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ON DIRICHLET’S PRINCIPLE AND PROBLEM

PER ÅHAG, URBAN CEGRELL and RAFAŁ CZYŻ

Abstract
The aim of this paper is to give a new proof of the complete characterization of measures for
which there exists a solution of the Dirichlet problem for the complex Monge-Ampère operator in
the set of plurisubharmonic functions with finite pluricomplex energy. The proof uses variational
methods.

1. Introduction

Throughout this note let � ⊆ Cn, n ≥ 1, be a bounded, connected, open, and
hyperconvex set. By E0 we denote the family of all bounded plurisubharmonic
functions ϕ defined on � such that

lim
z→ξ

ϕ(z) = 0 for every ξ ∈ ∂�, and
∫
�

(ddcϕ)n < ∞,

where (ddc · )n is the complex Monge-Ampère operator. Next let Ep, p > 0,
denote the family of plurisubharmonic functions u defined on� such that there
exists a decreasing sequence {uj }, uj ∈ E0, that converges pointwise to u on
�, as j tends to ∞, and

sup
j≥1

∫
�

(−uj )p(ddcuj )n = sup
j≥1

ep(uj ) < ∞.

If u ∈ Ep, then ep(u) < ∞ ([10], [14]). It should be noted that it follows
from [10] that the complex Monge-Ampère operator is well-defined on Ep. It
is not only within pluripotential theory these cones have been proven useful,
but also as a tool in dynamical systems and algebraic geometry (see, e.g., [2],
[17]). For further information on pluripotential theory we refer to [16], [19],
[20].

The purpose of this paper is to give a new proof of Theorem B below and
use Theorem B to prove that (2) implies (1) in the following theorem:
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Theorem A. Let μ be a non-negative Radon measure. Then the following
conditions are equivalent:

(1) there exists a function u ∈ E1 such that (ddcu)n = μ,

(2) there exists a constant B > 0, such that

(1)
∫
�

(−ϕ) dμ ≤ Be1(ϕ)
1
n+1 for all ϕ ∈ E1,

(3) the class E1 is contained in L1(μ),

(4) the class E1 is contained inL1(μ). Furthermore, for any sequence {vj } ⊂
E1 such that e1(vj ) ≤ 1, there exists a subsequence {vjk } of {vj } that is
convergent in the L1(μ) topology.

In [10], the second-named author proved that the two first conditions in
Theorem A are equivalent. This gives a complete characterization of measures
for which there exists a solution of the Dirichlet problem for the complex
Monge-Ampère operator in E1.

Before we continue we need some more notation. We say that a non-negative
Radon measure μ belongs to M1 if there exists constant A ≥ 0 such that∫

�

(−u) dμ ≤ Ae1(u)
1
n+1 ,

holds for all u ∈ E1. For μ ∈ M1, let the functional Jμ : E1 → R be defined
by

Jμ(u) = 1

n+ 1

∫
�

(−u)(ddcu)n +
∫
�

u dμ = 1

n+ 1
e1(u)− ‖u‖1.

Theorem B. Let μ ∈ M1, and u ∈ E1. Then the following assertions are
equivalent

(1) (ddcu)n = dμ,

(2) Jμ(u) = infw∈E1 Jμ(w).

Theorem B gives a characterization of solutions u of the Dirichlet problem
(ddcu)n = μ as a minimizing functions for the functional Jμ defined by the
measure μ. This theorem was first proved by Bedford and Taylor for μ = 0,
in the class of locally bounded plurisubharmonic functions ([6], [7]). Later
Kalina proved the Dirichlet principle with some additional assumptions on μ
and u ([18]). Using that the first two conditions in Theorem A are equival-
ent, Persson [21], proved the Dirichlet principle in E1. In this note we prove
Theorem B without using Theorem A.
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In the process of writing this note we have not only been inspired by Bed-
ford’s and Taylor’s, Kalina’s and Persson’s pioneer work, but also of the recent
work by Berman et al. [9]. The authors would also like to express their gratit-
ude to Robert Berman and Sebastien Boucksom for valuable discussions and
comments on an earlier version of this paper.

2. Preliminaries

We shall need the following theorem.

