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LIE GROUPS
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Abstract
The Pimsner-Voiculescu sequence is generalized to a Pimsner-Voiculescu tower describing the
KK-category equivariant with respect to coactions of a compact Lie group satisfying the Hodgkin
condition. A dual Pimsner-Voiculescu tower is used to show that coactions of a compact Hodgkin-
Lie group satisfy the Baum-Connes property.

Introduction

When G is a second countable, locally compact group and A is a separable C∗-
algebra with a continuous G-action, the Baum-Connes conjecture states that
the K-theory of the reduced crossed product A�r G can be calculated by means
of geometric and representation theoretical properties of G and A, see more in
[4]. To be more precise, the Baum-Connes conjecture states that the assembly
mapping μA : KG∗ (E G; A) → K∗(A �r G) is an isomorphism. The space
E G is the universal proper G-space and KG∗ (E G; A) is the proper equivariant
K-homology with coefficients in A. There are known counterexamples when
μA is not an isomorphism, so it is more natural to speak of groups having the
Baum-Connes property. In [10], the equivariant K-homology with coefficients
in A was proved to be the left derived functor of F(A) = K∗(A �r G) and
the assembly mapping being the natural transformation from LF to F . The
approach to the Baum-Connes property using triangulated categories can be
generalized to discrete quantum groups, see [9], which indicates that geometric
techniques such as universal proper G-spaces can be generalized to discrete
quantum groups.

The generalization of the Baum-Connes property to quantum groups has
been studied in for instance [11] and [17]. The case studied in [11] is that
of quantum group actions of the dual of a compact Lie group which corres-
pond to coactions of the Lie group. In [11] duals of compact Lie groups were
shown to satisfy the strong Baum-Connes property, i.e., the embedding of
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the triangulated category generated by proper coactions, the C∗-algebras that
are Baaj-Skandalis dual to trivial G-actions, into the KK-category equivariant
with respect to coactions is essentially surjective. In this paper we construct
an analogue of the Pimsner-Voiculescu sequence for coactions of a compact
Hodgkin-Lie group G that describes how the KK-category equivariant with
respect to coactions of G is built up from the C∗-algebras with coactions of G

which are proper in the sense of [11].
The starting point is to express the Pimsner-Voiculescu sequence for Z-

actions in terms of a property of the representation ring of a rank one torus.
Using the Universal Coefficient Theorem, the Pimsner-Voiculescu sequence
can be constructed from a Koszul complex

0 −→ R(T )
α−→ R(T ) −→ 0,

where α is defined as multiplication by 1 − t under the isomorphism R(T ) ∼=
Z[t, t−1]. When A has a coaction of T , i.e., a Z-action, the tensor product
over R(T ) between this Koszul complex and KT∗ (A �r Z) gives the Pimsner-
Voiculescu sequence. In the generalization to higher rank, when T is a torus
of rank n we consider the Koszul complex

0 −→ ∧n R(T )n −→ ∧n−1 R(T )n −→ · · ·
−→ ∧2 R(T )n −→ R(T )n −→ R(T ) −→ 0.

The boundary mappings in this complex are defined from interior multiplica-
tion with the element

∑
(1 − ti)e

∗
i ∈ HomR(T )(R(T )n, R(T )). If G is a com-

pact Hodgkin-Lie group with maximal torus T , the representation ring R(T )

is a free R(G)-module by [15], so the generalization from a torus to compact
Hodgkin-Lie groups goes in a straightforward fashion. Just as when the rank
is 1, the Koszul complex above can be used to produce sequence of distin-
guished triangles which is the analogue of a Pimsner-Voiculescu sequence for
the K-theory of crossed products by coactions of G.

We will give a geometric description of a sequence of distinguished triangles
in the KK-category equivariant with respect to coactions of G that corresponds
to the above Koszul complex under the Universal Coefficient Theorem. As for
the Pimsner-Voiculescu sequence for Z we will obtain a projective resolu-
tion of the crossed product by a coaction in the sense of triangulated categories
rather than exact sequences. Using suitable tensor products we produce in The-
orem 3.4 a sequence of distinguished triangles in the KK-category equivariant
with respect to coactions of G that we call the generalized Pimsner-Voiculescu
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tower for A:

Cw A �nDn−1(A) �nDn−2(A)

�Cwn A �2Cwkn−1 A

�nD2(A) �nD1(A) )t (A �r Ĝ

�n−1Cwk2 A �nCw A

Here t (A �r Ĝ) denotes the C∗-algebra A �r Ĝ equipped with the trivial
Ĝ-action and the terms Di (A) can be explicitly described as braided tensor
products. Taking K-theory of the lower row will give a complex similar to the
Koszul complex that in a sense forms a projective resolution of the K-theory
of A�Ĝ. The dual Pimsner-Voiculescu gives a more precise description of the
results of [11] by a sequence of distinguished triangles in KKG that describes
the crossed product A �r Ĝ in terms of G–C∗-algebras with trivial G-action,
thus giving a direct route to the strong Baum-Connes property of Ĝ.

The paper is organized as follows; the first section consists of a review of
KK-theory of actions and coactions. In particular we gather some known results
about the braided tensor product and the Drinfeld double which plays a mayor
role in constructing the dual Pimsner-Voiculescu tower. The main references
of this section are [1], [2], [3], [7], [10], [12] and [16]. In the second section
a geometric construction of the Pimsner-Voiculescu sequence for Z-actions is
presented and generalized to higher rank via a Koszul complex. In the third
section the restriction functor for coactions is used to generalize the Pimsner-
Voiculescu sequence to coactions of compact Hodgkin-Lie groups G. As an
example of this we calculate the K-theory of some compact homogeneous
spaces. By similar methods, a dual Pimsner-Voivulescu tower is constructed
in KKG, following the ideas of [10]. At the end of the paper we discuss some
possible generalizations to duals of Woronowicz deformations.

Acknowledgments: The author would like to thank Ryszard Nest for
posing the question on how to explicitly construct the crossed product of a Ĝ–
C∗-algebra from trivial actions and for much inspiration in the writing process.
The author also wishes to thank the referee for several valuable suggestions.
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1. Actions and coactions of compact groups

The standard approach to equivariant K-theory is to introduce equivariant KK-
theory. If A and B are two separable C∗-algebras with a continuous action of a
locally compact group G, the equivariant KK-group KKG(A, B) is defined as
the set of homotopy classes of G-equivariant A−B-Kasparov modules which
forms an abelian group under direct sum. The KK-groups can be equipped
with a product such that if C is a third separable C∗-algebra with a continuous
G-action there is an additive pairing called the Kasparov product

KKG(A, B) × KKG(B, C) −→ KKG(A, C).

