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RADIAL GROWTH OF HARMONIC FUNCTIONS
IN THE UNIT BALL

KJERSTI SOLBERG EIKREM and EUGENIA MALINNIKOVA∗

Abstract
Let �v be the class of harmonic functions in the unit disk or unit ball in Rm which admit a radial
majorant v(r). We prove that a function in �v may grow or decay as fast as v only along a set of
radii of measure zero. For the case when v fulfills a doubling condition, we give precise estimates
of these exceptional sets in terms of Hausdorff measures.

1. Introduction

Radial behavior of harmonic functions in the unit disk and unit ball in Rm is
a classical topic in analysis. In this article we consider harmonic functions
bounded a priori by some radial majorant and discuss their radial growth.

It follows from a theorem of N. N. Lusin and I. I. Privalov, see [15], that
there exist harmonic functions in the unit disk that tend to infinity along almost
each radius. Moreover, a generalization of this result obtained by J.-P. Kahane
and Y. Katznelson [11], shows that such functions may be bounded by an
arbitrarily slow growing radial majorant.

Let v(r) be a positive increasing continuous function on [0, 1) and assume
that limr→1 v(r) = +∞. Let B be the unit ball in Rm, we define

(1) �m
v = { u : B → R,�u = 0, u(x) ≤ Kv(|x|) for some K > 0 },

and

�m
v = { u : B → R,�u = 0, |u(x)| ≤ Kv(|x|) for some K > 0 }.

Harmonic functions of the class �2
v with v(r) = |log(1 − r)| were studied

by B. Korenblum in [12]. This class as well as more general classes that cor-
respond to v(r) = | log(1 − r)|s appear in connection with the related spaces
of analytic functions in the unit disk, see also [16], [3]. Two-sided estimates
and classes �2

v arise when one considers invertible elements in these spaces
of analytic functions as in [2]. Radial growth of harmonic functions in the unit
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disk bounded by a multiple of | log(1−r)| was studied by A. Borichev,Yu. Ly-
ubarskii, E. Malinnikova and P. Thomas in [4], see also [13]. In this article we
discuss to what extent the results in [4] remain true for general majorants and
higher dimensional spaces.

The main aim of this work is to estimate the size of the set of the radii along
which a function from�m

v or�m
v grows or decays as fast as the majorant v(r).

For each function u ∈ �m
v we define the following subsets of the unit sphere

E−(u) =
{
y ∈ S : lim sup

r→1−
u(ry)

v(r)
< 0

}
,

E+(u) =
{
y ∈ S : lim inf

r→1−
u(ry)

v(r)
> 0

}
.

Our first result is the following:

Theorem 1.1. If u ∈ �m
v then σ(E−(u)) = σ(E+(u)) = 0, where σ is the

usual surface measure on the unit sphere in Rm.

We give more precise estimates of the sets E±(u) when v satisfies the
following doubling condition

(2) v(1 − d/2) ≤ Dv(1 − d).

The constants K and D will preserve their identities throughout this article.
For every increasing continuous function λ : [0,+∞) → [0,+∞) with

λ(0) = 0 we denote by Hλ the corresponding Hausdorff measure.

Theorem 1.2. Let v satisfy (2).
(a) If u ∈ �m

v and λ is a continuous increasing function, λ(0) = 0 and

λ(t) = o(tm−1v(1 − t)α) (t → 0),

for all α > 0, then Hλ(E
+(u)) = Hλ(E

−(u)) = 0.
(b) For each β > 0 there exists u ∈ �m

v and an increasing continuous
function λβ , λβ(0) = 0 and λβ(t) = O(tm−1v(1 − t)β) (t → 0), such that
Hλβ (E

+(u)) > 0.

From (b) we see that the estimate for E− in (a) is sharp as well, since
u ∈ �m

v and E−(−u) = E+(u).
In this theorem there is no difference between the size of the setsE±(u) for

u ∈ �m
v and u ∈ �m

v . The situation is different for positive harmonic functions
as was also noted in [4]. We generalize the result on positive harmonic functions
to a wide class of weights.
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Theorem 1.3. Assume that λ(t) = tm−1v(1−t) is an increasing continuous
function and λ(0) = 0. There exists a positive function u ∈ �m

v such that
Hλ(E

+(u)) > 0.

As the next result shows, the choice of λ for given v in the theorem above
is optimal. Moreover, no a priori growth estimate is needed for the estimate of
the Hausdorff measure Hλ of the set of radii along which a positive harmonic
function grows as v(r). More precisely,

Theorem 1.4. Assume that λ(t) = tm−1v(1−t) is an increasing continuous
function and λ(0) = 0. Let u be a positive harmonic function in the unit ball
of Rm, we define

(3) F+
v (u) =

{
y ∈ S : lim sup

r→1−
u(ry)

v(r)
> 0

}
.

Then F+
v (u) is a countable union of sets of finite Hλ-measure.

The article is organized as follows. We collect some preliminary results on
harmonic measure and Hausdorff measures in the next section. Then we prove
Theorem 1.1 and Theorem 1.2. For part (a) of Theorem 1.2 our arguments
are similar to those in [4]. In higher dimensions they are based on estimates
of harmonic measure due to B. E. Dahlberg, [6]. A new approach is used
to construct examples of functions with a large set of extremal growth in
dimension larger than two in the proof of Theorem 1.2(b).

In the last section we study the radial growth of positive harmonic func-
tions. We prove Theorem 1.4 first, then we characterize boundary measures that
correspond to positive functions in �m

v and describe an example that proves
Theorem 1.3. Both constructions (for Theorem 1.2(b) and Theorem 1.3) em-
ploy Cantor-type sets on the unit sphere.

2. Preliminaries

2.1. Poisson kernel and some estimates

Let σ be the (m − 1)-dimensional surface measure on S and denote σ(S) =
γm−1. The Poisson kernel in the m-dimensional unit ball is

P(x, ζ ) = 1

γm−1

1 − |x|2
|x − ζ |m .

Assume for simplicity that x = (1, 0, . . . , 0). Using hyperspherical co-
ordinates for ζ ∈ S we have ζ = (cosφ, ζ ′), where |ζ ′| = sin φ. Let

P̃m,r (φ) = 1

γm−1

1 − r2

(1 + r2 − 2r cosφ)m/2
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and

Qm(r, φ) = −∂φP̃m,r (φ) = 1

γm−1

mr(1 − r2) sin φ

(1 + r2 − 2r cosφ)(m+2)/2
.