Theorem 2.1. Let p > 0, and n ≥ 2. Then there exists a constant
D(n, p) ≥ 1, depending only onn andp, such that for anyu0, u1, . . . , un ∈ Ep
it holds that∫

�

(−u0)
pddcu1 ∧ · · · ∧ ddcun

≤ D(n, p) ep(u0)
p/(p+n)ep(u1)

1/(n+p) . . . ep(un)1/(n+p).

Furthermore, D(n, 1) = 1 and D(n, p) > 1 for p �= 1.

Proof. See Theorem 3.4 in [21] (see also [3], [5], [10], [15]).

For p �= 1 the constant D(n, p), in Theorem 2.1, is strictly great than 1
([3], [4]). For this reason we can not use similar variational method to prove
the Dirichlet principle in Ep when p �= 1.

Lemma 2.2. For all u, v ∈ E1 we have that

e1(u+ v)
1
n+1 ≤ e1(u)

1
n+1 + e1(v)

1
n+1 .

Furthermore, if μ ∈ M1, then Jμ is convex, and if {uj } ⊂ E1, ‖uj‖1 → ∞,
then Jμ(uj ) → ∞.

Proof. The first statement, the triangular type inequality for e1(u)
1
n+1 , fol-

lows from Theorem 2.1 since

e1(u+ v) ≤ e1(u)
1
n+1 e1(u+ v)

n
n+1 + e1(v)

1
n+1 e1(u+ v)

n
n+1 .

In particular, e1(u)
1
n+1 is convex, and under the assumption that μ ∈ M1 the

functional Jμ is also convex. From the definition of M1 it follows that there
exists constant A > 0 such that

‖u‖1 ≤ Ae1(u)
1

1+n , for all u ∈ E1.

If ‖uj‖1 → ∞, then e1(uj ) → ∞, and therefore we get that

Jμ(uj ) = 1

n+ 1
e1(uj )− ‖uj‖1 ≥ 1

n+ 1
e1(uj )− Ae1(uj )

1
n+1 → ∞.
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This completes this proof.

Lemma 2.3. Let v, u ∈ E1(�), and w ∈ E1 ∩ C(�). Then

(2)
∫

{w<u}
(−v)(ddcu)n ≤

∫
{w<u}

(−v)(ddcw)n.

Proof. Assume first that v,w ∈ E1 ∩C(�). Without loss of generality we
can assume that

∫
{u=w}(−v)(ddcw)n = 0. The measure (ddcw)n vanishes on

pluripolar sets, and therefore we have that∫
{u=rw}

(−v)(ddcw)n = 0,

except for at most denumerably many r . Lemma 5.4 in [10] yields that∫
{w<u}

(−v)(ddcu)n

=
∫

{w<u}
(−v)(ddc max(u,w))n

=
∫
�

(−v)(ddc max(w, u))n +
∫

{w≥u}
v(ddc max(u,w))n

≤
∫
�

(−v)(ddcw)n +
∫

{w>u}
v(ddc max(u,w))n

=
∫

{w<u}
(−v)(ddcw)n +

∫
{u=w}

(−v)(ddcw)n.

Thus, inequality (2) holds if v ∈ E1 ∩ C(�). An approximation of v ∈ E1(�)

by a decreasing sequence in E1 ∩ C(�) completes the proof (see, e.g., [11],
[12]).

Lemma 2.4. Let u, v ∈ E1, and assume that v is continuous. For t ∈ R, set

P(u+ tv) = sup{w ∈ E1 : w ≤ u+ tv}.
Then P(u+ tv) ∈ E1, and for s, t ∈ R we have that

|P(u+ tv)− P(u+ sv)| ≤ |t − s|(−v).

Proof. If t ≥ 0, then

P(u+ tv) = u+ tv,
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and in the case s, t ≥ 0 the lemma is obvious. Furthermore, when t < 0, the
function P(u + tv) is upper semicontinuous, and u ≤ P(u + tv) ≤ u + tv.
Thus, P(u+ tv) ∈ E1. For s < t < 0, we have that

P(u+ tv) ≤ P(u+ sv) and P(u+ sv)+ (t − s)v ≤ P(u+ tv).

Hence, |P(u+ tv)− P(u+ sv)| ≤ |t − s|(−v). Similarly one can prove that
if t ≤ 0 ≤ s, then

−sv ≤ P(u+ tv)− P(u+ sv) ≤ (s − t)(−v).

