ∗ are ordinary (2.4), τp is also the number of tangents
to S ∗ at p. By 5.4, p belongs to exactly τp of the arcs δ̄j , that is to τp loops if
we agree in counting twice the loops for which p is a self-intersecting point.
Thus, it turns out that

m − 1 ≤
∑
p

τp ≤
∑
p

[� · S ∗]p ≤ m − 1,

where the summations are over the real points p ∈ �∩S ∗ and the last inequality
is due to Bezout’s theorem. Hence

m − 1 =
∑
p

τp,

as wanted.

Corollary 5.12. No real line of P∨ containing a point of V1 has an ima-
ginary intersection with S ∗, or is tangent to it.
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Proof. For each p ∈ S ∗, still denote by τp the multiplicity of S ∗ at p; as
recalled above, τp is the number of tangents to S ∗ at p. If � is a line containing
a point of V1, it is not contained in S ∗ and Bezout’s theorem gives

m − 1 ≥
∑

p∈�∩S ∗
[� · S ∗]q ≥

∑
p∈�∩S ∗

τp = m − 1,

where the summations are over real points and the last equality is due to 5.11.
The two inequalities above are thus equalities: the first one guarantees the
absence of imaginary intersections, while the second one assures that there are
no contact points.

Remark 5.13. The count made in the proof of 5.11 shows that, by counting
twice the self-intersecting points, a line containing a point of V1 contains
exactly two points of each even loop, and one point of the odd loop if m is
even.

We will say that a line t of P∨ is tangent to the loop σj of S ∗ at a point
p ∈ σj , if and only if t is tangent to a branch of S ∗ at p partially contained
in σj . We are interested in the tangents to the first loop σ1 only. For them, the
facts quoted below for further reference are quite clear:

Remark 5.14. If p ∈ σ1 is a singular point of S ∗, then there are just two
tangents to σ1 at p: these are the tangents to S ∗ at p with extremal slopes. If,
otherwise, p is a non-singular point of S ∗, then the tangent to S ∗ at p is the
only tangent to σ1 at p.

Still regarding the first loop, we have:

Lemma 5.15. If not all roots of f are collinear and S has p as a nested
point, then p∗ and the first loop of S ∗ have empty intersection.

Proof. Since the collinear case has been excluded, we may pick two dif-
ferent lines of P, �1, �2, among those which, according to 4.1, go through p

and contain the roots of f . Then �1 ∈ p∗ and there are two or more lines z∗
j

going through �1. From them let z∗
j1

and z∗
j2

be those with minimal and max-
imal slope. If the slopes of p∗, z∗

j1
and z∗

j2
are ε, ε1, ε2, respectively, then, by

condition (2) of 4.1, ε1 < ε < ε2. Similarly, there are z∗
j3

and z∗
j4

going through
�2, with extremal slopes ε3 and ε4, so that ε3 < ε < ε4. Fix any x ∈ R and let
qx = (x, h(x)) be the point of p∗ with abscissa x. On two of the lines selected
above the points with abscissa x have their ordinates greater than h(x), and at
least one of these ordinates is strictly greater than h(x). Then, by 5.1, there is
j for which βj (x) > h(x) and so β1(x) > h(x). This proves that the points
on p∗ and δ̄1 with abscissa x are different. The same happens with the points
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on �∞, as by 5.1,(b) there is one β̄j between ε1 and ε3 which assures β̄1 > ε.
As a result δ̄1 ∩ p∗ = ∅. A similar argument, this time using points below p∗,
shows that δ̄m−1 ∩ p∗ = ∅ and hence completes the proof.

Next comes a similar result to 5.11, this time relative to the tangents to the
first loop; we will make use of it later on.

Proposition 5.16. Assume not to be in the collinear case and that p is a
point of σ1 which has multiplicity τp on S ∗. Let t be a line tangent to σ1 at
p. Then the number of real intersection points of t and S ∗ other than p is
m − τp − 2, each intersection point q being counted as many times as the
number of real tangents to S ∗ at q.