Then P(rx, ζ ) = P̃m,r (φ).
Let d(x, ζ ) be the geodesic distance between two points x and ζ on S. Then

let B(x, φ) = {ζ ∈ S : d(x, ζ ) < φ} be the hyperspherical cap of radius φ
with center at x. It can be shown that for the (m − 1)-dimensional surface
measure of the cap

(4) C1φ
m−1 ≤ σ(B(x, φ)) ≤ C2φ

m−1,

where the constants depend on m.
We will need some estimates for integrals of Qm.

(i) We have

∫ 1−r

0
Qm(r, φ) dφ ≤ C3

∫ 1−r

0

r(1 − r2)φ

((1 − r)2 + 2r(1 − cosφ))(m+2)/2
dφ

≤ C3

∫ 1−r

0

r(1 − r2)φ

(1 − r)m+2
dφ,

hence

(5)
∫ 1−r

0
Qm(r, φ) dφ ≤ C4

1

(1 − r)m−1
.

(ii) For d > 0

∫ π

d

Qm(r, φ) dφ ≤ C3

∫ π

d

r(1 − r2)φ(
(1 − r)2 + r 4

π2φ2
)m/2+1 dφ

≤ C3

∫ π

d

r(1 − r2)φ(
r 4
π2φ2

)m/2+1 dφ,

thus

(6)
∫ π

d

Qm(r, φ) dφ ≤ C5r
−m/2d−m ≤ C6d

−m

when r > 1
2 .
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(iii) Furthermore, by (4),
∫ π

1−r
σ (B(x, φ))Qm(r, φ) dφ ≤

∫ π

1−r
C2φ

m−1Qm(r, φ) dφ

≤ C7

∫ π

1−r
(1 − r2)φ−2

rm/2
dφ

≤ C8r
−m/2,

so for r > 1
2 ,

(7)
∫ π

1−r
σ (B(x, φ))Qm(r, φ) dφ ≤ C9.

2.2. Harmonic measure in Lipschitz domains

A bounded domain� ∈ Rm is a Lipschitz domain if there is a constant C such
that to each point q ∈ ∂� there corresponds a coordinate system (ξ, η), ξ ∈
Rm−1, η ∈ R, and a function ϕ such that |ϕ(ξ1)−ϕ(ξ2)| ≤ C|η1 −η2| for which
� ∩ V = {(ξ, η) : ϕ(ξ) < η} for some neighborhood V of q. The smallest
such constant C is called the Lipschitz constant.

Let S be the unit sphere in Rm. For ζ ∈ S and a < 1 we use the standard
notation �aζ = conv(ζ, aB) for the convex hull of ζ and the m-dimensional
ball of radius a. Given a compact set F ∈ S we consider the cone-domain
G = G(F, a) = ⋃

ζ∈F �
a
ζ . It is a Lipschitz domain, and the Lipschitz constant

ofG(F, a) depends on a only. Given a Lipschitz domain�, a subset A ⊂ ∂�

and a point z ∈ �, we denote by ω(z,A,�) the harmonic measure of A at the
point z.

A celebrated result by B. E. Dahlberg [6] says that on the boundary of a
Lipschitz domain the harmonic measure and the surface measure are mutually
absolutely continuous. We need a quantitative form of this result for cone-
domains and refer the reader to [6], [10] and [1, Chapter 4.2].

Theorem A. Let a > 0, then there exist α and C that depend on a and m
only such that for any cone-domain G = G(F, a) in the unit ball of Rm and
any A ⊂ Q ⊂ ∂G the following inequality holds

ω(0, A,G)

ω(0,Q,G)
≥ C

(
η(A)

η(Q)

)α
,

where Q is a ball on ∂G and η is the surface measure on ∂G.
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2.3. Hausdorff measures

We will refer to generalized Hausdorff measures in Rm as they are defined for
example in [14, p. 59]. Let h be an increasing continuous function on [0,+∞),
h(0) = 0, then for any E ⊂ Rm

Hh(E) = lim inf
δ→0

{∑
j

h(dj ) : E ⊂
⋃
j

Fj , dj = diam(Fj ) < δ

}
.

We assume in addition thath(t/2) ≥ ch(t) for some c > 0. Then the Hausdorff
measure is equivalent to the so-called net measure Nh(E), defined with Fj
being half-open dyadic cubes with sides parallel to the coordinate axis, in the
following sense: Hh(E) ≤ Nh(E) ≤ A(c,m)Hh(E), see [14, p. 76]. Further,
the following property holds, if f : Rk → Rm is a Lipschitz map and E ⊂ Rk ,
then Hh(f (E)) ≤ LHh(E), where L depends on the Lipschitz constant of f
and on c. The proofs follow readily from the definitions.

We will use Cantor-type sets having the following structure:

C =
⋂
s

Cs, Cs ⊃ Cs+1, C0 = [0, 1],

where each set Cs is a union of Ns segments {I (s)j }j of the same length ls . For

each such segment the intersectionCs+1 ∩I (s)j is a union of ks non-overlapping
segments of length ls+1. We assume, of course, that

(i) ls ↘ 0 as s → ∞, (ii) ksls+1 < ls, and (iii) Ns = k0k1 . . . ks−1.

The next result is Theorem 3 in [4].

Lemma A. Let λ : [0, 1) → [0,+∞) be a continuous increasing function
with λ(0) = 0, such that for some a > 0 and s > s0

(8)
λ(l)

l
≥ a

λ(ls+1)

ls+1
for any l ∈ [ls+1, ls).

Then

(9) lim inf
s→∞ Nsλ(ls) ≥ Hλ(C) ≥ a

2
lim inf
s→∞ Nsλ(ls).

Two slightly more delicate results that we need, give estimates of the Haus-
dorff measure of (symmetric) Cantor sets and cylinder sets in higher dimen-
sions. Note also that we are not interested in the exact value of the Hausdorff
measure but only in its positivity.

Lemma B (Hatano, [7]). Let h be a continuous increasing function with
h(0) = 0. Let {kq}∞q=1 be a sequence of positive integers and {lq}∞q=0, l0 = 1
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be a sequence of positive numbers that satisfy kq+1lq+1 < lq . The general-
ized symmetric Cantor set E in Rm defined by the sequences {kq} and {lq} is
constructed in the following way: Let C0 = [0, 1], C1 is obtained from C0 by
removing k1 − 1 open intervals of equal lengths such that remaining k1 closed
intervals are of length l1. Then, to get C2, k2 − 1 open intervals are removed
from each interval of C1 such that remaining intervals are of length l2, etc.
Define C = ⋂

n Cn and E = C × C × · · · × C ⊂ [0, 1]m.
Then Hh(E) > 0 if and only if lim infq→∞(k1 . . . kq)

mh(lq) > 0.

