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TENSOR PRODUCTS OF POSITIVE MAPS
OF MATRIX ALGEBRAS

ERLING STØRMER

Abstract
We give conditions for when tensor products of positive maps between matrix algebras are positive
maps. Necessary and sufficient conditions are given.

Introduction

Even though positive linear maps appear in many situations in operator algebras
and quantum information theory, main attention has so far been on completely
positive maps. One reason for this is that tensor products of completely positive
maps are positive, while this is false for general positive maps. In the present
paper we shall consider the problem of when the tensor product of two positive
maps is positive in the case when the underlying Hilbert spaces are finite
dimensional.

It turns out that the problem is intimately related to symmetric mapping
cones and their dual cones, see below for definitions. More specifically, if C is
a symmetric mapping cone in P(H) – the positive linear maps of the bounded
operators B(H) onH into itself – then a map φ belongs to the dual cone C o of
C if if and only ifψ⊗φ is positive for allψ ∈ C . Indeed, it suffices to know that
ψ⊗φ(p) ≥ 0, where 1

n
p, n = dimH , is the density matrix for the maximally

entangled state. As an application we show that ifK and L are two other finite
dimensional Hilbert spaces, and ψ :B(K) → B(H), φ:B(L) → B(H), then
ψ ⊗ φ is positive when ψ is C -positive, and φ is C o-positive.

We now recall the main concepts encountered in the sequel. By a mapping
cone C we mean a closed subcone of P(H) such that if φ ∈ C and α, β ∈
CP(H) – the completely positive maps inP(H), thenα◦φ ∈ C andφ◦β ∈ C .
We say C is symmetric if φ ∈ C implies both φ∗ ∈ C and φt = t ◦ φ ◦ t ∈ C ,
where φ∗ is the adjoint map of φ in the Hilbert-Schmidt structure on B(H),
viz. Tr(φ(a)b) = Tr(aφ∗(b)) for a, b ∈ B(H), and t is the transpose map
on B(H) with respect to an orthonormal basis e1, . . . , en for H , and Tr is the
usual trace on B(H).
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If φ:B(K) → B(H) then the functional φ̃ on B(K)⊗ B(H) defined by

φ̃(a ⊗ b) = Tr(φ(a)bt ),

plays an important role in the theory. For example, φ̃ is positive if and only if
φ is completely positive [6]. By [7] and [8] its density matrix is the transpose
Ctφ of the Choi matrix Cφ for φ, defined by

Cφ =
n∑

i,j=1

eij ⊗ φ(eij ) = ι⊗ φ(p),

where ι is the identity map and p = ∑
ij eij ⊗ eij , and (eij ) is a complete set

of matrix units for B(H) such that eij ek = δjkei , see [1].
Let C be a mapping cone in P(H). Then its dual cone is defined by

C o = {φ ∈ P(H) : Tr(CφCψ) ≥ 0,∀ψ ∈ C }.
If C is symmetric, then by [9] C o is also a symmetric mapping cone. We refer
to the books [2] and [3] for the theory of completely positive maps.

Most of this work was done during a visit to Institute Mittag-Leffler (Djurs-
holm, Sweden).

1. The main results

Let π :B(H) → B(H) be defined by π(a ⊗ b) = bta. As in [8] Lemma 10 it
follows by straightforward computation that if φ ∈ P(H) then

(1) φ̃ = Tr ◦ π ◦ (ι⊗ φ∗t ).

In particular

(2) ι̃(x) = Tr ◦ π(x) = Tr(Cιx) = Tr(px).

Thus
φ̃(x) = Tr ◦ π(ι⊗ φ∗t (x))

= Tr(p(ι⊗ φ∗t )(x))
= Tr(ι⊗ φt(p)x).

Lemma 1. Let ψ, φ:B(H) → B(H). Then

(i) (φ ◦ ψ)(̃x) = Tr(ψ∗ ⊗ φt(p)x),∀x ∈ B(H ⊗H).

(ii) ψ∗t ⊗ φ(p) = ι⊗ (φ ◦ ψ)(p).
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Proof. By equations (1) and (2)

(φ ◦ ψ) ˜(a ⊗ b) = Tr ◦ π(ι⊗ (φ ◦ ψ)∗t (a ⊗ b))

= Tr ◦ π(a ⊗ (ψ∗ ◦ φ∗(bt ))t )
= Tr(a(ψ∗ ◦ φ∗)(bt ))
= Tr(ψ(a)φ∗(bt ))
= Tr ◦ π(ψ(a)⊗ φ∗t (b))
= Tr(pψ(a)⊗ φ∗t (b))
= Tr(ψ∗ ⊗ φt(p)(a ⊗ b)),

proving (i). Using equations (1) and (2) we also have

(φ ◦ ψ)(̃x) = Tr(p(ι⊗ (φ ◦ ψ)∗t (x)) = Tr(ι⊗ (φ ◦ ψ)t (p)x).
Thus by (i) we have

ψ∗ ⊗ φt(p) = ι⊗ φt ◦ ψt(p).