Proof. Note first that t cannot be contained in S ∗, as in such a case it would
be t = q∗, q a nested point, and p ∈ t ∩ σ1, against 5.15. Exclude for a while
the cases m = 3, 4. Then V2 is defined and we claim that t contains points
of it. Indeed, this is clear if p is a non-singular point of S ∗, as then p ∈ V2.
Otherwise the slope of t is extremal among the slopes of the tangents to S ∗ at
p (5.14), which assures that all points in one of the half-lines composing t −p

and close enough to p belong to V2.
According to 5.9 and 5.10, we have at least two real intersection points of

t with each of the even loops from the second one onwards, self-intersecting
points being counted twice, and at least a further one with the odd loop in case it
exists. This makes a total of at least (maybe repeated) m−3 intersection points.
Since this is clearly also true for m = 3, 4, we remove the above restriction
m > 4 from now on. From the intersection points of t and the loops other than
σ1, τp −1 are equal to p, as there are τp −1 arcs δ̄j , 1 < j < m−1 containing
p. As in the proof of 5.11, each q �= p, q ∈ t ∩ S ∗, appears at least τq times
among these intersection points, τq being the multiplicity, and also the number
of tangents, of S ∗ at q. Then,

m− τp −2 = m−3− (τp −1) ≤
∑

q∈t∩S ∗
q �=p

τq ≤
∑

q∈t∩S ∗
q �=p

[t ·S ∗]q ≤ m− τp −2,

where the last inequality follows from Bezout’s theorem and the fact that t is
tangent to S ∗ at p and therefore [t · S ∗]p ≥ τp + 1.

Corollary 5.17. All branches of S ∗ partially contained in the first loop
have class one and share its tangent with no other branch of S ∗.

Proof. Assume that the branch has origin p and tangent t . Then [t ·S ∗]p ≥
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τp + 1. On the other hand, from Bezout’s theorem and 5.16,

[t · S ∗]p ≤ m − 1 −
∑

q∈t∩S ∗
q �=p

[t · S ∗]q ≤ m − 1 −
∑

q∈t∩S ∗
q �=p

τq

= m − 1 − (m − τp − 2) = τp + 1.

It follows then that [t · S ∗]p = τp + 1 and the first claim is proved. This
equality also proves that no other branch of S ∗ with origin at p has tangent t ,
which is also clear from being p either a simple or an ordinary multiple point
of S ∗. The same equality and 5.16 give

[t · S ∗]p +
∑

q∈t∩S ∗
q �=p

τq = m − 1.

Using Bezout’s theorem once again, this assures that [t · S ∗]q = τq for any
q ∈ ∩S ∗, q �= p, and so t is not tangent to S ∗ at any of these q.

6. Lines tangent to S

The pencils of parallel lines of P are the lines of P∨ through �. Using the
affine chart A and the conventions set in section 5, the pencils of parallel lines
of E are the improper line and the vertical lines of A. The improper point of
each vertical line being �, we see that the affine structure that A induces on
a vertical line is just its natural affine structure as a pencil of parallel lines.
In particular, the betweenness relation on points of a vertical line agrees with
their betweenness as parallel lines. The second affine coordinate of the points
of each vertical line may be taken as an affine coordinate on the line seen as
a pencil of parallel lines of E. Also the absolute coordinate taken on �∞ is an
affine coordinate in �∞ seen as a pencil of parallel lines.

We call a tangent � to an augmented curve C extremal if and only if � is a
proper line and does not lie between other two proper lines tangent to C and
parallel to �.

By the above and the definition of the loops, we see that the extremal
tangents to S in the direction of an improper point p are the intersections of
p∗ and the first tangential loop of S . The number of distinct extremal tangents
in a given direction is exactly two, but for a special situation arising in the
collinear case only, namely:

Lemma 6.1. There are exactly two distinct extremal tangents to S in a given
direction w, but for the case in which a line in the direction w contains all
roots of f . Then such a line is the only extremal tangent in the direction w.
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Proof. By 5.14, there are two distinct extremal tangents for each direction
w, but for the case in which a line � in the direction w is a self-intersecting
point of the first loop. If this is the case, by 5.1, � belongs to all loops and is a
self-intersecting point of the even ones; by 5.4, this assures that � contains all
roots of f , after which the rest of the claim is clear.