Following the standard construction, we let KKG denote the additive category
of all separable C∗-algebras with a continuous G-action and a morphism in
KKG from A to B is an element of KKG(A, B). The composition of two KKG-
morphisms is defined to be their Kasparov product. The group KKG(C, A)

coincides with the equivariant K-theory of A. In particular, if G is compact
KKG(C, C) = R(G), the representation ring of G. The action of R(G) on
equivariant K-theory generalizes to an R(G)-module structure on the bivariant
groups KKG(A, B).

The category KKG can be equipped with a triangulated structure with a map-
ping cone coming from the mapping cone construction of a ∗-homomorphism.
The triangulated structure on KKG is universal in the sense that any homotopy
invariant, stable, split-exact functor on the category of C∗-algebras with a con-
tinuous G-action defines a homological functor on KKG. The construction of
the triangulated structure and its universality are thoroughly explained in [10].
Let us just recall the basics of the construction of the triangulated structure on
KKG. The suspension �A of a G–C∗-algebra is defined by C0(R)⊗A. By Bott
periodicity �2 ∼= id. A distinguished triangle in KKG is a triangle isomorphic
to one of the form

C(f ) A

B,

f

where C(f ) is the mapping cone of the equivariant ∗-homomorphism f :
A → B. In particular, if f : A → B is a surjection and admits an equivariant
completely positive splitting the natural mapping ker(f ) → C(f ) defines an
equivariant KK-isomorphism, so under suitable assumptions a distinguished
triangle is isomorphic to a short exact sequence.

How to construct KK-theory of coactions of groups is easiest seen in the
simpler case when G is an abelian group. If A is a C∗-algebra equipped with an
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action α of the abelian group G, the crossed product A �r G carries a natural
action of the Pontryagin dual Ĝ. This action is called the dual action of Ĝ. Since
abelian groups are exact, the crossed product by an abelian group defines a
triangulated functor KKG → KK Ĝ. The crossed product by the dual action is
described by Takesaki-Takai duality which states that there is an equivariant
isomorphism

A �r G �r Ĝ ∼= A ⊗ K (L2(G)),

where A �r G �r Ĝ is equipped with the dual action of G and the G-action
on A ⊗ K (L2(G)) is defined as α ⊗ Ad. Takesaki-Takai duality implies that
the crossed product defines a triangulated equivalence KKG → KK Ĝ.

An action α of a group G on A defines a ∗-homomorphism �α : A →
M(A⊗C0(G)) by letting �α(a) be the function g �→ αg(a). When G is abelian
there is a natural isomorphism C0(Ĝ) ∼= C∗

r (G) and a Ĝ-action corresponds to
a non-degenerate ∗-homomorphism �A : A → M(A ⊗min C∗

r (G)) satisfying
certain conditions. The first instance of a coaction of a group G is on C∗

r (G).
Using the universal property of C∗

r (G), one can construct a non-degenerate
mapping � : C∗

r (G) → M(C∗
r (G) ⊗min C∗

r (G)) called the comultiplication
and is induced from the diagonal homomorphism G → G × G. Clearly, the
mapping � satisfies:

(� ⊗ id)� = (id ⊗�)�,

so we say that � is coassociative. Since �21 = � the comultiplication � is
cocommutative, so if we interpret C∗

r (G) as the functions on a reduced locally
compact quantum group Ĝ then Ĝ can be thought of as abelian, see more in [7].
With the abelian setting as motivation, we say that a separable C∗-algebra A

has a coaction of the locally compact second countable group G if there is non-
degenerate ∗-homomorphism �A : A → M(A⊗minC∗

r (G)) satisfying the two
conditions that �A(A) · 1A ⊗min C∗

r (G) is a dense subspace of A ⊗min C∗
r (G)

and that �A is coassociative in the sense that

(1) (�A ⊗ idC∗
r (G))�A = (idA ⊗�)�A.

A separable C∗-algebra equipped with a coaction of G will be called a Ĝ–
C∗-algebra. Sometimes we will abuse the notation and call a coaction of G

a Ĝ-action. An example of a coaction is the dual coaction on C∗-algebras of
the form A = B �r G, for some G–C∗-algebra B. When G is discrete we
can decompose B �r G by means of the dense subspace

⊕
g∈G Bλg and the

dual coaction is defined by �A(bλg) := bλg ⊗ λg . In the general setting, the
construction of the dual coaction goes analogously and we refer the reader to
[1].
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Much of the theory for group actions also hold for group coactions, the
crossed product will as for abelian groups be a stepping stone back and forth
between actions and coactions. In [1], the KK-theory equivariant with respect
to a bi-C∗-algebras and the corresponding Kasparov product was constructed.
In [12] it was proved that the KK-theory equivariant with respect to a locally
compact quantum group has a triangulated structure defined in the same fashion
as for a group.

Let us explain the setting of [1] more explicitly in the case of coactions
of a group. An A − B-Hilbert bimodule E is called Ĝ-equivariant if there
is a coaction δE : E → LB⊗minC∗

r (G)(B ⊗min C∗
r (G), E ⊗ C∗

r (G)) satisfying
a coassociativity condition similar to (1) and δE should commute with the
A-action and B-action in the obvious ways. By Proposition 2.4 of [1], the
coaction δE is uniquely determined by a unitary VE ∈ L (E ⊗�B

(B ⊗min

C∗
r (G)), E ⊗ C∗

r (G)) via the equation δE (x)y = VE (x ⊗�B
y) for x ∈ E and

y ∈ B ⊗min C∗
r (G). A Ĝ-equivariant A − B-Kasparov module is an A − B-

Kasparov module (E , F ) such that E is a Ĝ-equivariant A−B-Hilbert module
and the operator F commutes with the unitary VE up to a compact operator. The
group KK Ĝ(A, B) is defined as the homotopy classes of Ĝ-equivariant A−B-
Kasparov modules. The additive category KK Ĝ is defined by taking the objects
to be separable Ĝ–C∗-algebras and the group of morphisms from A to B is
KK Ĝ(A, B). The composition in KK Ĝ is Kasparov product of Ĝ-equivariant
Kasparov modules.