Lemma 2.5. Let u, v ∈ E1, and assume that v is continuous. For any
0 ≤ k ≤ n, we have that

(3) lim
t→0−

∫
�

P (u+ tv)− tv − u

t
(ddcu)k ∧ (ddcP (u+ tv))n−k = 0.

In particular,

(4) lim
t→0−

∫
�

P (u+ tv)− u

t
(ddcu)k ∧ (ddcP (u+ tv))n−k =

∫
�

v(ddcu)n.

Proof. For t < 0, consider the function h(t) = P(u+tv)−tv−u
t

. A straight-
forward calculation shows that h is a decreasing function, and

0 ≤ P(u+ tv)− tv − u

t
≤ −v.

Hence, for fixed s < 0 we have that

lim
t→0−

∫
�

P (u+ tv)− tv − u

t
(ddcu)k ∧ (ddcP (u+ tv))n−k

≤ lim
t→0−

∫
�

P (u+ sv)− sv − u

s
(ddcu)k ∧ (ddcP (u+ tv))n−k

=
∫
�

P (u+ sv)− sv − u

s
(ddcu)n ≤

∫
{P(u+sv)−sv<u}

(−v)(ddcu)n.

Let uk ∈ E0 ∩ C(�) be a decreasing sequence that converges to u such that
∫

{P(u+sv)−sv<u}
(−v)(ddcu)n ≤ 2

∫
{P(uk+sv)−sv<u}

(−v)(ddcu)n
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(see, e.g., [11], [12]). We can apply Lemma 2.3 to conclude that
∫

{P(uk+sv)−sv<u}
(−v)(ddcu)n

≤
∫

{P(uk+sv)−sv<uk}
(−v)(ddc(P (uk + sv)− sv))n

≤ −sM → 0, as s → 0,

whereM is a constant only depending on n, ‖v‖, and
∫
�
v(ddc(u+v))n. Here

we have used that∫
{P(uk+sv)<uk+sv}

(ddc(P (uk + sv)))n = 0.

This is a consequence of Corollary 9.2 in [8]. The equality (4) is then a con-
sequence of the equality (3), and the proof is complete.

Lemma 2.6. Let u, v ∈ E1, and assume that v is continuous. For t ≥ 0, we
set

f (t) =
∫
�

−(u+ tv)(ddc(u+ tv))n = e1(u+ tv).

Then
f ′(0+) = (n+ 1)

∫
�

(−v)(ddcu)n,

where
f ′(0+) = lim

t→0+

f (t)− f (0)

t
.

Proof. This is an immediate consequence of the construction.

Lemma 2.7. Let u, v ∈ E1, and assume that v is continuous. For t < 0, we
set

f (t) =
∫
�

(−P(u+ tv))(ddcP (u+ tv))n = e1(P (u+ tv)).

Then
f ′(0−) = (n+ 1)

∫
�

(−v)(ddcu)n,

where
f ′(0−) = lim

t→0−

f (t)− f (0)

t
.
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Proof. Note that

1

t

(∫
�

(−P(u+ tv))(ddcP (u+ tv))n −
∫
�

(−u)(ddcu)n
)

=
n∑
k=0

∫
�

u− P(u+ tv)

t
(ddcu)k ∧ (ddcP (u+ tv))n−k,

and then Lemma 2.5 completes the proof.

Corollary 2.8. Let u, v ∈ E1, and assume that v is continuous. Then it
holds that

Jμ(P (u+ tv))′(0−)

=
(

1

n+ 1

∫
�

(−P(u+ tv))(ddcP (u+ tv))n +
∫
�

P (u+ tv) dμ

)′
(0−)

≥
∫
�

(−v)(ddcu)n +
∫
�

v dμ.

Proof. The existence of Jμ(P (u+ tv))′(0−) follows from Lemma 2.7 and
the fact that the function t → P(u+tv)−u

t
is decreasing. For t < 0

∫
�

(P (u+ tv)− u)

t
dμ =

∫
�

(P (u+ tv)− tv − u)

t
dμ+

∫
�

v dμ

≥
∫
�

v dμ,

and the proof is finished by Lemma 2.7.