The measure used in [7] is not the classical Hausdorff measure but one
defined using coverings by all open cubes. As we mentioned above, under
our condition on h the two measures are equivalent (up to a multiplicative
constant).

The next statement is intuitively clear but we were not able to find a precise
reference, so we outline a short proof.

Lemma 2.1. Let h(t) = tk−1ν(t), where ν is an increasing continuous
function on [0,+∞) and ν(0) = 0. Assume also that ν(t/2) ≥ cν(t) for some
c > 0. If F ⊂ [0, 1] is compact, Hν(F ) > 0, and E = F × [0, 1]k−1 ⊂ Rk ,
then Hh(E) > 0.

Proof. We will use that Hν is equivalent toNν and Hh is equivalent toNh.
Assume that Nh(E) = 0, then for any ε > 0 and δ > 0 there exists a finite
family of half-open dyadic cubes {Qα} with sides lα = 2−nα < δ that covers
E = F × [0, 1]k−1 and such that

∑
α h(lα) < ε. Indeed we can find an infinite

family for which
∑
h(lα) < 2−kε, then for each cubeQ in this family, take an

open cube that containsQ, has side length which is twice that ofQ and can be
covered by 2k half-open dyadic cubes of the same size as Q. Then we choose
a finite sub-cover of the compact set E.

Let n = minα nα and N = maxα nα , we divide [0, 1] into dyadic intervals
Ij of length 2−n, [0, 1] = ⋃

j Ij . For each j consider cubesKj,s = Ij ×Js, 1 ≤
s ≤ 2n(k−1), where Js is a dyadic subcube of [0, 1]k−1 with side length 2−n.
Now for each s let

dj,s =
∑

α:Qα⊂Kj,s
h(lα).

Choose t = t (j) such that dj,t = mins dj,s and replace the covering {Qα} by a
new one {Qβ} such that

∑
β h(lβ) ≤ ∑

α h(lα), and for each j the cubes {Qβ}
contained in Kj,s can be obtained from the cubes {Qα} contained in Kj,t(j)
by translation. If for the new family min nβ > n, we repeat the procedure.
If not, we get some chains of cubes Kj,1, . . . , Kj,2(k−1)n in the new family and
repeat the procedure on the complement of these chains. Anyway the size of
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the smallest cubes is always at least 2−N and after finitely many steps we find
a family of intervals Iγ of length lγ < δ that covers F and

∑
γ

ν(lγ ) =
∑
γ

h(lγ )l
−(k−1)
γ < ε.

Thus Hν(F ) = 0.

3. Sets of extremal growth or decay

3.1. Lebesgue measure of sets of extremal growth

In this subsection we first estimate the Lebesgue measure of the sets E±(u)
for arbitrary u ∈ �m

v .

Proposition 3.1. Suppose that u ∈ �m
v , then σ(E−(u)) = 0.

Proof. We have E−(u) = ⋃
n Fn = ⋃

n

{
ζ ∈ S : u(rζ ) ≤ − 1

n
v(r), r ≥

1 − 1
n

}
. Assume σ(E−(u)) > 0. Then σ(Fn) > 0 for some n, and Fn is a

compact subset of S. Let G = ⋃
ζ∈Fn �

a
ζ and Gα = G ∩ αB for α < 1. We

have ∂G = Fn ∪ L, where L = ∂G ∩ B.
We will estimate u(0) using harmonic measure in the domain Gα . First, it

follows from Dahlberg’s theorem that ω(0, Fn,G) = c > 0. Now let Lα =
∂G ∩ αB = L ∩ αB and let pα(A) be the radial projection of a set A onto αS,
where 0 < α ≤ 1. Then

∂Gα = Lα ∪ αFn ∪ pα(L \ Lα).
Choose s > 1 − 1

n
such that

ω(0, L \ Ls,G) < c

3n
and σ(p1(L \ Ls)) < γm−1c

3n
.

Let s < t < 1. Then, since Gt ⊂ G,

ω(0, Lt \ Ls,Gt) ≤ ω(0, Lt \ Ls,G) ≤ ω(0, L \ Ls,G) < c

3n
.

Further,

ω(0, pt (L \ Lt),Gt) ≤ ω(0, pt (L \ Lt), tB) = 1

γm−1
σ(p1(L \ Lt)) < c

3n
.

Finally, we want to estimate ω(0, tFn,Gt). Note that tG ⊂ Gt , then

ω(0, tFn,Gt) ≥ ω(0, tFn, tG) = ω(0, Fn,G) = c.
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Now we apply the estimates for the function u, which is harmonic in Gt ,
using that ∂Gt = Ls ∪ (Lt \ Ls) ∪ tFn ∪ pt(L \ Lt).

u(0) ≤ v(s)ω(0, Ls,G)+ v(t)
2c

3n
− v(t)

n
c ≤ v(s)− v(t)c

3n
.

When t goes to 1 we get a contradiction, since v(t) → ∞.

Thus the estimate from above for u, u(x) ≤ Kv(|x|), implies that the set
of the radii along which u decays at least as fast as −v has zero measure.
Theorem 1.1 formulated in the introduction follows.

To deal with the set E+(u) for u ∈ �(v), we assume that the function v
fulfills (2). The proof follows the argument from [4].

Lemma 3.2. Letu ∈ �m
v where v satisfies (2) and assumeu(x) > cv(|x|) for

somex ∈ B. Then there exists τ = τ(K,D, c) > 0 such thatu(x ′) > c/2v(|x|)
whenever |x − x ′| < τ (1 − |x|), |x ′| = |x|.

The same statement holds if we write < in both inequalities and assume
that c < 0.

Proof. Let y, y ′ ∈ B. Assume that |y| = |y ′| and |y − y ′| < τ1 (1 − |y|),
where τ1 < 1, then for any ζ ∈ S

|y ′ − ζ | ≥ |y − ζ | − |y − y ′| > |y − ζ | − τ1|y − ζ | = (1 − τ1)|y − ζ |.
Thus |y − ζ |m(1 − τ1)

m < |y ′ − ζ |m and

(10) P (y, ζ ) > (1 − τ1)
mP (y ′, ζ ).