To a closed subgroup H of G, the restriction of a G-action to H defines
a restriction functor ResG

H : KKG → KKH and its right adjoint is the in-
duction functor IndG

H : KKH → KKG. However the restriction goes in the
other direction for coactions. When H is a closed subgroup of G, there is a
non-degenerate embedding C∗(H) ⊆ M(C∗(G)) so a coaction of H can be
restricted to a coaction of G. This construction defines a triangulated functor
ResĤ

Ĝ
: KK Ĥ → KK Ĝ.

The crossed product B �→ B �r G sends a G–C∗-algebra to a Ĝ–C∗-
algebra and if G is exact the crossed product induces a triangulated functor
KKG → KK Ĝ. In order to construct a duality similar to Takesaki-Takai duality
one introduces the crossed product by a coaction. If A is a Ĝ–C∗-algebra we
define

A �r Ĝ := [�A(A) · 1A ⊗ C0(G)] ⊆ M(A ⊗ K (L2(G))).

It follows from Lemma 7.2 of [2] that A �r Ĝ forms a C∗-algebra. For a
thorough introduction to crossed products by coactions see [13]. The C∗-
algebra A �r Ĝ carries a continuous G-action defined in the dense subspace
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�A(A) · 1A ⊗ C0(G) by

g.(�A(a) · 1A ⊗ f ) := �A(a) · 1A ⊗ g.f.

Similarly to the abelian setting, Takesaki-Takai duality holds so there are
equivariant isomorphisms B �r G�r Ĝ ∼= B⊗K (L2(G)) and A�r Ĝ�r G ∼=
A⊗ K (L2(G)) which ensures that the crossed product defines an equivalence
of triangulated categories known as Baaj-Skandalis duality.

The tensor product on the category of G–C∗-algebras is well defined. If A

and B have actions α respectively β of G the tensor product A ⊗min B can
be equipped with the action α ⊗ β : G → Aut(A ⊗min B). However, for a
non-abelian group G the construction of a tensor product of Ĝ–C∗-algebras
can not be done by just taking tensor products of the C∗-algebras. The tensor
product relevant for Ĝ–C∗-algebras is the braided tensor product over Ĝ which
requires one further structure. Suppose that A is a Ĝ-algebra with a continuous
G-action α. If the action α satisfies that

(2) �A ◦ αg = (αg ⊗ Ad(g))�A

we say that A is a Yetter-Drinfeld algebra. An example of a Yetter-Drinfeld
algebra is C∗

r (G) with G-action defined by the adjoint action G → Aut(G). It
is much easier to construct a Yetter-Drinfeld algebra from a G–C∗-algebra, if
A is a G–C∗-algebra we can in a functorial way define a coaction of G on A by
setting �A(a) := a ⊗ 1. When A is a Yetter-Drinfeld algebra, the C∗-algebra
A �r Ĝ is also a Yetter-Drinfeld algebra since the morphism �A is covariant
with respect to the G-action and �A extends to a coaction of G on A �r Ĝ,
see more in [12]. This construction is functorial and the crossed product can
be seen as a functor on the category of Yetter-Drinfeld algebras.

When A is a Yetter-Drinfeld algebra and B is a Ĝ–C∗-algebra we define
the mappings

ιA : A −→ M(A ⊗min B ⊗ K (L2(G))), ι(a) := �α(a)13

ιB : B −→ M(A ⊗min B ⊗ K (L2(G))), ι(b) := �B(b)23.

Following [12], the braided tensor product A �Ĝ B is defined as the closed
linear span of ιA(A) · ιB(B). By Proposition 8.3 of [16], A �Ĝ B forms a
∗-subalgebra of M(A ⊗min B ⊗ K (L2(G))) so the braided tensor product is
a C∗-algebra. The coaction of G on A �Ĝ B is defined by

�A �Ĝ �B(ιA(a) · ιB(b)) := (ιA ⊗ id)(�A(a)) · (ιB ⊗ id)(�B(b)).

Observe that since C∗
r (G) is cocommutative, the adjoint Ĝ-action is trivial

and a similar construction of a braided tensor product over G between G–
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C∗-algebras with trivial Ĝ-actions coincides with the usual tensor product. In
general, the braided tensor product over G does not need to coincide with the
usual tensor product. By Lemma 3.5 of [12] there is a G-equivariant isomorph-
ism

(3) (A �Ĝ B) �r Ĝ ∼= (A �r Ĝ) �Ĝ B

where the G-coaction on the right hand side is the trivial one on B. More
generally, this identity holds for any quantum group and in particular also
for braided tensor products over G. We will prove this statement in special
case of braided tensor products over a compact group G with C(G) below in
Lemma 3.3.

If we interpret the structure of a Yetter-Drinfeld algebra as two actions
of the quantum groups G and Ĝ satisfying a certain cocycle relation, the
cocycle defines a quantum group by means of a double crossed product such
that Yetter-Drinfeld algebras are precisely the C∗-algebras with an action of
this double crossed product. The right quantum group to look at is the Drinfeld
double D(G). Using the notations of quantum groups, the algebra of functions
on D(G) is C0(G, C∗

r (G)) = C0(G) ⊗ C∗
r (G) with the obvious action and

coaction of G. The action and coaction define a comultiplication

�D(G) : C0(D(G)) −→ M(C0(D(G)) ⊗ C0(D(G)))

by �D(G) := σ23 Ad(W23)(�C0(G) ⊗�C∗
r (G)) where W ∈ B(L2(G)⊗L2(G))

is the multiplicative unitary of G defined by Wf (g1, g2) = f (g1, g1g2). The
comultiplication �D(G) makes D(G) into a quantum group by Theorem 5.3 of
[3]. AYetter-Drinfeld algebra A with the action α and coaction �A correspond
to a D(G) − C∗-algebra by defining the D(G)-coaction

�
D(G)
A := (�α ⊗ id)�A : A −→ M(A ⊗min C0(D(G))),

see more in Proposition 3.2 of [12]. Therefore we can consider the braided
tensor product as a tensor product between D(G) − C∗-algebras and Ĝ–C∗-
algebras. The braided tensor product induces a biadditive functor

�Ĝ : KKD(G) × KK Ĝ −→ KK Ĝ.