3. Proof of Theorem B

Proof. Let μ ∈ M1, and u ∈ E1.
(1) ⇒ (2): Assume that (ddcu)n = dμ, and let v ∈ E1. Then by The-

orem 2.1, and Young’s inequality we get that∫
�

(−v) dμ =
∫
�

(−v)(ddcu)n ≤ e1(v)
1
n+1 e1(u)

n
n+1

≤ 1

n+ 1
e1(v)+ n

n+ 1
e1(u).

Hence

Jμ(v) = 1

n+ 1
e1(v)+

∫
�

v dμ ≥ − n

n+ 1
e1(u) = Jμ(u).
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Thus, Jμ(u) = infw∈E1 Jμ(w).
(2) ⇒ (1): Let u ∈ E1 be such that Jμ(u) = infw∈E1 Jμ(w). Take an arbit-

rary function v in E1 ∩ C(�), and define

g(t) = Jμ(P (u+ tv)).

This construction yields that that 0 ≥ g′(0−), and g′(0+) ≥ 0, Since for all t
we have that g(0) ≤ g(t). The existence of g′(0+) and g′(0−) follows from
Lemma 2.6 and Corollary 2.8 respectively. The last inequality and Lemma 2.6
gives us that ∫

�

(−v)(ddcu)n +
∫
�

v dμ ≥ 0,

and therefore it follows from Corollary 2.8 that g′(0−) = 0, and

0 =
∫
�

(−v)(ddcu)n +
∫
�

v dμ.

Thus, ∫
�

v dμ =
∫
�

v(ddcu)n.

Lemma 3.1 in [11] yields that (ddcu)n = dμ, since v was an arbitrary function
in E1 ∩ C(�).

Remark 1. The uniqueness of the solution for the equation (ddcu)n = dμ

follows from the comparison principle (see, e.g., [1], [10]). Using Lemma 2.2,
uniqueness in E1 can be obtained in the following way.

Proposition 3.1. For any μ ∈ M1 there exists at most one function u ∈ E1

for which the functional Jμ achieves its infimum on E1. In other words, there
exists at most one solution u ∈ E1 for the complex Monge-Ampère equation
(ddcu)n = μ.

Proof. Let S denote the set of solutions to Dirichlet’s problem with given
measureμ ∈ M1. Then we know by Lemma 2.2 that S is a convex set. Assume
that there exist functions u, v ∈ S. Then also tu+ (1− t)v ∈ S, for 0 ≤ t ≤ 1.
Furthermore, we have that for any 1 ≤ k ≤ n, and all ϕ ∈ E0, it holds that

∫
�

(−ϕ)(ddcu)k ∧ (ddcv)n−k ≤
(∫

�

(−ϕ)(ddcu)n
) k

n
(∫

�

(−ϕ)(ddcv)n
) n−k

n

≤
∫
�

(−ϕ) dμ.
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This implies that for all 1 ≤ k ≤ n we have that

(5) (−ϕ)(ddcu)k ∧ (ddcv)n−k = (−ϕ) dμ,
since otherwise we would have that tu+ (1− t)v �∈ S. From (5) it follows that

(ddcu)k ∧ (ddcv)n−k = dμ.

Now we can use an argument from the proof of Theorem 3.15 in [13] to
prove that u = v. By [12], there exists a strictly plurisubharmonic exhaustion
function ψ ∈ E0 ∩ C∞(�) for �. To complete the proof it is enough to show
that ∫

�

d(u− v) ∧ dc(u− v) ∧ (ddcψ)n−1 = 0.