In the sequel, the only extremal tangent in the exceptional case of 6.1 will
be taken as a pair of coincident extremal tangents.

According to its definition in Section 5, the open set V1 ⊂ P∨ is composed
of the improper line and the proper lines lying outside the extremal tangents
in their directions. The lines � ∈ V1 will be called outer lines in the sequel. We
will see in 6.3 below that they do not intersect S in real points. This is false
in general, even for bounded curves, the astroid providing an easy example.

Using these terms, by duality, 5.11, 5.12 and 5.15 translate into:

Proposition 6.2. The number of real tangents to S from any point of any
outer line is m − 1, each tangent counted as many times as the number of its
different real contact points.

Corollary 6.3. No real point of an outer line belongs to S or has an
imaginary tangent to S through.

Proposition 6.4. If not all roots of f are aligned and S has p as nested
point, then no extremal tangent to S goes through p.

We close this section presenting a further property of the Siebeck curve. As
in former cases, it directly follows from the results of Section 5.

Proposition 6.5. Both the contact points of the simple extremal tangents
to S and the extremal contact points of the multiple extremal tangents to S

are non-singular points of the one-dimensional part of S .

Proof. By 6.4, a contact point of an extremal tangent is not a nested point,
and so it belongs to the one-dimensional part of S . Assume that q is an extremal
contact point of an extremal tangent t to S (the only contact point if t is a
simple tangent). Then t belongs to the first tangential loop σ1 of S and q∗ is
a tangent to S ∗ at t with extremal slope. Hence, by 5.14, q∗ is a tangent to
σ1. By 5.17, q∗ has no other contact point with S∗ and the only branch of S ∗
tangent to q∗ has class one. By duality, this assures that there is a single branch
of the one-dimensional part of S with origin at q and that the multiplicity of
this branch is one, hence the claim.
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7. First location of roots

We are now able to prove Linfield’s location of roots. The situation in the
collinear case being clear (see Example 2.6), we exclude it for simplicity.

Theorem 7.1 (Linfield). The complex field C being viewed as an Euclidean
plane, assume that f ∈ C[z] has different roots z1, . . . , zm, m ≥ 3, non-
collinear and with respective multiplicities μ1, . . . , μm. Fix an arbitrary dir-
ection w on C and consider the group L = μ1�w,1 + · · ·+μm�w,m of the lines
�w,j projecting the roots zj in the direction w, each with multiplicity equal to
the sum of the multiplicities of the roots lying on it. Let �w, �′

w be the extremal
lines among those in the direction w which either belong to the harmonic group
of L or contain two or more roots of f . Then all roots of df/dz which are not
roots of f lie in the open stripe bounded by �w and �′

w.

Proof. By 6.3 and 3.1, the points from which there are imaginary tangents
to the one-dimensional part S̃ of S belong to the open stripe �w bounded by
the extremal tangents to S in the direction w. Thus, by 4.7, a nested point of
S belongs to �w. The same is true for the foci of S̃ as, by its definition, the
lines joining them to the cyclic points are tangent to S̃ . All foci of S belong
thus to �w.

Now, on one hand, the roots of df/dz other than the roots of f are the foci
of S by 2.1. On the other, by 2.2, the extremal tangents to S in the direction
w are the lines �w, �′

w in the claim. Putting these facts all together completes
the proof.

Remark 7.2. If not all roots are aligned, notations are as in 7.1, still �w is
the open stripe bounded by �w, �′

w and we take � = ⋂
w �w, then 7.1 asserts

that all roots of df/dz other than the roots of f belong to �.

Remark 7.3. With the notations being as in 7.1, if the lines �w,j have
equations ax + by + cj = 0 and we take g(X) = ∏

j (X − cj )
μj , then the lines

�w, �′
w are the extremal ones among those with equations ax + by + c = 0,

for c a root of dg/dX.