Much of the theory of coactions can be done without introducing any quantum
groups, but in order to construct the Pimsner-Voiculescu sequence for coactions
of compact Hodgkin-Lie groups we will need the braided tensor product as a
biadditive functor between KK-categories.
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2. The Pimsner-Voiculescu sequence from the viewpoint of
representation rings

In this section we will study the Pimsner-Voiculescu sequence for Z and gener-
alize to a Pimsner-Voiculescu tower for Zn. We will use representation theory
to calculate all the mappings explicitly. These calculations will in a surpris-
ingly straightforward way give a natural route to a Pimsner-Voiculescu tower
for coactions of compact Lie groups.

Consider the evaluation mapping l : C0(R) → C0(Z). This mapping fits
into a Z-equivariant short exact sequence

(4) 0 −→ �C0(Z) −→ C0(R)
l−→ C0(Z) −→ 0.

The Z-equivariant Dirac operator D/ on R defines a Z-equivariant odd unbounded
K-homology class, thus an element [D/ ] ∈ KKZ(C0(R), �C). While R is the
universal proper Z-space the element [D/ ] is the Dirac element of Z and the
strong Baum-Connes property of Z implies that [D/ ] is a KKZ-isomorphism.
The exact sequence (4) induces a distinguished triangle in KKZ which after
using the isomorphism C0(R) ∼= �C and rotation 4 steps to the left becomes

(5)

C0(Z) C0(Z)

C.

In a certain sense, the distinguished triangle (5) captures the entire behavior of
the Pimsner-Voiculescu sequence. If A is a Z−C∗-algebra we can apply Baaj-
Skandalis duality to (5) and tensor with A �r Z. If we apply Baaj-Skandalis
duality again, we obtain a distinguished triangle in KKZ:

A

A A

�r Z,

where A �r Z is given the trivial Z-action. Taking K-theory of this distin-
guished triangle gives back the classical Pimsner-Voiculescu sequence due to
the following proposition:

Proposition 2.1. When T is a torus of rank 1 and the element κ ∈
KKT (C, C) is defined using the isomorphisms KKT (C, C) ∼= HomR(T )(R(T ),

R(T )) and R(T ) ∼= Z[t, t−1] as

κf (t, t−1) = (1 − t)f (t, t−1),
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the KK-morphism κ is Baaj-Skandalis dual to the KK-morphism C0(Z) →
C0(Z) defined by (4).

Observe that the K-theory of the exact sequence (4) is described from the
exact sequence:

0 −→ R(T )
1−t−→ R(T ) −→ Z −→ 0,

by Proposition 2.1. The first terms in this exact sequence is the Koszul
complex defined by 1 − t ∈ HomR(T )(R(T ), R(T )) and Z is the cohomology
of the Koszul complex.

Proof. Let κ0 ∈ HomR(T )(R(T ), R(T )) denote the Baaj-Skandalis dual of
the KK-morphism induced from (4). It follows directly from the construction
that the mapping R(T ) → Z induced from �C0(Z) → C0(R) is the augment-
ation mapping Z[t, t−1] → Z onto the generator of K1(C0(R)). Therefore the
image of κ0 is the ideal generated by either 1 + t of 1 − t so κ0 is of the form
u · (1 ± t) for some unit u ∈ Z[t, t−1]. The sign and u = 1 is found by either
a direct calculation or by considering the Pimsner-Voiculescu sequence for
C0(Z).

We will return to the Koszul complexes later on. First we will construct
a geometric interpretation of the higher rank situation. Assume that T is a
torus of rank n and consider the semi-open unit cube I = [0, 1[n⊆ Rn. For
i = 1, . . . , n we define X̃i as the set of open i − 1-dimensional faces of I . The
union satisfies

n⋃
i=1

X̃i = ∂I ∩ I.

We let ki , for i = 1, 2, . . . n, denote the integers ki :=
(

n

i − 1

)
. The set X̃i

has ki connected components so if we choose a homeomorphism ]0, 1[ ∼= R
there are homeomorphisms

(6) X̃i
∼=

ki∐
j=1

Ri−1 for i = 1, 2, . . . , n,

where we interpret R0 as the one-point space. We take Xi to be the Zn-translates
of

⋃
j≤i X̃j and define Yi := Rn \ Xi for 1 = 1, 2, . . . , n and Y0 := Rn.

Proposition 2.2. For i = 1, 2, . . . , n there are Zn-equivariant isomorph-
isms

C0(Yi−1)/C0(Yi) ∼= Cki ⊗ �i−1C0(Z
n).



the pimsner-voiculescu sequence for coactions 307

Proof. By equation (6) there is a Zn-equivariant homeomorphism

Yi−1 \ Yi
∼=

∐
m∈Zn

( ki∐
j=1

Ri−1

)
,

where Zn acts by translation on the first disjoint union. Therefore

C0(Yi−1)/C0(Yi) ∼= C0(Yi−1 \ Yi) ∼= C0

( ∐
m∈Zn

( ki∐
j=1

Ri−1

))
∼= Cki ⊗ C0(Z

n × Ri−1) ≡ Cki ⊗ �i−1C0(Z
n).

Consider the classifying space Rn for proper actions of Zn. Since Zn has
the strong Baum-Connes property, the Dirac element [D/ ] induces a KKZn

-
isomorphism C0(Rn) ∼= �nC. An alternative approach to constructing this
isomorphism is the Julg theorem which implies that for any T −C∗-algebra A

there is an isomorphism KT∗ (A) ∼= K∗(A �r T ). Therefore KT∗ (�nC � Zn) ∼=
KT∗ (C0(Rn) � Zn) and the statement follows from the Universal Coefficient
Theorem for the compact Hodgkin-Lie group T , see more in [14].

For i = 1, 2, . . . , n, Proposition 2.2 implies that there is a Zn-equivariant
short exact sequence

(7) 0 −→ C0(Yi) −→ C0(Yi−1) −→ Cki ⊗ �i−1C0(Z
n) −→ 0.

We will by κi ∈ KKZn

(Cki ⊗C0(Zn), Cki+1 ⊗C0(Zn)) denote the Zn-equivariant
KK-morphism defined in such a way that the extension class defined by (7)
composed with the restriction mapping C0(Yi) → Cki+1 ⊗�iC0(Zn) coincides
with �i−1κi . Notice that Yn = Zn × ]0, 1[n and Y0 = Rn so we have that
C0(Yn) = �nC0(Zn) and C0(Y0) = C0(Rn), the latter being KKZn

-isomorphic
to �nC. Thus we get a sequence of distinguished triangles in KKZn

:

(8)

nC0(Z
n) C0(Yn−1)

Cn �n

�

−1C0(Z
n)

�nκn

Ckn−1 �n−2C0(Z
n)

�n−1κn−1

C0(Y2) C0(Y1) �nC

Cn �C0(Z
n)

�2κ2
C0(Z

n)
�κ1
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A sequence of distinguished triangles of this type will be called a tower. The
tower (8) in KKZn

is the higher rank analogue of the distinguished triangle (5).
The tower (8) can be generalized to contain any coefficient ring.