We shall prove this statement by induction. It is easy to see that

0 =
∫
�

d(u− v) ∧ dc(u− v) ∧ (ddcu)k ∧ (ddcv)l ∧ ddcψ,

for k + l = n− 2.
Assume that

0 =
∫
�

d(u− v) ∧ dc(u− v) ∧ (ddcu)k ∧ (ddcv)l ∧ (ddcψ)p,

for k + l = n− 1 − p.
Then, for k + l = n− 2 − p we have that

0 ≤
∫
�

d(u− v) ∧ dc(u− v) ∧ (ddcu)k ∧ (ddcv)l ∧ (ddcψ)p+1

=
∫
�

−(u− v)ddc(u− v) ∧ (ddcu)k ∧ (ddcv)l ∧ (ddcψ)p+1

=
∫
�

−ψ(ddc(u− v))2 ∧ (ddcu)k ∧ (ddcv)l ∧ (ddcψ)p

=
∫
�

dψ ∧ dc(u− v) ∧ ddc(u− v) ∧ (ddcu)k ∧ (ddcv)l ∧ (ddcψ)p

≤
∣∣∣∣
∫
�

dψ ∧ dc(u− v) ∧ ddcu ∧ (ddcu)k ∧ (ddcv)l ∧ (ddcψ)p
∣∣∣∣

+
∣∣∣∣
∫
�

dψ ∧ dc(u− v) ∧ ddcv ∧ (ddcu)k ∧ (ddcv)l ∧ (ddcψ)p
∣∣∣∣
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≤
(∫

�

dψ ∧ dcψ ∧ (ddcu)k+1 ∧ (ddcv)l ∧ (ddcψ)p

×
∫
�

d(u− v) ∧ dc(u− v) ∧ (ddcu)k+1 ∧ (ddcv)l ∧ (ddcψ)p
) 1

2

+
(∫

�

dψ ∧ dcψ ∧ (ddcu)k ∧ (ddcv)l+1 ∧ (ddcψ)p

×
∫
�

d(u− v) ∧ dc(u− v) ∧ (ddcu)k ∧ (ddcv)l+1 ∧ (ddcψ)p
) 1

2

= 0.

4. Proof of Theorem A

We shall need the following lemma.

Lemma 4.1. Letμ be a non-negative Radon measure such thatμ(�) < ∞.
If there exists a constant A > 0 such that

(6)
∫
�

(−ϕ)2 dμ ≤ Ae1(ϕ)
2
n+1 for all ϕ ∈ E1,

then μ ∈ M1. Furthermore, for any sequence {vj } ⊂ E1 such that e1(vj ) ≤ 1,
there exists a subsequence {vjk } of {vj } that converges to a plurisubharmonic
function in the L1(μ) topology. Finally, there exists a uniquely determined
function u ∈ E1, with (ddcu)n = μ.

Proof. Assume that μ is a non-negative Radon measure with μ(�) < ∞,
and take a function ϕ ∈ E1. Then it follows from inequality (6) that there exists
a constant A > 0 such that

∫
�

(−ϕ) dμ ≤
(∫

�

(−ϕ)2 dμ
)1/2

μ(�)1/2 ≤ A1/2e1(ϕ)
1
n+1μ(�)1/2

= Ce1(ϕ)
1
n+1 < ∞,

where C = A1/2μ(�)1/2. Thus, E1 ⊆ L1(μ).
Assume now that {vj } ⊂ E1 is a sequence such that

sup
j

e1(vj ) ≤ 1.

We can then pick a subsequence, again denoted by {vj }, which is convergent to
v ∈ E1, in the sense of distributions, and such that sequence {vj dμ} is weakly
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convergent to some measure ν. Then we have by inequality (6) that there exists
a constant A > 0 such that

∫
�

(−vj )2 dμ ≤ Ae1(vj )
2
n+1 ≤ A.

Thus, vj ∈ L2(μ). Therefore, there exists a finite convex combination of
vj , denote this by wj , such that {wj } ⊆ E1 converges to some function
w ∈ L2(μ). Furthermore, dν = w dμ. But {vj } is weakly convergent to
(lim sup vj )∗ w.r.t. the Lebesgue measure, and therefore {wj } is weak conver-
gent to (lim supwj)∗ = (lim sup vj )∗. Hence, w = (lim sup vj )∗, where (y)∗
denotes the upper semicontinuous regularization of y.

The uniqueness part follows from Proposition 3.1, and therefore it remains
to prove that there exists a minimizer of Jμ. Theorem B yields that exists
a function u ∈ E1 such that (ddcu)n = μ. Let {uj } ⊆ E1 be such that
limj→∞ Jμ(uj ) = infw∈E1 Jμ(w). Using Lemma 2.2 together with what we
just have proved, we can pick a subsequence again denoted by {uj }, and a
function u ∈ E1 such that

∫
�

|uj − u| dμ → 0 as j → ∞.