A couple of facts seen while proving 7.1 are worth separate claims, namely:

Corollary 7.4 (of the proof of 7.1). If not all roots of f are aligned and
the notations are as in 7.1, then �w, �′

w are the extremal tangents to S in the
direction w.

Corollary 7.5 (of the proof of 7.1). If not all roots of f are aligned, then
the foci of S lie in the open stripe bounded by any pair of extremal tangents
to S .

Next we compare Linfield’s and Gauss-Lucas’ locations. We need:



36 eduardo casas-alvero

Lemma 7.6. Assume that a line � of E joins two different roots of f . Then � is
an extremal tangent to S if and only if one of the open half-planes determined
by � contains no root of f or, equivalently, if and only if � contains a side of
the boundary of the convex hull of the roots of f .

Proof. The line � is tangent to S by 2.1. By 2.2, the tangents to S parallel
to � either are lines joining two roots or lie between two lines projecting roots
in the direction of �, and there is one of the latter for each pair of consecutive
distinct lines projecting roots, hence the claim.

Proposition 7.7. If not all roots of f are aligned, then the set � of 7.2 is
strictly contained in the interior of the convex hull of the roots of f .

Proof. Let s1, . . . , sr be the lines containing one of the sides of the convex
hull of the roots. For each j , sj is an extremal tangent to S by 7.6 and hence
(7.4) one of the lines �w, �′

w of 7.1, say sj = �w. From the two open half-planes
determined by sj , let Hj be the one containing the roots of f lying not on sj .
By the definition of �w, �′

w, Hj contains �′
w and therefore also the open stripe

�w. Since H1 ∩ · · · ∩ Hr is the interior of the convex hull of the roots, the
claimed inclusion follows.

Assume that w a direction other than those of the lines joining two roots of
f . Assume also that the extremal lines projecting the roots of f in the direction
w are going through the roots zj and zj ′ . Then, by the separation property of
the harmonic group, zj and zj ′ lie outside the closed stripe bounded by �w, �′

w,
which shows that the above inclusion is strict.

We close this section by presenting a characterization of the set � in terms
of the Siebeck curve:

Proposition 7.8. The set �, defined in 7.2, equals the interior of the convex
hull of the Siebeck curve S .

Proof. For this proof, we place ourselves in the Euclidean plane E of the
complex numbers. The reader is referred to any book on convex sets, for
instance [11], for the definitions and results regarding separation used below.
Let CH(S ) be the convex hull of S . We already know ([4], 8.6) that S has no
improper points and therefore is compact, after which CH(S ) is closed. If s is
an extremal tangent to S , then let H̄s be the closed half-plane with boundary
s containing all the points of S (6.3). Since S is convex, H̄s contains also
CH(S ). Furthermore the boundary s of H̄s contains a point of CH(S ), namely
any of the contact points of s. This proves that H̄s is a supporting hyperplane of
CH(S ). If s is not an extremal tangent, then it lies either between or outside the
extremal tangents parallel to it. In the first case there are points of CH(S ) (the
contact points of the extremal tangents) on both sides of s. In the second case, s
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contains no point of CH(S ) as, by 6.3, CH(S ) is contained in the closed stripe
bounded by the extremal tangents parallel to s. As a consequence, none of the
half-planes determined by s supports CH(S ). The supporting half-planes of
CH(S ) are thus just the H̄s for s an extremal tangent to S. Then, as for any
closed convex set, CH(S ) is the intersection of its supporting half-planes ([11],
1.3.5), that is,

(8) CH(S ) =
⋂
s∈σ1

H̄s .

If we take Hs = H̄s − s, then, on one hand, directly from its definition,

(9) � =
⋂
s∈σ1

Hs.

On the other, an easy argument using equality (8) and the fact that any point
in the boundary of a closed convex set belongs to the boundary of one of its
supporting half-planes ([11], 1.3.2), allows to prove that the interior of CH(S )

is
⋂

s∈σ1
Hs which, together with (9), proves the claim.