To find a better description of the morphisms κi let us recall the notion of
a Koszul complex. Let R denote a commutative ring and E an R-module. For
simplicity we will assume that E is free and finitely generated, let us say of
rank N . For an element v ∈ HomR(E, R), the Koszul complex of E with
respect to v is the complex

0 −→ ∧N E
∂1−→ ∧N−1 E

∂2−→ · · · ∂N−2−→ ∧2 E
∂N−1−→ E

v−→ R −→ 0,

where each ∂k is defined as interior multiplication by v. Since we have assumed
E to be free, we may write v = ∑

νie∗
i for some ν1, ν2, . . . , νN ∈ R and the

dual basis e∗
i of a basis ei , i = 1, 2, . . . , N of E. If the sequence ν1, ν2, . . . , νN

is a regular sequence the Koszul complex is exact except at R. The cohomology
of the Koszul complex is in this case R/v(E) at R. See more in [5].

The Koszul complex of interest to us is constructed from the module E :=
R(T )n over the representation ring of the torus T which has the following
form:

R(T ) ∼= Z[t±1
1 , . . . , t±1

n ].

Observe that Baaj-Skandalis duality and the Universal Coefficient Theorem
implies that

KKZn

(Cki ⊗ C0(Z
n), Cki+1 ⊗ C0(Z

n)) ∼= KKT (Cki , Cki+1)

∼= HomR(T )(R(T )ki , R(T )ki+1).

We have that R(T )ki ∼= ∧n−i+1 E so the lower row in (8) have the right ranks
for coinciding with a Koszul complex. Let fi ∈ HomR(T )(

∧n−i+1 E,
∧n−i E)

denote the image of κi under the isomorphisms above. To simplify notations,
we will by (ei)

n
i=1 denote the R(T )-basis of E coming from the isomorphism

E ∼= R(T ) ⊗Z Zn and by (e∗
i )

n
i=1 denote the dual basis.

Theorem 2.3. Under the isomorphisms R(T )ki ∼= ∧n−i+1 E the mappings
fi coincide with interior multiplication by the element v := ∑n

i=1(1 − ti)e∗
i .

Therefore the sequence

0 −→ ∧n E
f1−→ ∧n−1 E

f2−→ · · · fn−2−→ ∧2 E
fn−1−→ E

fn−→ R(T ) −→ 0

defines a complex isomorphic to the Koszul complex of E whose cohomology
at R(T ) is Z.
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Proof. While both fi and the mapping defined by interior multiplication
by v are R(T )-linear it is sufficient to prove that fi(u) = v¬u for elements
of the form u = em1

∧ · · · ∧
emn−i+1 ∈ ∧n−i+1 E, where m1, . . . , mn−i+1 ∈

{1, 2, . . . , n}. Let (mp)np=n−i+1 be an enumeration of all j = 1, 2, . . . , n such

that j /∈ (mp)n−i+1
p=1 . If we view Zn as a subset of Rn we can define Xu ⊆ X̃i as

the open face in Rn spanned by the vectors emn−i+1 , emn−i+2 , . . . , emn
.

Under the isomorphism
∧n−i+1 E ∼= Ki−1(Cki ⊗ �i−1C0(Zn)) the element

u corresponds to a K-theory class on X̃i which is trivial except on the face Xu.
Therefore there exists sequences of numbers (aj )

n−i+1
j=1 , (bj )

n−i+1
j=1 ⊆ Z such

that

fi(u) =
n−i+1∑
j=1

(aj + bj tj )emj
¬u.

If j = 1, 2, . . . , n − i + 1, we will let Xu,j denote the open face spanned by
the vectors emj

, emn−i+1 , emn−i+2 , . . . , emn
. It follows from restricting to Xu,j that

aj = 1 since Bott periodicity implies that the index mapping Ki−1(C0(Xu)) →
Ki(C0(Xu,j )) is an isomorphism. In a similar fashion it follows that bi = −1.

While v(E) is the ideal generated by the regular sequence 1 − t1, 1 −
t2, . . . , 1 − tn, the cohomology of the Koszul complex is R(T )/v(E) = Z and
the quotient mapping R(T ) → Z coincides with the augmentation mapping.

Consider the tower Baaj-Skandalis dual to (8). Given A, B ∈ KKT we can
apply the homological functor KKT (A, −⊗min B) to this tower. This functor is
only homological on the bootstrap category if B is not exact, but all objects in
the tower Baaj-Skandalis dual to (8) are in the bootstrap category. The lowest
row of the corresponding tower in the category of R(T )-modules is a Koszul
complex:

(9) 0 −→ ∧n Zn ⊗ KKT
∗ (A, B)

vA¬−→ ∧n−1 Zn ⊗ KKT
∗ (A, B)

vA¬−→ . . .

vA¬−→ Zn ⊗ KKT
∗ (A, B)

vA¬−→ KKT
∗ (A, B) −→ 0

where

vA :=
n∑

i=1

(1 − βi∗)e∗
i ∈ HomR(T )(KKT

∗ (A, B)n, KKT
∗ (A, B))

and (βi)
n
i=1 are the commuting equivariant automorphisms of A that are Baaj-

Skandalis to the Zn-action on B �r T . The cohomology of this Koszul complex
can be calculated from KKT

∗ (A, B). We will return to this subject in the next
section in the more general case of Hodgkin-Lie groups and explain this pro-
cedure further.
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3. The generalized Pimsner-Voiculescu-towers

As mentioned in the introduction, the representation ring R(T ) is free over
R(G) when G is a Hodgkin-Lie group, so the step to coactions of a compact
Hodgkin-Lie group will not be too large. We will throughout this section as-
sume that G is a compact Hodgkin-Lie group of rank n with maximal torus T .
Recall that a group satisfies the Hodgkin condition if it is connected and the
fundamental group is torsion-free.