Since this holds for all φ and ψ , it also holds for all φt and ψ∗. Thus

ψ∗t ⊗ φ(p) = ι⊗ φ ◦ ψ(p),
completing the proof of the lemma.

We can now prove our main result. Note that the equivalence (i) ⇔ (ii) is
also proved in [4].

Theorem 2. Let φ ∈ P(H). Let C be a symmetric mapping cone in P(H).
Then the following conditions are equivalent.

(i) φ ∈ C o – the dual cone of C ,

(ii) φ ◦ ψ is completely positive for all ψ ∈ C ,

(iii) ψ ⊗ φ is positive for all ψ ∈ C ,

(iv) ψ⊗φ(p) ≥ 0 for allψ ∈ C , wherep is as before the maximal entangled
state.

Proof. Clearly (iii) implies (iv). Since φ ◦ψ is completely positive if and
only if ι⊗φ◦ψ(p) ≥ 0, by Lemma 1 φ◦ψ is completely positive if and only if
ψ∗t ⊗ φ(p) ≥ 0. Since C is symmetric, ψ ∈ C if and only if ψ∗t ∈ C . Hence
(ii) is equivalent to (iv). By [9] Thm. 2 a map belongs to C if and only if it is
C -positive. Hence by [8] Thm. 1, φ ∈ C o if and only if ψt ◦ φ is completely
positive for all ψ ∈ C . Since C is symmetric this holds if and only if ψ ◦ φ is
completely positive for all ψ ∈ C , hence if and only if φ∗ ◦ψ∗ = (ψ ◦ φ)∗ is
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completely positive for all ψ∗ ∈ C , hence if and only if φ∗ ◦ ψ is completely
positive for all ψ ∈ C . But C o is symmetric by [9], Thm. 1, so φ ∈ C o if and
only if φ∗ ∈ C o. Thus (i) ⇔ (ii).

It remains to show (i) implies (iii). For this let (ei) be an orthonormal basis
for H such that eij ej = ei , so 1

n
p is the projection onto the subspace spanned

by
∑

i ei ⊗ ei . Let x ∈ H ⊗H . Then x = ∑
i ei ⊗ xi with xi ∈ H . Then there

is v ∈ B(H) such that vei = xi , hence 1 ⊗ v
(∑

i ei ⊗ ei
) = x. Let q be the

projection onto Cx. Then it follows that Ad(1 ⊗ v)(p) = λq for some λ > 0.
We have just shown that given a 1-dimensional projection q ∈ B(H) there

exists v ∈ B(H) such that

1 ⊗ Ad v

(
1

n
p

)
= q.

Assuming (i) φ ◦ Ad v ∈ C o, since C o is a mapping cone. By Lemma 1

ψ∗t ⊗ (φ ◦ Ad v)(p) = ι⊗ φ(Ad v ◦ ψ)(p).
Since Ad v◦ψ ∈ C , by the equivalence of (i) and (ii) φ◦Ad v◦ψ is completely
positive, hence

ι⊗ φ ◦ Ad v ◦ ψ(p) ≥ 0.

Thus by the choice of v,ψ∗t ⊗φ(q) ≥ 0. Since q is an arbitrary 1-dimensional
projection, ψ∗t ⊗φ is positive. Again, since C is symmetric, ψ ⊗φ is positive
for all ψ ∈ C . Thus (i) implies (iii), and the proof is complete.

Recall that a map φ:B(K) → B(H) is C -positive for a mapping cone C if
the functional φ̃ is positive on the cone {x ∈ B(K ⊗H) : ι⊗ α(x) ≥ 0,∀α ∈
C }. By [9], Thm. 2 or [6], Thm. 3.6, this is equivalent to φ belonging to the
cone generated by maps of the form α ◦ β with α ∈ C and β:B(K) → B(H)

completely positive. Recall from [9], Thm. 1, that if C is symmetric, so is C o.
Using these facts we can extend the implication (i) ⇒ (iii) in Theorem 2 to the
following more general case.

Corollary 3. Let K,L and H be finite dimensional Hilbert spaces. Let
C be a symmetric mapping cone in P(H). Suppose ψ :B(K) → B(H) is
C -positive, and φ:B(L) → B(H) is C o-positive. Then ψ ⊗ φ:B(K ⊗L) →
B(H ⊗H) is positive.

Proof. By the above discussion it suffices to show the corollary for ψ and
φ of the form ψ = α ◦ β, α ∈ C , β:B(K) → B(H) completely positive, and
φ = γ ◦ δ with γ ∈ C o, δ:B(L) → B(H) completely positive. Thus

ψ ⊗ φ = (α ⊗ γ ) ◦ (β ⊗ δ),
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is positive, since β ⊗ δ is completely positive and α ⊗ γ is positive by Theo-
rem 2. The proof is complete.