8. Second location of roots

From now on we assume not to be in the collinear case. As recalled above, the
Siebeck curve S has no improper (real) points ([4], 8.6). Among the connected
components of P − S there is thus a well determined one containing the
improper line �: we call it the exterior of S , denoted E(S ) in the sequel. If
E(S ) is the closure of E(S ), the second location of the roots of the derivative
is:

Theorem 8.1. No root of df/dz other than the roots of f belongs to E(S ).

Proof. Let m′ be the class of the one-dimensional part S̃ of S : either
m′ = m − 2, if S has a nested point, or, otherwise, m′ = m − 1. Let p

be a point in E(S ); it may be joined to a point q on the improper line by a
piecewise linear path � made by finitely many closed segments of line disjoint
with S . In particular exception (b) of 3.4(3) does not apply to any point of
�. Neither does exception (a) of 3.4(3), as S ∗ has no real singularities other
than ordinary ones (2.4) and so all real branches of S̃ have class one. Thus,
each segment composing � may be covered by finitely-many open intervals,
each satisfying the claims of 3.4 relative to S̃ . On the other hand, by 6.2, the
maximal number m′ of real tangents from a point to S̃ is reached at all points
in an open neighbourhood of q. Then repeated applications of 3.4, always with
ν− = ν0 = ν+ due to the maximality of m′, prove that there are m′ real tangents
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from p to S̃ , and so no imaginary one. The same is true for any p ∈ E(S ), by
3.1. Thus, arguing as the proof of 7.1, no p ∈ E(S ) may be a root of df/dx

other than the roots of f .

For future reference let us retain:

Corollary 8.2 (of the proof of 8.1). There are no imaginary tangents to
the one-dimensional part of S from any point in E(S ).

The present location is not worse than the one of Section 7:

Proposition 8.3. It holds � ⊃ P − E(S ).

Proof. For each direction w, the set of all points on outer lines in the
direction w is connected, contains � and, by 6.3, is disjoint with S . It is thus
contained in E(S ) and therefore its closure P − �w is contained in E(S ). By
the arbitrariness of w, P − � ⊂ E(S ), hence the claim.

We will pay some attention to the case in which no side of the convex hull
of the roots of f contains three different roots, as it will turn out to be the case
in which the inclusion of 8.3 is an equality, and therefore the location of 8.1
is equivalent to Linfield’s one. The outer part of the Siebeck curve has, in this
case, nice regularity properties, namely:

Proposition 8.4. If no side of the convex hull of the roots of f contains
three different roots, then the contact points of the extremal tangents to the
Siebeck curve of f are the points of an analytic, smooth, closed and convex
curve of E which is a connected component of S and whose interior (as a
Jordan curve) contains all the other connected components of S .

Proof. By 2.4 the only singularities of S ∗ are the lines containing three or
more roots, and from these, by 7.6, the extremal tangents are those containing a
side of the convex hull of the roots. The hypothesis is thus satisfied if and only
if no extremal tangent is a singular point of S ∗ (that is, a multiple tangent).
The extremal tangents being the points of the first loop σ1 of S ∗, σ1 contains
no singular point of S ∗ and in particular shares no point with any of the other
loops. Therefore σ1 is a connected component of S ∗ and also a smooth and
closed analytic curve of P∨.

Fix homogeneous coordinates x0, x1, x2 on P, their dual ones u0, u1, u2 on
P∨ and an equation F = 0, F ∈ R[u0, u1, u2], of S ∗. It is well known that the
relations

x0 = ∂F

∂u0
, x1 = ∂F

∂u1
, x2 = ∂F

∂u2

define a rational map
� : P∨ −→ P
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which maps each non-singular point of S ∗ to its contact point (as a simple
tangent to S ) and remains undefined at the singular points of S ∗ (the dual
assertion is more usual, see [13], V.8.1 or [6], 5.3 ). Since σ1 contains no
singular point of S ∗, � restricts to an analytic map defined in an open set
containing σ1 and S1 = �(σ1) is the set of contact points of the extremal
tangents to S . Furthermore, have seen in 5.17 that no point of σ1 is a flex of
S ∗, therefore the Hessian determinant