The embedding T ⊆ G induces a restriction functor KK T̂ → KK Ĝ. Using
the isomorphism T̂ ∼= Zn, the tower (8) can be restricted to a KK Ĝ-tower:

C0(Yn−1)

�nκn

�n−1κn−1

C0(Y2) C0(Y1)

�2κ2 �κ1

�nC∗(T )

Cn �n−1C∗(T ) Ckn−1 �n−2C∗(T )

C0(R
n)

Cn �C∗(T ) C∗(T )

In order to work with this KK Ĝ-tower we need to describe the terms C∗(T ) in
the second row.

Lemma 3.1. If G is a compact Hodgkin-Lie group with Weyl group of order
w there is an isomorphism

C∗(T ) ∼= Cw ⊗ C∗(G) in KK Ĝ.

Observe that the condition on G to be a Hodgkin group is equivalent to Ĝ

being a torsion-free quantum group in the sense of Meyer, see [9]. The torsion-
free quantum groups are the only non-classical discrete quantum groups for
which there is a general formulation of the Baum-Connes property in terms
of triangulated categories. In [11], coactions of compact non-Hodgkin Lie
groups were considered and the “torsion” turned out to be the torsion elements
of H 2(G, S1). The less precise statement C(G/T ) ∼= Ck in KKG for some
k is stated and proved in [11]. An explicit calculation that k = |W | can be
found in [15]. We will review the conceptually important part of the proof of a
Proposition in [11] which proves Lemma 3.1 aside from the calculation of k.

Proof. By [15], the representation ring R(T ) is free of rank w over the
representation ring R(G) if π1(G) is torsion-free. If we let S denote the
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localizing subcategory of KKG generated by C and C(G/T ), Lemma 11 of
[10] states that for A ∈ S the natural homomorphism

R(T ) ⊗R(G) KKG(A, C) −→ KKT (A, C)

is an isomorphism. Thus the representable functor on S

A −→ KKG(A, Cw) ∼= R(T ) ⊗R(G) KKG(A, C)

coincides with the representable functor

A −→ KKG(A, C(G/T )) ∼= KKT (A, C).

The last isomorphism exists as a consequence of the fact that the induction
functor IndG

T is the right adjoint of the restriction functor from G to T . So
the Yoneda lemma implies that C(G/T ) ∼= Cw in S and therefore in KKG.
Applying Baaj-Skandalis duality it follows that there is an equivariant KK-
isomorphism C∗(T ) ∼= Cw ⊗ C∗(G).

Using Lemma 3.1 the tower (8) takes the form:

(10)

C0(Yn−1)

C0(Y2) C0(Y1)

�nCw C∗(G)

�n−1Cwn C∗(G)

�nC

�Cwn C∗(G) Cw C∗(G)

We will call this KK Ĝ-tower the fundamental G–PV-tower. The dual funda-
mental G–PV-tower is defined to be the KKG-tower which is Baaj-Skandalis
dual to the fundamental G–PV-tower:

(11)

�nCw Dn−1

�n−1Cwn �n−2Cwkn−1

D2 D1 �nC(G)

�Cwn Cw

where Di := C0(Yi) �r Ĝ.
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As mentioned above, if A is a G–C∗-algebra, the trivial coaction of G

on A makes A into a Yetter-Drinfeld algebra. This follows from that C(G)

is commutative so we can extend a G-action via the D(G)-equivariant ∗-
monomorphism C(G) → M(C0(D(G))). Clearly, a G-equivariant mapping
is equivariant in this new D(G)-action. Furthermore, since mapping cones
does not depend on the action, the trivial extension of a G-action to a D(G)-
action is functorial and respects mapping cones. The following proposition
follows from universality.

Proposition 3.2. If G is a locally compact group, the functor mapping a
G–C∗-algebra to a G-Yetter-Drinfeld algebra with trivial Ĝ-action defines a
triangulated functor KKG → KKD(G).

Using the triangulated functor of Proposition 3.2, we may consider the tower
(11) as a tower in KKD(G). Applying a crossed product by G we obtain that
also the tower (10) is a tower in KKD(G). For a C∗-algebra B we will use the
notation t (B) for the Ĝ–C∗-algebra with trivial coaction, or in the context of
G–C∗-algebras t (B) will denote the G–C∗-algebra with trivial action. Let us
state and prove the corresponding version of (3) in a simple case of a braided
tensor product over G with C(G), a more general proof can be found in [12].

Lemma 3.3. When B has a continuous G-action, there is a Ĝ-equivariant
Morita equivalence

(C(G) ⊗ B) �r G ∼M t(B).

Proof. By Baaj-Skandalis duality, it suffices to prove that there is a Ĝ-
equivariant isomorphism (C(G)⊗B)�r G ∼= (C(G)�r G)⊗t (B). Denote the
G-action on B by β and define the equivariant mapping ϕ0 : L1(G, C(G, B))

→ (C(G) �r G) ⊗ t (B) by setting

ϕ0(f )(g1, g2) := βg−1
1

f (g1, g2).

The linear mapping ϕ0 is a ∗-homomorphism when L1(G, C(G, B)) is equip-
ped with the convolution twisted by the G-action on C(G) ⊗ B. It is straight-
forward to verify that ϕ0 is bounded in C∗-norm so we can define ϕ : (C(G)⊗
B) �r G → (C(G) �r G) ⊗ B by continuity. The ∗-homomorphism ϕ is an
equivariant isomorphism since an inverse can be constructed by extending

ϕ−1(f ⊗ b)(g1, g2) := f (g1, g2)βg1(b)

to a ∗-homomorphism ϕ−1 : (C(G) �r G) ⊗ t (B) → (C(G) ⊗ B) �r G.
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Theorem 3.4 (The Pimsner-Voiculescu tower). Let G be a compact Hodg-
kin-Lie group of rank n and Weyl group of order w. For any separable Ĝ–C∗-
algebra A there is a KK Ĝ-tower

(12)

Cw A �nDn−1(A) �nDn−2(A)

�Cwn A �2Cwkn−1 A

�nD2(A) �nD1(A) )t (A �r Ĝ

�n−1Cwk2 A �nCw A

where Di (A) := (C0(Yi) ⊗ K (L2(G))) �G (A �r Ĝ) and is equipped with
the Ĝ-action induced from the diagonal Ĝ-action on C0(Yi) ⊗ K (L2(G)).

Observe that the D(G)-actions on the C∗-algebras C0(Yi) ⊗ K (L2(G))

is defined to come from those on their Baaj-Skandalis duals C0(Yi) �r Ĝ,
which are D(G) − C∗-algebras in the dual G-actions on the crossed products
and the trivial Ĝ-actions. So in general, Di (A) is not the tensor product of
C0(Yi) ⊗ K (L2(G)) and A �r Ĝ.