Let r = |x|, R = (1 + r)/2 and denote q = q(τ1) = (1 − τ1)
m. We apply

(10) with y = x
R

, y ′ = x ′
R

and |y − y ′| < τ1 (1 − |y|). Then

u(x) =
∫
S

u(Rζ)P

(
x

R
, ζ

)
dσ(ζ )

= qu(x ′)+
∫
S

u(Rζ)

(
P

(
x

R
, ζ

)
− qP

(
x ′

R
, ζ

))
dσ(ζ )

≤ qu(x ′)+
∫
S

Kv(R)

(
P

(
x

R
, ζ

)
− qP

(
x ′

R
, ζ

))
dσ(ζ )

= qu(x ′)+ (1 − q)Kv(R) ≤ qu(x ′)+ (1 − q)KDv(r).

If τ1 is such that c−(1−q)KD ≥ c
2q and |x−x ′| < τ1

2 (1−r) < τ1
(
1− r

R

)
, then

u(x ′) > c
2v(r). To complete the proof it suffices to choose τ(K,D, c) = τ1/2.
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For the second case when c < 0, we use the inequality

u(x ′) ≤ qu(x)+ (1 − q)KDv(r) < (qc + (1 − q)KD) v(r)

and choose τ1 such that qc + (1 − q)KD ≤ c
2 .

Corollary 3.3. If u ∈ �m
v where v satisfies (2), then σ(E+(u)) = 0.

Proof. Note that by Lemma 3.2 u is bounded from below in �aζ for any
ζ ∈ E+(u) and some a = a(ζ ). Then by results of L. Carleson [5] (see also [9],
[6]), u has a finite non-tangential limit at almost each point ofE+(u). Applying
the lemma once again, we see that the non-tangential limit at ζ ∈ E+(u) is
infinite. Thus σ(E+(u)) = 0.

3.2. Estimates of Hausdorff measures

For weights that satisfy the doubling condition we can give more precise es-
timates of the size of the exceptional sets. We now prove Theorem 1.2(a)
formulated in the introduction.

Proof of Theorem 1.2(a). We start withE+(u). It is enough to prove the
statement for each set

En =
{
ζ ∈ S : u(rζ ) ≥ 1

n
v(r), r ≥ 1 − 1

n

}
.

By Lemma 3.2, there exists a such that u(x) ≥ 1
2nv(|x|) for any x ∈ �aζ where

|x| > 1 − 1
n

and ζ ∈ E+(u).
Let G = ⋃

ζ∈En �
a
ζ and Gt = G ∩ tB. Clearly we may assume that u ≥ c0

on G for some c0 < 0. Let b = b(a) be such that

∂Gt ∩ tS = tEb(1−t)
n = {tζ ∈ tS : |ζ − ζ0| < b(1 − t) where ζ0 ∈ En}.

Then by harmonic measure estimate for Gt when t > 1 − 1
n

, we obtain

u(0) ≥ c0 + ω(0, tEb(1−t)
n ,Gt )

v(t)

2n
.

By Theorem A there exists C and γ > 0 that depend only on a such that

ω(0, A,Gt) ≥ Cσ(A)γ ,

here σ is the (m− 1)-dimensional surface measure on tS. This implies

σ(Eb(1−t)
n )γ ≤ C1

v(t)
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where C1 = C1(n, u, a). So for all ε > 0 small enough we get by applying (2)

σ(Eεn) ≤ C2

(
v

(
1 − ε

b

))−1/γ ≤ C3 (v(1 − ε))−1/γ .

We coverEn by a finite collection of balls {Bj : j ∈ J } of radius ε
5 and centers

at points in En. By the Vitali covering lemma (see for example [8, p. 2])
there exists a subcollection J ′ ⊆ J where {Bj : j ∈ J ′} are disjoint and⋃
j∈J Bj ⊆ ⋃

j∈J ′ 5Bj , and we also have
⋃
j∈J ′ 5Bj ⊆ Eεn. Then En can be

covered by Nε balls {5Bj : j ∈ J ′} of radius ε, where

εm−1Nε ≤ 5m−1σ(Eεn),

thus
Nε ≤ 5m−1ε−m+1C3 (v(1 − ε))−1/γ .

Then

Hλ(En) ≤ lim inf
ε→0

Nελ(ε) ≤ lim inf
ε→0

5m−1ε−m+1C3 (v(1 − ε))−1/γ λ(ε).

Sinceλ(t) = o(tm−1(v(1−t))w), (t → 0), for anyw > 0, we get Hλ(En) = 0.
The proof for Hλ(E

−(u)) is similar; we then use the second part of Lem-
ma 3.2.

Remark 3.4. If v(t) = (1 − t)−γ for some γ > 0 and u ∈ �m
v , then the

theorem above implies in particular that Hλ(E
+(u)) = 0 and Hλ(E

−(u)) = 0
when λ(t) = tm−1 log 1

t
. On the other hand, we will show in section 3.4 that

for any ε > 0 there exists u ∈ �m
v such that

dimE+(u) > m− 1 − ε.

3.3. Auxiliary functions

We now begin to prove Theorem 1.2(b). First we construct auxiliary functions
uk in B that resemble Im(z2k ) in the unit disk.

For each positive integer k let Sk and Tk be subsets of the interval [0, 2π)
defined by

Sk =
2k−1⋃
j=0

[2jπ2−k, (2j + 1)π2−k),

Tk =
2k−1⋃
j=0

[(2j + 1/4)π2−k, (2j + 3/4)π2−k].
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Then on the unit sphere S in Rm we define

Ek = {η ∈ S, η = (t cosφ, t sin φ, η3, . . . , ηm), t ≥ 0, φ ∈ Sk},
and

Fk = {η ∈ S, η = (t cosφ, t sin φ, η3, . . . , ηm), t ≥ 3/4, φ ∈ Tk}.
Let fk = 1 on Ek and fk = −1 on S \ Ek . Further, let uk = P ∗ fk be the
corresponding harmonic function in the unit ball B.

Lemma 3.5. The function uk has the following properties

(a) |uk| ≤ 1 on B;

(b) uk(rη) ≥ 0 when η ∈ Ek;
(c) For each d ∈ N there exists cd,m such that |uk(x)| ≤ cd,m2−kd(1−|x|)−d ;

(d) There exists am > 0 such that uk(rη) > 1/4 when r > 1 − am2−k and
η ∈ Fk .

Proof. By the maximum principle (a) follows immediately. Note further
that fk(x1, x2, . . . , xm) = −fk(x1,−x2, . . . , xm), and thus

uk(x) = 1

γm−1

∫
S

1 − |x|2
|x − y|m fk(y) dy

satisfies uk(x1, x2, . . . , xm) = −uk(x1,−x2, . . . , xm). In particular,

(11) uk(x1, 0, . . . , xm) = 0.