Set vk = (supj≥k uj )∗. Then it follows that vk ≥ uk , which implies that
e1(vk) ≤ e1(uk) (see, e.g., [10] or Lemma 6.1 in [4]). Thus, vk ∈ E1. The
decreasing sequence {vk} converges to u, as j → ∞, and e1(vk) → e1(u), as
k → ∞. The monotone convergence theorem implies that limk→∞

∫
�
vk dμ =∫

�
v dμ. Therefore, we have that

e1(u) = lim
j→∞ e1(vj ) = lim inf

j→∞ e1(vj ) ≤ lim inf
j→∞ e1(uj ).

Hence,

lim inf
j→∞ Jμ(uj ) = lim inf

j→∞ e1(uj )+ lim
j→∞

∫
�

uj dμ ≥ e1(u)− ‖u‖1 = Jμ(u).

Thus, u is a minimizer.

Proof of Theorem A. (3) ⇒ (2)Assume that condition (2) is not satisfied.
Then for all j there exists a sequence {uj } ⊆ E1 with

∫
�

(−uj ) dμ ≥ je1(uj )
1

1+n .
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Without loss of generality we can assume that e1(uj ) = 1. Let vj = ∑j

l=1
1
l2
ul ,

then by Lemma 2.2 we have that

e1(vj )
1
n+1 ≤

j∑
l=1

1

l2
e1(ul)

1
n+1 =

j∑
l=1

1

l2
,

which implies that v = ∑∞
l=1

1
l2
ul ∈ E1. On the other hand,

∫
�

(−v) dμ ≥
∞∑
l=1

1

l2

∫
�

(−ul) dμ ≥
∞∑
l=1

l

l2
= ∞.

Thus, v /∈ L1(μ), and a contradiction has been obtained.
(2) ⇒ (1) In this part of the proof we follow the idea from Theorem 5.1

in [10]. Assume that μ is a non-negative Radon measure such that (1) holds.
Assume first that μ is supported by a compact set K � �, and let hK denote
the relative extremal function for K (see, e.g., [19] for the definition of hK ).
Set

M =
{
ν ≥ 0 : supp ν ⊂ K,

∫
�

(−ϕ)2dν ≤ Ce1(ϕ)
2
n+1 for all ϕ ∈ E1

}
,

where C > 2e1(hK)
n−1
n+1 is a fixed constant. For a compact set L ⊂ K we have

that
hK ≤ hL, and e1(hL) ≤ e1(hK).

Therefore, it follows that
∫
�

(−ϕ)2(ddchL)n ≤ 2‖hL‖
∫
�

(−ϕ)(ddcϕ) ∧ (ddchL)n−1

≤ 2

(∫
�

(−ϕ)(ddcϕ)n
) 2

n+1
(∫

�

(−hL)(ddchL)n
) n−1

n+1

≤ Ce1(ϕ)
2
n+1 for all ϕ ∈ E1.

Hence, for every compact setL ⊂ K we have that (ddchL)n ∈ M. Fix ν0 ∈ M

and define

M ′ =
{
ν ≥ 0 : ν(�) = 1, supp ν ⊂ K,∫

�

(−ϕ)2dν ≤
(
C

T
+ C

ν0(�)

)
e1(ϕ)

2
n+1 for all ϕ ∈ E1

}
,
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where T = sup{ν(�) : ν ∈ M}. Then we have for ν ∈ M that

∫
�

(−ϕ)2 (T − ν(�)) dν0 + ν0(�) dν)

T ν0(�)

≤
∫
�

(−ϕ)2 dν0
T − ν(�)

T ν0(�)
+ 1

T

∫
�

(−ϕ)2 dν

≤
(
C
T − ν(�)

T ν0(�)
+ C

T

)
e1(ϕ)

2
n+1

≤
(

C

ν0(�)
+ C

T

)
e1(ϕ)

2
n+1 for all ϕ ∈ E1.

Hence,

(T − ν(�))ν0 + ν0(�)ν)

T ν0(�)
∈ M ′ for all ν ∈ M.

Thus, M ′ is a convex and weak∗-compact set of probability measures. Then
it follows from [22] that there exists a function f ∈ L1(μ), and a measure
ν ∈ M ′ such that μ = f dν + νs , where νs is orthogonal to M ′. Note that
since (ddchL)n ∈ M, then all measures orthogonal to M ′ must be carried by
a pluripolar sets. Thus, ν identically 0, since μ vanishes on pluripolar sets.
Furthermore, by Lemma 4.1, we know that for each μ ∈ M ′ there exists a
uniquely determined function u ∈ E1 with (ddcu)n = μ.