Proof. By Lemma 3.3 the Ĝ–C∗-algebra A admits the equivariant Morita
equivalence:

(13) (C(G) ⊗ (A �r Ĝ)) �r G ∼M t(A �r Ĝ).

Furthermore, the isomorphism of equation (3) holds for braided tensor products
over G so while the Ĝ-actions on Di = C0(Yi) �r Ĝ are trivial there are
equivariant isomorphisms

(Di ⊗ (A �r Ĝ)) �r G ∼= ((C0(Yi) �r Ĝ) �G (A �r Ĝ)) �r G(14)

∼= (C0(Yi) ⊗ K (L2(G))) �G (A �r Ĝ).

Thus if we tensor the dual fundamental G–PV-tower (11) by the G–C∗-algebra
A �r Ĝ we obtain a new KKG-tower which becomes the Pimsner-Voiculescu
tower of A after applying Baaj-Skandalis duality, using the Morita equivalence
(13) and the isomorphisms (14).

The Pimsner-Voiculescu tower (12) is the generalization of the resolution
in (9) to compact Hodgkin-Lie groups. Applying the cohomological functor
KK(−, B) to the Pimsner-Voiculescu tower we obtain a similar resolution of
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KK∗(A �r Ĝ, B) in terms of KK∗(A, B) as in (9). Similarly, the homological
functor KK(B, −) applied to the Pimsner-Voiculescu tower gives a resolution
of KK(B, A� Ĝ) in terms of KK(B, A). Observe that since A has a Ĝ-action,
the groups KK(Cw ⊗ A, B) and KK(B, Cw ⊗ A) will always have an R(G)-
module structure and since R(T ) is free over R(G) also an R(T )-module
structure.

As an example of this, we will use the Pimsner-Voiculescu tower to calculate
the K-theory of the homogeneous space G/H when H ⊆ G is a Lie subgroup.
More generally, this technique can be used to calculate K∗(A�r Ĝ) for any Ĝ–
C∗-algebra A when one knows K∗(A) and its R(G)-module structure coming
from the Julg isomorphism K∗(A) ∼= KG∗ (A �r Ĝ). To calculate K∗(G/H),
consider theC∗-algebraA := C∗(H) equipped with the Ĝ-action induced from
the natural mapping C∗(H) → M(C∗(G)). Green’s imprimitivity theorem
implies that C∗(H) � Ĝ is KK-equivalent with C(G/H). Thus, if we take
the K-theory of the Pimsner-Voiculescu tower of C∗(H) we obtain a tower of
abelian groups of the form

(15)

R(T ) R(G) R(H ) n(Dn 1(C
∗(H )))

�R(T )n
R(G) R(H )

�v 1

�v 1

K∗−

K∗−

n(D1(C
∗(H ))) K∗(G/H )

�nR(T ) R(G) R(H )
�v 1

−

We use � to denote degree shift in the category of Z/2Z-graded abelian
groups. Here we have used that R(T ) is a free R(G)-module of rank w so
K∗(Cw ⊗ C∗(H)) ∼= R(T ) ⊗R(G) R(H). Thus the lowest row is the tensor
product of R(H) with the Koszul complex of R(T ) that is associated with the
regular sequence 1 − t1, 1 − t2, . . . , 1 − tn under the isomorphism R(T ) ∼=
Z[t±1

1 , t±1
2 , . . . , t±1

n ].
If we restrict our attention to simple compact Lie groups we can perform an

explicit calculation of all the groups in (15). Assume that G = Gn is a simple
compact Hodgkin-Lie group in the classical A, B, C- or D-series of rank n and
assume that H = Gk ⊆ Gn is a simple simply connected compact Lie group
in the same classical serie being of rank k < n. We may take a maximal torus
Tn ⊆ Gn such that Tk := Tn ∩ Gk is a maximal torus in Gk . In this case we
may consider R(Tk) as an ideal in R(Tn) and R(Tn)⊗R(Gn) R(Gk) ∼= R(Tk) as
R(Tn)-modules. Under the isomorphisms R(Tk) ∼= Z[t±1

1 , t±1
2 , . . . , t±1

k ] and
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R(Tn) ∼= Z[t±1
1 , t±1

2 , . . . , t±1
n ], the Koszul vector v is identified with

∑k
i=1(1−

ti)e∗
i ∈ Hom(R(Tk)

n, R(Tk)). Thus we arrive at the tower

R(Tk) K∗−n(Dn−1(C
∗(Gk))))

�Zn
Z R(Tk)

�∂n

2 Zn
Z R(Tk)

�∂n−1

K∗−n(D1(C
∗(Gk))) K∗(Gn/Gk )

�n n Zn
Z R(Tk)

�∂1

Let us use the notation E∗ for the complex
∧n−∗ Zn ⊗R(Tk) equipped with the

Koszul differential from the vector
∑k

i=1(1 − ti)e∗
i which we as above denote

by ∂l : El−1 → El . After some simpler calculations in this Koszul complex
we arrive at the conclusion that

K∗−n(Dl(C
∗(Gk))) ∼= ker(∂l+1) ⊕

n+1⊕
j=l+2

�n−jH j (E∗).

Hence we obtain the isomorphism K∗(Gn/Gk) ∼= ⊕n+1
j=1 �n−jH j (E∗). These

cohomology groups are calculated in Corollary 17.10 of [5] and Hj(E∗) is a
free group of rank k(j) := (n − k)!/(n − j)!(n − j − k)! if 0 ≤ j ≤ n − k

and 0 otherwise. Therefore

K∗(Gn/Gk) ∼=
n−k⊕
j=0

�n−j Zk(j) = Z2n−k−1 ⊕ �Z2n−k−1
.

Theorem 3.5 (The dual Pimsner-Voiculescu tower). Under the assumptions
of Theorem 3.4 there is a KKG-tower

(16)

Cw t (A) �nDn−1(A)

�Cwn t (A) �2Cwkn−1 t (A)

�nD̃2(A) �nD̃1(A) A �r Ĝ

�n−1Cwk2 t (A) �nCw t (A)

where D̃i (A) := Di �Ĝ A.
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For a homological functor F : KK Ĝ → Ab, the dual Pimsner-Voiculescu
tower of A allows us to calculate F(A) in terms of the objects F(C∗

r (G)⊗t (A)).
As we shall see below, Ĝ–C∗-algebras of the form C∗

r (G) ⊗ t (A) behaves
similarly to proper actions. Compare this result to Theorem 4.4 of [8].