Let αk = π2−k and

Ak =

⎡
⎢⎢⎢⎢⎣

cosαk − sin αk 0 . . . 0

sin αk cosαk 0 . . . 0

0 0
...

... Im−2

0 0

⎤
⎥⎥⎥⎥⎦ ,

where Im−2 is the identity matrix. Then Ak is an orthogonal matrix and the
corresponding transformation of Rm maps the unit sphere to itself, moreover
Ak(Ek) = S \ Ek . Then

fk(Akx) = −fk(x) and uk((Ak)
−1x) = −uk(x).

Now, taking into account (11), we get

uk(s cos lαk, s sin lαk, x3, . . . , xm) = 0
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for any l = 0, 1, . . . , 2k+1 − 1. Fix l and consider the set

Gk,l = {x ∈ B, x = (s cosφ, s sin φ, x3, . . . , xm), φ ∈ (lαk, (l + 1)αk)}.
The boundary ofGk,l consists of a part of the unit sphere and of subsets of the
hyperplanes

{(sin lαk)x1 − (cos lαk)x2 = 0}
and

{(sin(l + 1)αk)x1 − (cos(l + 1)αk)x2 = 0}.
On both subsets of the hyperplanes uk = 0, and on the corresponding part of
the sphere all boundary values of uk equal 1 if l is even and −1 if l is odd.
Anyway, uk does not change sign in Gk,l and (b) follows.

To prove (c) assume first that d = 1. We write

uk(x) = 1

γm−1

∫
Ek

1 − |x|2
|x − y|m dy − 1

γm−1

∫
S\Ek

1 − |x|2
|x − y|m dy

= 1

γm−1

∫
Ek

(
1 − |x|2
|x − y|m − 1 − |x|2

|x − Aky|m
)
dy.

We want to estimate the difference under the integral sign. Note that

max
y∈B

|y − Aky| = 2 sin αk/2 < αk

and assume that 1 − |x| > αk , then

∣∣∣∣ 1

|x − y|m − 1

|x − Aky|m
∣∣∣∣ ≤ m|y − Aky|(|x − Aky| + αk)

m−1

|x − y|m|x − Aky|m

≤ mαk2m−1

(1 − |x|)|x − y|m .

We obtain |uk(x)| ≤ cmπ2−k(1 − |x|)−1 when 1 − |x| > αk , otherwise the
inequality follows from (a).

In general, for d ≥ 2, we define Vx(y) = |x − y|−m and notice that
∫
Ek

Vx(A
j

ky) dy =
∫
Ek

Vx(y) dy, when j is even, and

∫
Ek

Vx(A
j

ky) dy =
∫
S\Ek

Vx(y) dy, when j is odd.
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Further, we have
∑d
j=0(−1)j

(
d

j

) = (1 − 1)d = 0 and
∑d
j=0

(
d

j

) = (1 + 1)d =
2d . Thus

uk(x) = 1 − |x|2
γm−1

∫
Ek

Vx(y) dy − 1 − |x|2
γm−1

∫
S\Ek

Vx(y) dy

= 1 − |x|2
γm−1

2−d+1
∫
Ek

d∑
j=0

(−1)j
(
d

j

)
Vx(A

j

ky) dy.

To estimate the sum under the integral sign let

y = (y0 cosψ, y0 sinψ, y1) ∈ R × R × Rm−2.

We have Ajky = (y0 cos(ψ + jαk), y0 sin(ψ + jαk), y1) and Vx(y) =
hx,y0,y1(ψ). Then we write the Taylor polynomial of order d − 1 for hx,y0,y1 at
ψ ,

Vx(A
j

ky) = hx,y0,y1(ψ + jαk)

=
d−1∑
l=0

h(l)x,y0,y1
(ψ)

l!
(jαk)

l + h(d)x,y0,y1
(ψ + βjk)

d!
(jαk)

d .

A straightforward estimate of the derivatives of h shows that

|h(d)x,y0,y1
(φ)| ≤ C|x − (y0 cosφ, y0 sin φ, y1)|−m−d

≤ C(|x − y| − y0|φ − ψ |)−m−d ,

where C depends only on m and d. Applying the difference relation

d∑
j=0

(−1)j
(
d

j

)
j l = 0,

when l < d (see for example [18, p. 42]), we get

∣∣∣∣
d∑
j=0

(−1)j
(
d

j

)
Vx(A

j

ky)

∣∣∣∣ ≤ C2−dk(|x − y| − dαk)
−m−d .

Now for 1 − |x| > 2dαk and |y| = 1 we obtain

∣∣∣∣
d∑
j=0

(−1)j
(
d

j

)
Vx(A

j

ky)

∣∣∣∣ ≤ C2m+d2−dk|x − y|−m(1 − |x|)−d ,
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and the integration over Ek gives

uk(x) ≤ cd,m2−dk(1 − |x|)−d .
Note also that for 1 − |x| < 2dαk the inequality above (with a large enough
constant) follows from |uk| ≤ 1, so (c) holds.

Finally, we prove (d). Let η ∈ Fk and x = rη. It is easy to check that
B(η, 2−k−1) ⊂ Ek . A direct calculation shows that for am small enough

1

γm−1

∫
S\B(η,2−k−1)

1 − r2

|rη − y|m dy <
3

8
,

when r > 1 − am2−k . Thus uk(x) > 1 − 2 3
8 = 1

4 .

It will be more convenient to use functions like Re(z2k ), so we define

hk(x) = uk(Ak+1x); Bk =
2k−1⋃
j=0

[(2j − 1/4)π2−k, (2j + 1/4)π2−k].

It is easy to check that (d) implies hk(rη) > 1/4 when

(12) η ∈ Hk = {
y ∈ S, y = (t cosφ, t sin φ, y3, . . . , ym), t ≥ 3

4 , φ ∈ Bk
}

and r > 1 − am2−k .

3.4. Construction of u ∈ �m
v with a large set of radial growth

Now we can prove Theorem 1.2(b).

Proof of Theorem 1.2(b). First we construct νβ(t) = O(tv(1 − t)β).
The assumption on v implies

d

2
v

(
1 − d

2

)α
≤ d

2
Dαv(1 − d)α <

3

4
dv(1 − d)α

when α ≤ α0.
For simplicity we define a new function g such that v(r) = g

(
1

1−r
)
. We will

keep this notation throughout the paper. Then (2) is equivalent to

(13) g(2x) ≤ Dg(x).

