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ON DIRICHLET’S PRINCIPLE AND PROBLEM

PER AHAG, URBAN CEGRELL and RAFAL CZYZ

Abstract

The aim of this paper is to give a new proof of the complete characterization of measures for
which there exists a solution of the Dirichlet problem for the complex Monge-Ampere operator in
the set of plurisubharmonic functions with finite pluricomplex energy. The proof uses variational
methods.

1. Introduction

Throughout this note let 2 € C*, n > 1, be a bounded, connected, open, and
hyperconvex set. By &, we denote the family of all bounded plurisubharmonic
functions ¢ defined on €2 such that

lirré @(z) =0 forevery £ €0R, and /(dd%p)” < 00,
— Q

where (dd®-)" is the complex Monge-Ampere operator. Next let &,, p > 0,
denote the family of plurisubharmonic functions u defined on €2 such that there
exists a decreasing sequence {u;}, u; € &, that converges pointwise to u on
2, as j tends to oo, and

sup/ (—uj)’(ddu;)" = supe,(u;) < oo.
izl JQ Jjz1
If u € &,, then e,(u) < oo ([10], [14]). It should be noted that it follows
from [10] that the complex Monge-Ampere operator is well-defined on &,. It
is not only within pluripotential theory these cones have been proven useful,
but also as a tool in dynamical systems and algebraic geometry (see, e.g., [2],
[17]). For further information on pluripotential theory we refer to [16], [19],
[20].

The purpose of this paper is to give a new proof of Theorem B below and
use Theorem B to prove that (2) implies (1) in the following theorem:
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THEOREM A. Let i be a non-negative Radon measure. Then the following
conditions are equivalent:

(1) there exists a function u € &, such that (ddu)" = p,

(2) there exists a constant B > 0, such that
(1) /(—(p) du < Be]((p)# forall ¢ €&,
Q

(3) the class &, is contained in L' (1),

(4) the class &, is contained in L' (1v). Furthermore, for any sequence {vj} C
& such that e;(vj) < 1, there exists a subsequence {v; } of {v;} that is
convergent in the L' (1) topology.

In [10], the second-named author proved that the two first conditions in
Theorem A are equivalent. This gives a complete characterization of measures
for which there exists a solution of the Dirichlet problem for the complex
Monge-Ampere operator in &;.

Before we continue we need some more notation. We say that a non-negative
Radon measure p belongs to .# if there exists constant A > 0 such that

/ (—u)dpu < Aey(u),
Q

holds for all u € &;. For u € ., let the functional ¢, : & — R be defined
by

er(u) — [lully.

1 C n _
fu(u):mfg(—u)(dd u) +/Qudu_ —

THEOREM B. Let u € My, and u € &. Then the following assertions are
equivalent

(1) (ddu)" =dp,
(2) agp. (u) = il’lfwegl agu(w)

Theorem B gives a characterization of solutions u of the Dirichlet problem
(dd°u)" = p as a minimizing functions for the functional _#, defined by the
measure (. This theorem was first proved by Bedford and Taylor for u = 0,
in the class of locally bounded plurisubharmonic functions ([6], [7]). Later
Kalina proved the Dirichlet principle with some additional assumptions on p
and u ([18]). Using that the first two conditions in Theorem A are equival-
ent, Persson [21], proved the Dirichlet principle in &. In this note we prove
Theorem B without using Theorem A.
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In the process of writing this note we have not only been inspired by Bed-
ford’s and Taylor’s, Kalina’s and Persson’s pioneer work, but also of the recent
work by Berman et al. [9]. The authors would also like to express their gratit-
ude to Robert Berman and Sebastien Boucksom for valuable discussions and
comments on an earlier version of this paper.

2. Preliminaries
We shall need the following theorem.

THEOREM 2.1. Let p > 0, and n > 2. Then there exists a constant
D(n, p) > 1, depending only onn and p, suchthat for any ug, uy, ..., u, € &,
it holds that

/ (—uo)’dd uy A -+ Adduy
Q

< D(n, p) ep(uo)l’/(p+n)€p(ul)l/(n+p) B .ep(un)l/(n+17)_
Furthermore, D(n, 1) = 1 and D(n, p) > 1 for p # 1.

ProOOF. See Theorem 3.4 in [21] (see also [3], [5], [10], [15]).

For p # 1 the constant D(n, p), in Theorem 2.1, is strictly great than 1
([3], [4]). For this reason we can not use similar variational method to prove
the Dirichlet principle in &, when p # 1.

LEMMA 2.2. Forallu,v € & we have that
er1(u+ )T < e ()i + ey (V).

Furthermore, if © € M, then ¢, is convex, and if {u;} C &, ||lujlli — oo,
then #, (u;) — oo.

ProoOF. The first statement, the triangular type inequality for e; (u)ﬁ , fol-
lows from Theorem 2.1 since

e1(u +v) < e1() T ey (u + V)i + ey (V)7 ey (u + V)i

. . .
In particular, ey (1) + is convex, and under the assumption that u € .#; the
functional _#, is also convex. From the definition of .#; it follows that there
exists constant A > 0 such that

lully < Aej(u)Tr, forall u € &.

If lujlly — oo, then e (u;) — oo, and therefore we get that

1 1
agll-(uj) = ﬁ el(uj) — Ael(uj)”“ — 00.

et(u;) — |lu;ll; =
1(,) fluj ;.