Proof. Consider the braided tensor product by �nA and the tower (10):

Cw C∗(G) Ĝ A �nC0(Yn−1) Ĝ A

�Cwn C∗(G) Ĝ A

�nC0(Y1) Ĝ A A

�nCw C∗(G) Ĝ A

Taking crossed product between this tower and Ĝ implies the Theorem since
the following equivariant Morita equivalences follows from (3)

(C∗(G) �Ĝ A) �r Ĝ ∼M t(A)

and

(C0(Yi) �Ĝ A) �r Ĝ ∼M (C0(Yi) �r Ĝ) �Ĝ A = Di �Ĝ A.

One of the main motivations behind this paper was to give a precise de-
scription of the Baum-Connes property of duals of Hodgkin-Lie groups. The
Baum-Connes property for coactions of compact Lie groups was given mean-
ing to and was proved to hold in [11]. More generally, this fits into the program
of generalizing the Baum-Connes property to quantum groups. So far, it is not
known what a suitable property the Baum-Connes property should be for a
general locally compact quantum group. For discrete quantum groups which
are torsion-free, in the sense of [9], there is a formulation and as mentioned
above duals of compact Hodgkin-Lie groups are torsion-free.

The problem that arises when one tries to define the Baum-Connes assembly
mapping for a quantum group is that there is no natural notion of a proper action
and there are in general too many quantum homogeneous spaces. It is much
easier to generalize certain notions of free actions than proper actions of a
quantum group by just saying that an action of a discrete quantum group �

on a C∗-algebra A is truly free if there is a C∗-algebra A0 and an equivariant
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∗-isomorphism A ∼= A0 ⊗min C0(�) with � only acting on the second leg. In
the case of a group, there are many free actions that are not truly free but this
stronger notion of a free action will suffice for our purposes.

Restricting one’s attention to generalizing the Baum-Connes property of
the simpler class of torsion-free discrete groups to the quantum setting, when
proper actions are free, Meyer introduced a class of quantum groups known
as torsion-free in [9]. Following [9], we say that a discrete quantum group �

is torsion-free if every coaction of the compact quantum group �̂ on a finite-
dimensional C∗-algebra is Morita equivalent to a trivial coaction on a direct
sum of C:s. This fact implies that any finite-dimensional projective represent-
ation of the dual compact quantum group is equivalent to a representation. If
� is a discrete group, coactions of the dual compact quantum group on finite-
dimensional C∗-algebras that are not Morita equivalent to a trivial coaction
on a direct sum of C:s correspond to finite subgroups so a discrete group is
torsion-free if and only if it is torsion-free in the sense of [9].

For a torsion-free quantum group a proper action should correspond to a free
action. Under Baaj-Skandalis duality, a truly free � −C∗-algebra corresponds
to a trivial �̂-action. Let CI �̂ denote the image of t : KK → KK �̂ . The
triangulated category 〈CI �̂〉 is defined as the localizing subcategory generated
by CI �̂ . Following the formulation of [9], � is said to satisfy the strong Baum-
Connes property if the embedding of triangulated categories 〈CI �̂〉 → KK �̂ is
essentially surjective. The strong Baum-Connes property of � is equivalent to
that any �−C∗-algebra is in the localizing category generated by all truly free
actions. So regardless of what notion of a proper action we choose, the strong
Baum-Connes conjecture will imply that the localizing category generated by
all such proper actions will be KK� . The quantum group is said to satisfy
the Baum-Connes property if the same statement holds after localizing with
respect to the kernel of equivariant K-theory.

In [11] the Baum-Connes property was formulated in the slightly more
general setting of duals of compact Lie groups. The finite-dimensional pro-
jective representations of a compact Lie group G correspond to the torsion
classes of H 2(G, S1), which can be thought of as the torsion of Ĝ. When
G is Hodgkin, H 2(G, S1) is torsion-free so Ĝ is torsion-free. In this case a
“proper” action is an object of the additive category generated by Ĝ-algebras
that are Baaj-Skandalis dual to A0 ⊗Cω, with Cω denoting the endomorphisms
of a projective representation ω and A0 having trivial G-action. So the substi-
tute in the setting of [11] for proper actions is the category of tensor products
between Baaj-Skandalis duals of coactions on finite-dimensional C∗-algebras
and trivial actions, just as the truly free actions form a substitute for proper
actions of torsion-free quantum groups. The Baum-Connes property of coac-
tions of a compact Hodgkin-Lie group is a direct consequence of Theorem 3.5.
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The method of proof of Proposition 2.1 of [11] can be used to generalize both
Theorem 3.4 and Theorem 3.5 to arbitrary compact Lie group.

Finally, let us mention a promising generalization of Theorem 3.5 to Woro-
nowicz deformations. It was proved in [12] that the compact quantum group
SUq(2) satisfies that C(SUq(2)/T ) is KKD(SUq(2))-isomorphic to C2 for q ∈
]0, 1[. So if we apply the induction functor Ind

SUq(2)

T : KKT → KKSUq(2) to
the distinguished triangle Baaj-Skandalis dual to (5) and use the isomorphism
of Nest-Voigt we arrive at the distinguished triangle in KKD(SUq(2)):

C2 C2

C(SUq(2)).

Using the technique from the proof of Theorem 3.5 any A ∈ KK
̂SUq(2) fits into

a distinguished triangle

C2 t (A) C2 t (A)

A � ŜUq(2).

This distinguished triangle gives an alternative proof of the strong Baum-
Connes property for ̂SUq(2), a result first proved in [17]. The interesting part
about this proof is that it only relies on the isomorphism C(Gq/T ) ∼= Cw

in KKD(Gq). So if such an isomorphism exists for a simply connected semi-
simple compact Lie group G, the strong Baum-Connes conjecture holds for
Ĝq , the quantum dual of the Woronowicz deformation of G. To formulate the
Baum-Connes property for Ĝq we must of course know that it is torsion-free,
a statement proved in [17] for G = SU(2) and the general case was proved
in [6]. Another striking application of such an isomorphism is that the method
above for calculating K-theory of homogeneous spaces can be generalized to
classical quantum homogeneous spaces of the Woronowicz deformations.
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