We choose α ≤ min{α0, β}, and define νβ by

νβ(π2−n) = π2−nv(1 − 2−n)α = π2−ng(2n)α, n ≥ 2,



288 kjersti solberg eikrem and eugenia malinnikova

and νβ is linear on [π2−n−1, π2−n]. Then limt→0 νβ(t) = 0 and νβ is continu-
ous and increasing. For t ∈ [π2−n−1, π2−n) we have

νβ(t)

tg( 1
t
)β

≤ π2−ng(2n)α

π2−n−1g(2n/π)β
= 2

g(2n)α

g(2n/π)β

≤ 2
g(2n)α

g(2n−2)β
≤ 2D2β g(2

n)α

g(2n)β
≤ 2D2β

when n ≥ n0, so νβ(t) = O(tv(1 − t)β) when t → 0. We also define a new
function λβ(t) = tm−2νβ(t).

Fix A1 > 1 and define b1 = 1,

bn+1 = min{l : g(2l) > A1g(2
bn)}, n = 2, 3, . . . .

By assumption, g(2bn+1) ≤ Dg(2bn+1−1), and by the way the bn’s are defined,
g(2bn+1−1) ≤ A1g(2bn). Then

(14) g(2bn+1) ≤ DA1g(2
bn) = A2g(2

bn).

Let

u(x) =
∞∑
n=1

g(2bn)hbn(x).

We want to check that u converges uniformly on compact subsets of B and
u ∈ �m

v . Since g fulfills (13), there exists γ such that

(15)
g(2l2)

g(2l1)
≤ 2γ (l2−l1)

for l1, l2 ∈ N, just let γ = log2 D. Choose d > γ and note that (15) implies

(16)
g(2bn+1)2−bn+1d

g(2bn)2−bnd ≤ 2−(d−γ )(bn+1−bn) ≤ 2−(d−γ ),

when n > n0. Assume that 1−2−bN < |x| < 1−2−bN+1 , then by Lemma 3.5(a)
and (c),

|u(x)| ≤
N∑
n=1

g(2bn)+ cd,m

∞∑
n=N+1

g(2bn)2−bnd(1 − |x|)−d .

The first sum is bounded byC1g(2bN ), and forN large enough (16) implies that
the second sum is bounded by C2g(2bN+1)2−bN+1d(1 − |x|)−d ≤ C2g(2bN+1).
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Then by (14)

|u(x)| ≤ C3g(2
bN+1) ≤ C4g(2

bN ) ≤ C4g

(
1

1 − |x|
)
.

Finally, we show that F = ⋂
n Hbn ⊂ E+(u), where Hk are defined by

(12). Let x = |x|η, η ∈ F ⊂ S, and 1−am2−bN < |x| ≤ 1−am2−bN+1 , where
am is as in Lemma 3.5; we may assume also that x2

1 + x2
2 > 1/4. Then by (b)

and (d) in Lemma 3.5 (see also the definition of hk above), we obtain

u(x) =
∞∑
n=1

g(2bn)hbn(x) ≥ g(2bN )hbN (x) ≥ 1

4
g(2bN ) ≥ C5g

(
1

1 − |x|
)
.

Let C = ⋂
n Bbn ⊂ [0, 2π) and Cj = ⋂j

n=1 Bbn . Then Cj is a union of
Nj intervals of length lj = π

4 2−bj , where some of the intervals are next to
each other, and C is a set as in Lemma A. Intervals of length lj are called
intervals from j -th generation. Each of them contains kj+1 intervals from the
next generation. It is easy to show that kj+1 = 1 if bj+1 − bj = 1, and
kj+1 = 1

4 2bj+1−bj if bj+1 − bj > 1. So kj+1 ≥ 1
4 2bj+1−bj and Nj ≥ ( 1

4 )
j2bj .

Let 0 < l ≤ π
4 and pick t and j in N such that lj ≥ π

4 2−t ≥ l ≥ π
4 2−t−1 ≥

lj+1. Then

νβ(l)

l
≥ νβ(

π
4 2−t−1)
π
4 2−t = π2−t−3g(2t+3)α

π2−t−2
≥ 1

2
g(2bj+3)α ≥ 1

2
g(2bj )α

≥ 1

2Aα2
g(2bj+1)α ≥ 1

2Aα2D
2α
g

(
2bj+1 4

)α = 1

2Aα2D
2α

νβ(lj+1)

lj+1
.

Lemma A with νβ defined as above and a = 1
2Aα2D

2α now yields

Hνβ (C) ≥ a

2
lim inf
j→∞ Njνβ(lj ) ≥ a

2
lim inf
j→∞

(
1

4

)j
2bj νβ

(
π

4
2−bj

)

= aπ

8
lim inf
j→∞

(
1

4

)j
g(2bj+2)α ≥ aπ

8
lim inf
j→∞

(
1

4

)j
A
jα

1 g(2
b0)α.

By choosing Aα1 > 4 we obtain Hνβ (C) = ∞.
Then by Lemma 2.1 for λβ(t) = tm−2νβ(t) and the remark on the behavior

of the Hausdorff measure under the Lipschitz map, we have

Hλβ (E
+(u)) ≥ Hλβ (F ) > 0.
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4. Positive harmonic functions

4.1. Proof of the Theorem 1.4

We will now consider extremal growth on subsets of radii of the unit ball in
Rm for positive functions. Let v be a positive increasing continuous function
on [0, 1) and assume λ(t) = tm−1v(1 − t) is increasing. Let u be a positive
harmonic function on B and let F+

v (u) be defined by (3). For positive u ∈ �m
v ,

clearly E+(u) ⊂ F+
v (u). Theorem 1.4 is a generalization of Theorem 2 in [4],

where the result is proved for v(r) = log( 1
1−r ) and m = 2. Note that we no

longer assume that u ∈ �m
v .

The proof of Theorem 1.4 is similar to the one in [4], but the proof of
Lemma 4.1 is new.

Let
Fn =

{
ζ ∈ S : lim sup

r→1

u(rζ )

v(r)
≥ 2

n

}
.