∣∣∣∣ ∂2F

∂ui∂uj

∣∣∣∣
does not vanish at any point of σ1. A straightforward computation relates the
above Hessian to the Jacobian of � at each p ∈ σ1 and proves the restriction
of � to be a local isomorphism at each point of σ1. S1 = �(σ1) is thus a
smooth, closed and connected analytic curve of E contained in S . Since S

has no flexes (2.5), S1 is in addition convex.
We know that all points of S1 are non-singular for S (6.5), after which

there is a single branch of S at each q ∈ S1. By the curve selection lemma
([2], 8.1.13, for instance) no q ∈ S1 may then be adherent to S − S1, and S1

is a connected component of S .
Jordan’s curve theorem asserts that P − S1 has two connected components,

both with boundary S1. From them, one contains the improper line and is
called the exterior of S1 and the other is called the interior of S1; they will be
denoted Ext(S1) and Int(S1), respectively. The set S1 ∪Int(S1) is then closed
and convex, and its supporting half-planes are those with boundary a tangent
to S1 and containing S1 ([1], 9.6.2, for instance). Since the tangents to S1 are
the extremal tangents to S , arguing as in the proof of 7.8, � = Int(S1) and
so, by 6.3, all points of S − S1 lie in Int(S1), which completes the proof.

If three roots lie on the same side of the boundary of the convex hull of the
roots of f , then, as shown by the example of figure 1, the structure of the set
of contact points of the extremal tangents is more complicated: besides being
non-connected and having isolated points, its points do not need to belong all
to the same circuit of S .

Corollary 8.5 (of the proof of 8.4). If no side of the boundary of the convex
hull of the roots of f contains three aligned roots, then � = P − E(S ).

Proof. In the proof of 8.4 we have seen that � = Int(S1). Using 8.4, it is
direct to check, from their definitions above, that E(S) = Ext(S1), hence the
claim.

Before proving the converse of 8.5 we need:
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Lemma 8.6. Any simple point of the one-dimensional part of S is adherent
to P − E(S ).

Proof. Assume that γ is a branch of a real plane algebraic curve with
origin at a point O and both multiplicity and class equal to one. Then, in
suitable affine coordinates with origin O, it may be represented by a Puiseux
parameterization

x = t, y = at2 + · · ·
with a real and non-zero. It is then clear that there are lines parallel and ar-
bitrarily close to the tangent to γ , y = 0, whose intersection with γ contains
a pair of imaginary points. Our hypothesis on γ being selfdual, the dual of
the above assures that there exist a certain line � through O and points q ∈ �,
arbitrarily close to O, so that there are imaginary tangents to γ from each point
q.

Since S has no flexes, the above applies to the only branch of the one-
dimensional part S̃ of S at any of its non-singular points p, assuring that
there are points arbitrarily close to p from which there are imaginary tangents
to S̃ ; since these points belong to P − E(S ) due to 8.2, the claim is proved.

Now, for the converse:

Proposition 8.7. If three roots of f lie on the same side of the boundary of
the convex hull of all roots of f , then the set P − E(S ) is not convex and so,
in particular, � �= P − E(S ).

Proof. The hypothesis assures the existence of a multiple and extremal
tangent � to S . Let p1, p2 be its extremal contact points, obviously p1 �= p2.
By its definition, S does not contain lines and therefore there are finitely many
points p1, . . . , pr of S on �. Pick a point q in the segment with endpoints
p1, p2 and not in S . Since the union of all the outer lines parallel to � and
�−{p1, . . . , pr} is a connected set, disjoint with S and containing both q and
�, q ∈ E(S) and so there is an open neighbourhood U of q contained in E(S).
By 8.6 we may then choose points p′

1, p
′
2 ∈ P − E(S ) close enough to p1 and

p2, respectively, in order to have the intersection of U and the segment with
endpoints p′

1, p
′
2 non empty. This shows that P − E(S ) is not convex.
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