Remark. If ψ :B(K1) → B(H1) is k-positive, i.e., ψ ∈ Pk in the notation
of [5], and φ:B(K2) → B(H2) is k-superpositive, i.e., φ ∈ SPk is of the form∑

i Ad Vi, Vi :K2 → H2, then they remain the same as maps into B(H) if H
is a Hilbert space containing H1 and H2 as subspaces. Since P ok = SPk , see
e.g. [5], it follows from Corollary 3 that ψ ⊗ φ is positive.

In Theorem 2 it is sometimes enough to consider only one map ψ ∈ C to
conclude that φ ∈ C o. The next corollary is of this type.

Corollary 4. Let ψ ∈ P(H) satisfy ψ = ψ∗ = ψt . Let C denote the
mappng cone generated by ψ . Let φ ∈ P(H). Then φ ∈ C o if and only if
ψ ⊗ φ is positive.

Proof. C is generated as a cone by maps of the form Ad u ◦ ψ ◦ Ad v, so
the assumptions on ψ imply that C is a symmetric mapping cone. Since

Ad u ◦ ψ ◦ Ad v ⊗ φ = (Ad u⊗ ι) ◦ (ψ ⊗ φ) ◦ (Ad v ⊗ ι),

and Ad u⊗ ι and Ad v ⊗ ι are positive maps, it follows that α ⊗ φ is positive
for all α ∈ C if and only if ψ ⊗ φ is positive, hence by Theorem 2, φ ∈ C o if
and only if ψ ⊗ φ is positive, proving the corollary.

Remark. Theorem 2 and Corollary 4 contain well known characterizations
of completely maps. It ψ = ι then it satisfies the conditions of Corollary 4, so
the mapping cone C generated by ψ is the cone of completely positive maps.
Hence if φ ∈ P(H), then by Corollary 4, φ ∈ C o if and only if ι⊗φ is positive,
if and only if φ ∈ C by definition of C , so C o = C . By Theorem 2 we have

Cφ = ι⊗ φ(p) ≥ 0 ⇔ (α ⊗ ι)(ι⊗ φ(p)) ≥ 0,∀α ∈ C

⇔ α ⊗ φ(p) ≥ 0,∀α ∈ C

⇔ φ ∈ C o = C .

In Corollary 4 we assumed ψ = ψ∗ = ψt . These conditions can be easily
verified by checking the corresponding conditions for the Choi matrix. The
next proposition is also true for self-adjoint linear maps.

Proposition 5. Let φ ∈ P(H). Then φ = φ∗ = φt if and only if Cφ is a
real symmetric matrix invariant under the flip a⊗b → b⊗a onB(H)⊗B(H).

Proof. Let J be the conjugation on H ⊗H defined by

Jzei ⊗ ej = zej ⊗ ei, z ∈ C,
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where ei, . . . , en is an orthonormal basis such that eij ek = δjkei . Then an easy
computation shows that if a, b are real matrices inB(H), thenJa⊗bJ = b⊗a,
so for x ∈ B(H ⊗ H), a real matrix with respect to the basis (ei ⊗ ej ) for
H ⊗H , then x → JxJ is the flip F applied to x.

We haveCφt = Ctφ, soφ = φt if and only ifCφ = Ctφ, i.e.,Cφ is symmetric.
Since φ ∈ P(H), Cφ is self-adjoint, hence Cφ is symmetric if and only if Cφ
is real symmetric. Hence φ = φt if and only if Cφ is real symmetric. By
[9], Lem. 3, Cφ∗ = JCφJ . Hence φ = φ∗ = φt if and only if Cφ is real
symmetric, and by the first part of the proof, Cφ = F(Cφ), so invariant under
the flip, completing the proof.

Example. A specific example of a map as in Proposition 5 is given by
φ = Ad V , where V is a real symmetric matrix. Indeed, for general V we have
the formulas:

(Ad V )∗ = Ad V ∗, (Ad V )t = Ad V ,

where V = (aij ) if V = (aij ), and Ad V (x) = V xV ∗. Thus, if V is real sym-
metric, then Ad V = (Ad V )∗ = (Ad V )t . Furthermore, if V is real symmetric
and F the flip then

CAd V =
∑
kl

ekl ⊗ Ad V (ekl) =
∑
ijkl

vkivlj ekl ⊗ eij .

Thus
F(CAd V ) = F

(∑
ijkl

vkivlj ekl ⊗ eij

)

=
∑
ijkl

vkivlj eij ⊗ ekl

=
∑
ijkl

vikvjlekl ⊗ eij

=
∑
ijkl

vkivlj ekl ⊗ eij

= CAd V ,

where we at the third equality sign changed the roles of i and k, and l and j ,
and used that V was symmetric at the fourth. It follows that CAd V is invariant
under the flip.
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