It suffices to prove that Hλ(Fn) < ∞ for all n.
Clearly u = P ∗ μ for some positive Borel measure μ on S. Let h : S →

[0, π ] be given byh(cosφ, ζ ′) = φ and define a measure on [0, π ] by ν = h∗μ,
which means that ν(A) = μ(h−1(A)) for any measurable set A ⊂ [0, π ]. The
formula ∫ π

0
f (ψ) dν(ψ) =

∫ π

0
f ′(φ)ν((φ, π ]) dφ

is valid for f ∈ C1[0, π ] that is non-decreasing and fulfills f (0) = 0 and
f (t) > 0 for t > 0 (see for example [17, p. 84]). By using it with f (φ) =
P̃m,r (0)− P̃m,r (φ), we get the following integration by parts on S

∫
S

P (rx, ζ ) dμ(ζ ) =
∫
S

P̃m,r (h(ζ )) dμ(ζ ) =
∫ π

0
P̃m,r (φ) dν

= −
∫ π

0
(P̃m,r (0)− P̃m,r (φ)) dν + P̃m,r (0)ν([0, π ])

= −
∫ π

0
Qm(r, φ)ν((φ, π ]) dφ + P̃m,r (0)μ(S)

= P̃m,r (π)μ(S)+
∫ π

0
Qm(r, π)ν((0, φ]) dφ,

thus

(17)
∫
S

P (rx, ζ ) dμ(ζ ) = P̃m,r (π)μ(S)+
∫ π

0
Qm(r, φ)μ(B̄(x, φ)) dφ.

We need the following lemma:
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Lemma 4.1. For each n there exists k = k(m, n) > 0 such that for any
x ∈ Fn there is a decreasing sequence {�j }, �j → 0 as j → ∞, which
satisfies

(18) μ(B(x,�j )) ≥ kσ(B(x,�j ))v(1 −�j).

Suppose this lemma is already proved. Let K be a compact subset of Fn
and let Bj = B(xj , aj ), where xj ∈ K and aj < ε. For each ε > 0 we
can cover K with a finite collection of such balls {Bj : j ∈ J } which satisfy
μ(Bj ) ≥ kσ(Bj )v(1 − aj ). By the Vitali covering lemma (see for example [8,
p. 2]) there exists a subcollection J ′ ⊆ J where {Bj : j ∈ J ′} are disjoint and⋃
j∈J Bj ⊆ ⋃

j∈J ′ 5Bj . Using (4) and Lemma 4.1 we obtain

∑
j∈J ′

λ(5aj ) ≤ C
∑
j∈J ′

σ(B(xj , 5aj ))v(1 − aj ) ≤ C5m−1
∑
j∈J ′

σ(Bj )v(1 − aj )

≤ C
5m−1

k

∑
j

μ(Bj ) ≤ C
5m−1

k
μ(S),

which yields Hλ(K) ≤ C 5m−1

k
μ(S). Thus Hλ(Fn) ≤ C 5m−1

k
μ(S) < ∞.

Proof of Lemma 4.1. Assume that x = (1, 0, . . . , 0). Then by (17) and
(6),

u(rx) =
∫
S

P (rx, ζ ) dμ(ζ ) ≤ μ(S)+
∫ π

0
μ(B(x, φ))Qm(r, φ) dφ

≤ μ(S)+
∫ d

0
μ(B(x, φ))Qm(r, φ) dφ + μ(S)

∫ π

d

Qm(r, φ) dφ

≤ μ(S)+
∫ d

0
μ(B(x, φ))Qm(r, φ) dφ + μ(S)C6d

−m

Let k < [(C2C4 +C9)3n]−1, where the constants are from (4), (5) and (7). For
x ∈ Fn there exists a sequence {rj }∞1 such that rj ↗ 1 and u(rj ) > 1

n
v(rj ).

We may assume that rj > 1
2 . Now choose dj = dj (rj , v) ≥ 1 − rj such that

Cd−m
j <

1

3n
v(rj )

and dj → 0 when j → ∞. For j > j0, μ(S) < 1
3nv(rj ). Then

∫ dj

0
μ(B(x, φ))Qm(rj , φ) dφ >

1

3n
v(rj ).
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We claim that this implies that for any j there exists �j ∈ (0, dj ) such that

μ(B(x,�j )) ≥ kσ(B(x,�j ))v(1 −�j),

and the lemma follows. If not, there exists j such that

μ(B(x, φ)) < kσ(B(x, φ))v(1 − φ)

for any φ ∈ (0, dj ). Using (4) and the fact that tm−1v(1 − t) is increasing, and
then applying (5) and (7), we obtain∫ dj

0
μ(B(x, φ))Qm(rj , φ) dφ

< k

∫ dj

0
σ(B(x, φ))v(1 − φ)Qm(rj , φ) dφ

≤ kC2(1 − rj )
m−1v(rj )

∫ 1−rj

0
Qm(rj , φ) dφ

+ kv(rj )

∫ π

1−rj
σ (B(x, φ))Qm(rj , φ) dφ

≤ k

(
C2(1 − rj )

m−1v(rj )C4
1

(1 − rj )m−1
+ C9v(rj )

)
<

1

3n
v(rj ),

and we have a contradiction.

Corollary 4.2. If v(r) = (
1

1−r
)γ

for 0 ≤ γ < m−1, then for any positive
harmonic function u, the Hausdorff dimension of F+

v (u) is less than or equal
to m− 1 − γ .

We will show in section 4.3 that this estimate is sharp, i.e. there exists u
such that

dim F+
v (u) = m− 1 − γ.

4.2. Measures that correspond to positive functions in �m
v

Let
�m
v = {u : B → R,�u = 0, 0 < u(x) ≤ Kv(|x|)}.

We want to characterize all functions in �m
v by their corresponding measure

on S.

Proposition 4.3. Suppose v satisfies (2) and let u(x) = ∫
S
P (x, ζ ) dμ(ζ )

where μ is a positive Borel measure on S. Then u ∈ �m
v if and only if

(19) μ(B(x, φ)) ≤ Cσ(B(x, φ))g
(
π
φ

)
for each ball B(x, φ) ⊂ S.
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Proof. Assume u ∈ �m
v and let x ∈ S. Then

v

(
1 − φ

π

)
≥ 1

K
u

((
1 − φ

π

)
x

)
= 1

Kγm−1

∫
S

1 − (
1 − φ

π

)2

∣∣x(1 − φ

π

) − ζ
∣∣m dμ(ζ )

≥ 1

Kπγm−1

∫
B(x,φ)

2φ − φ2

π

(2φ)m
dμ(ζ ) ≥ 1

Kπγm−1

μ(B(x, φ))

2mφm−1

≥ Cμ(B(x, φ))
1

σ(B(x, φ))
,

thus μ(B(x, φ)) ≤ Cσ(B(x, φ))g
(
π
φ

)
.