For each j let μj be a non-negative Radon measure defined by μj =
min(f, j)dν. The measure μj satisfy inequality (6), since ν have this prop-
erty. Therefore there exists a unique function uj ∈ E1 with (ddcuj )n = dμj .
Theorem 4.5 in [10] yields that {uj } is a decreasing sequence that converges
pointwise to a function u ∈ E1 with (ddcu)n = μ. Finally, ifμ only satisfy (1),
let {Kj } be an increasing sequence of compact subsets of � with � = ⋃

j Kj ,
and set μj = χKj dμ. We can then proceed as before.

(1) ⇒ (4)Assume that there exists a function u ∈ E1 such that (ddcu)n = μ.
Let {v′

j } ⊆ E1 be a sequence with e1(v
′
j ) ≤ 1, {v′

j } converges in the sense of
distributions, and select a weak*-convergent subsequence {vj dμ} of {v′

j dμ}
converging to dν for some measure ν ≤ 0. Letψ ∈ C∞

0 (�), 0 ≤ ψ ≤ 1. Then
we have that ψ(ddcu)n ≤ (ddcu)n. Then we have that the measure ψ(ddcu)n

satisfies condition (2), and therefore also (1). Thus, there exists a function
ϕ ∈ E1 such that (ddcϕ)n = ψ(ddcu)n, and from the proof of the implication
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(2) ⇒ (1) it follows that u ≤ ϕ. This, together with Theorem 2.1 yields that

∫
�

(−vj )ψ dμ =
∫
�

(−vj )(ddcϕ)n ≤ e1(vj )
1
n+1

(∫
�

(−ϕ)(ddcϕ)n
) n

n+1

≤ e1(vj )
1
n+1

(∫
�

(−u)ψ(ddcu)n
) n

n+1

= e1(vj )
1
n+1

(∫
�

(−u)ψ dμ
) n

n+1

.

This means that dν is absolutely continuous w.r.t. dμ, and therefore there
exists a function f ∈ L1(μ), f ≤ 0, such that dν = f dμ. Now let ψ be a
function defined on � with 0 ≤ ψ ≤ 1. By a similar argument as above, we
get that

(7)
∫
�

ψf dμ = lim
j→∞

∫
�

ψvj dμ

(Choose ψε ∈ C∞
0 (�) so that

∫ |ψ − ψε|(−f − u) dμ ≤ ε and continue as
above.)

Hence, there exist finite convex combinations of vj , denoted by wj , that
converges to f in L1(μ). Therefore there exists a subsequence {wjk } of {wj }
that converges to f a.e. w.r.t. [μ]. From now on we shall use the notation {wj }
instead of {wjk }. Set v = limj→∞(supk≥j vk)∗, then it follows from Fatou’s
lemma that f ≤ v. Furthermore, we get that limj→∞(supk≥j wk)∗ = v, since
{v′
j }, {vj } and {wj } converge as distributions to the same limit v ∈ E1, and

∫
�

v dμ =
∫
�

lim
j→∞(sup

k≥j
wk)

∗ dμ =
∫
�

lim
j→∞(sup

k≥j
wk) dμ =

∫
�

f dμ.

Thus, v = f = limj→∞(supk≥j v′
k) a.e. w.r.t. [μ], and it follows from (7) that

lim
j→∞

∫
�

vj dμ =
∫
�

v dμ.

Then∫
�

|vj − v| dμ ≤
∫
�

(max
k≥j vk − vj ) dμ+

∫
�

(max
k≥j vk − v) dμ = I1 + I2.

But I1 converges to 0, as j → ∞, since

lim
j→∞

∫
�

max
k≥j vk dμ = lim

j→∞

∫
�

vj dμ,
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and I2 converges to 0 by the monotone convergence theorem. Thus,

lim
j→∞

∫
�

|vj − v| dμ = 0,

i.e. vj converges to v in L1(μ). In other words, every subsequence of {v′
j }

contains a subsequence that converges to v = f = limj→∞(supk≥j v′
k) in

L1(μ).
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