Conversely, suppose that (19) is fulfilled. Without loss of generality we may
assume that x = (1, 0, . . . , 0). Then by (17),

u(rx) =
∫
S

P (rx, ζ ) dμ(ζ ) ≤ μ(S)+
∫ π

0
μ(B(x, φ))Qm(r, φ) dφ

≤ μ(S)+
∫ 1−r

0
μ(B(x, φ))Qm(r, φ) dφ

+
∫ π

1−r
μ(B(x, φ))Qm(r, φ) dφ

≤ μ(S)+ μ(B(x, 1 − r))

∫ 1−r

0
Qm(r, φ) dφ

+ C

∫ π

1−r
σ (B(x, φ))g

(
π

φ

)
Qm(r, φ) dφ

≤ μ(S)+ Cσ(B(x, 1 − r))g

(
π

1 − r

) ∫ 1−r

0
Qm(r, φ) dφ

+ Cg

(
π

1 − r

) ∫ π

1−r
σ (B(x, φ))Qm(r, φ) dφ.

Furthermore, by (5) and (7), u(rx) ≤ C̃g
(
π

1−r
) ≤ C̃1v(r).

4.3. Proof of Theorem 1.3

First, note that v satisfies (2), in fact

v

(
1 − t

2

)
= 2m−1λ

(
t
2

)
tm−1

<
2m−1λ(t)

tm−1
= 2m−1v(1 − t).
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Consider the setA = [0, π ]× . . .× [0, π ]× [0, 2π ] and the hyperspherical
coordinates on S, i.e., we consider the function f : A → S defined by

f (φ1, . . . , φm−1) = (cosφ1, sin φ1 cosφ2, . . . , sin φ1 . . . sin φm−1).

This function is bilipschitz on [1, 2]m−1. We will use a Cantor-type construction
to get a set C ⊂ [1, 2]m−1 ⊂ A. We first construct a set in [1, 2].

Let F0 = [1, 2]. Define dk as

dk = min{n ∈ N : g(2n) ≥ 2(m−1)k}, k = 2, 3, . . .

Then dk+1 > dk for all k. By (13) we also have

(20)
g(2dk )

g(2dk−1)
≤ Dg(2dk−1)

g(2dk−1)
≤ D2(m−1)k

2(m−1)(k−1)
= D2m−1 = δm.

We construct by induction sets Fk ⊂ Fk−1 such that Fk consists of nk = 2dk−k
closed intervals of length 2−dk each. To obtainFk we divide each of the intervals
of Fk−1 into 2dk−dk−1 equal subintervals and choose each second of them for
Fk . Now let Ck = Fk × · · · × Fk ⊂ [1, 2]m−1. The number of squares in Ck is
Nk = 2(dk−k)(m−1). Let also C = ∩Ck .

Let νk be the measures defined by dνk = 2(m−1)kχ(Ck)dy on [1, 2]m−1,
where χ(Ck) is the characteristic function of Ck . We also define the measures
μk = f∗νk on S. Denote Gk = f (Ck) and G = f (C), clearly G = ⋂

Gk .

Lemma 4.4. The sequence {μk} converges ∗-weakly to a measure μ and
u = P ∗ μ ∈ �m

v .

Proof. The ∗-weak convergence of {μk} follows from the ∗-weak conver-
gence of {νk}, which we will prove now. Note that νk(C0) = 1 for each k. Let
{Ji}Nki=1 be the squares of Ck . For each square Ji the limit νk(Ji) as k → ∞
exists because all values νk(Ji) are the same when k > s. For squares in
S \ Ck the limit will be 0. Now each continuous function on [1, 2]m−1 can be
uniformly approximated by linear combinations of characteristic functions of
small squares. Thus for each continuous function f on [1, 2]m−1 there exists

lim
k→∞

∫
[1,2]m−1

f dνk

and νk converge weakly to some positive measure ν.
By Proposition 4.3 it suffices to check that

μ(B(x, r)) ≤ Cσ(B(x, r))g
(π
r

)
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for each ball B(x, r) ⊂ S, in order to prove that u = P ∗μ ∈ �m
v . This is true

if a similar estimate is true for ν.
Let y ∈ [1, 2]m−1 and let Be(y, r) be a Euclidean ball. Choose s such that

2−ds < r ≤ 2−ds−1 . Now take a square Q ⊃ Be(y, r) that is a union of dyadic
cubes with side lengths 2−ds , and let the side length of Q be 2−ds l for some
l ∈ N such that 2−ds l < 4r . Then |Q| < A|Be(y, r)| where A = A(m). By
using (20), we obtain

νk(Be(y, r)) ≤ νk(Q) = νs(Q) ≤ 2(m−1)s |Q| < A|Be(y, r)|g(2ds )

≤ Aδm|Be(y, r)|g(2ds−1) ≤ Aδm|Be(y, r)|g
(

1

r

)
,

which is the desired inequality.

To finish the proof of Theorem 1.3 we will show that G ⊂ E+(v) and
Hλ(G) > 0. We have

u(rx) =
∫
S

P (rx, ζ ) dμ(ζ ) ≥
∫ π

0
μ(B(x, φ))Qm(r, φ) dφ.

Let x ∈ ⋂
Gk = G and r ∈ [0, 1). Choose k0 such that 2(m−1)(k0−1) ≤

g
(

1
1−r

)
< 2(m−1)k0 . Then it is not difficult to see that μ(B(x, φ)) ≥

c2(m−1)k0φm−1 for φ < 1 − r and

u(rx) ≥
∫ 1−r

0
μ(B(x, φ))Qm(rx, φ)dφ

≥ c2(m−1)k0

∫ 1−r

0
φm−1Qm(rx, φ)dφ ≥ c12(m−1)k0 ≥ c1g

(
1

1 − r

)
,

when r > r0. Thus G = ⋂
Gk ⊂ E+(u).

Finally we use Lemma B to estimate Hλ(C). We have

lim inf
k→∞ Nkλ(lk) = lim inf

k→∞ 2dk−k2−dkg
(
2dk

) ≥ lim inf
k→∞ π2−k+12k = c > 0.

Then Hλ(C) > 0 and Hλ(G) ≥ c1Hλ(C) > 0 since C = f −1(G) and f −1 is
Lipschitz. We use also that

λ

(
t

2

)
=

(
t

2

)m−1

v

(
1 − t

2

)
≥ tm−1v(1 − t)2−m+1 = 2−m+1λ(t),

see Section 2.3.
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