+1
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This completes this proof.
LEMMA 2.3. Letv,u € & (2), and w € & N C(Q). Then

P / (—v)(dd°u)" < / (—v)(dd“w)".
{fw<u}

{w<u}

PRrROOF. Assume first that v, w € & N C(£2). Without loss of generality we
can assume that f{u:w}(—v)(ddcw)" = 0. The measure (dd“w)" vanishes on
pluripolar sets, and therefore we have that

/ (—v)(dd“w)" =0,
{u=rw}

except for at most denumerably many r. Lemma 5.4 in [10] yields that

/ (—v)(dd u)"
{w<u}
:/ (=v)(dd max(u, w))"
{w<u}

= / (—v)(dd° max(w, u))" —{—/ v(dd® max(u, w))"
Q {w>u}

< / (—v)(dd‘w)" —I—/ v(dd® max(u, w))"
Q {w>u}

=/ (=v)(dd‘w)" + / (=v)(dd“w)".
{w<u}

{u=w}

Thus, inequality (2) holds if v € & N C(2). An approximation of v € & (£2)
by a decreasing sequence in & N C(£2) completes the proof (see, e.g., [11],
[12]).

LEMMA 2.4. Let u, v € &, and assume that v is continuous. Fort € R, set
Pu+tv) =sup{w € & : w < u+ tv}.
Then P(u + tv) € &), and for s, t € R we have that

[P(u+tv) — P(u+sv)| <[t —s|(—v).

ProoF. If t > 0, then

P(u+tv) =u+tv,
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and in the case s, ¢t > 0 the lemma is obvious. Furthermore, when ¢ < 0, the
function P(u + tv) is upper semicontinuous, and u < P(u + tv) < u + tv.
Thus, P(u + tv) € &,. Fors <t < 0, we have that

Pu+tv) <Pu-+sv) and Pu+sv)+ (¢ —s)v < P(u+tv).

Hence, |P(u +tv) — P(u + sv)| < |t — s|(—v). Similarly one can prove that
ift <0 <y, then

—sv < P(u+tv) — P(u+sv) <(s—1)(—v).

LEMMA 2.5. Let u,v € &, and assume that v is continuous. For any
0 < k < n, we have that

/ P(u+tv) —tv
Q t

3) lim " ddw)t A (ddC P (u + tv))"* = 0.

t—0-

In particular,

4) lim / W(ddw)M(ddCP(Hm))"—k: / v(ddu)".
Q

t—0~ Q

ProOF. For ¢ < 0, consider the function h(t) = ZUHW=1=% 'A giraight-
forward calculation shows that 4 is a decreasing function, and

0

Pu+tv) —tv—u
< < —v.

; <
Hence, for fixed s < 0 we have that

/ P(u+tv) —tv—
Q t

lim " ddeu)* A (dd€Pu + tv))"*

t—0~

" ddew)* A (dd€ P + tv))"*

< lim
t—0~

:/ p(u+svi—sv—u(ddcu)n S/ (—v)(dd“u)",
Q

{P(u+sv)—sv<u}

/ P(u+sv) —sv—
Q S

Let uy € & N C(2) be a decreasing sequence that converges to u such that

/ (v <2 (—u)(dd“u)”
{P(u+sv)—sv<u} {P(up+sv)—sv<u}
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(see, e.g., [11], [12]). We can apply Lemma 2.3 to conclude that

| (—u)(dd“u’
{P(up+sv)—sv<u}

< / (—0) (dd° (P (g + 5v) — 50))"
{P(ug+sv)—sv<uy}

< —sM — 0, as s — 0,

where M is a constant only depending on , ||v||, and fQ v(dd®(u+v))". Here
we have used that

/ (dd (P (ux + sv)))" =0.
{P(ug+sv)<up+sv}
This is a consequence of Corollary 9.2 in [8]. The equality (4) is then a con-

sequence of the equality (3), and the proof is complete.

LEMMA 2.6. Letu, v € &, and assume that v is continuous. Fort > 0, we
set

£y = / 4 10)(ddE (4 1)) = 1+ 1),
Q

Then
f'oH=m+1 / (—v)(ddu)",
Q
where

Proor. This is an immediate consequence of the construction.

LEMMA 2.7. Letu, v € &, and assume that v is continuous. Fort < 0, we
set

f@ = / (—P(u+1tv)(dd P(u+tv)" = e (Pu+tv)).
Q

Then
FO) =+ 1) /Q (—v)(ddu)",

where

f@) - f0)

"07) = li
S(07) Jim ;
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Proor. Note that

; (/ (=P + tv))(dd°P(u + tv))" — f (—u)(dd‘it)")
Q

— Z/ P(” +1v) - 2 ddw* A (ddEP(u + o))" F,

and then Lemma 2.5 completes the proof.

COROLLARY 2.8. Let u,v € &, and assume that v is continuous. Then it
holds that

L (P (u +tv)) (07)
=( f( P(u+ tv))(dd°P(u + tv))" +f P(u+tv)du) 07)
n+1

> /(—v)(ddcu)" —I—/ vdu.
Q Q

Proor. The existence of _#, (P (u+1tv))'(07) follows from Lemma 2.7 and
the fact that the function r — w

is decreasing. Fort < 0

/ (P(u+tv) —u) dj = (P(u+tv) —tv—u)

t
Z/vdu,
Q

and the proof is finished by Lemma 2.7.

du-i—/ vdu
Q

3. Proof of Theorem B

Proor. Let u € My, and u € &,.
(1)= (2): Assume that (dd‘u)" = du, and let v € &|. Then by The-
orem 2.1, and Young’s inequality we get that

/(—v)dﬂ Z/(—v)(ddcu)” < el(v)ﬁel(u)ﬁ
Q Q

1 n
< .
T 161(0)+ P lel(u)

Hence

1
Sulo) = — i) +/deu > i) = A,
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Thus, #, (1) = inf,cg F.(w).
(2)=(1): Let u € & be such that £, (u) = inf,cg, £, (w). Take an arbit-
rary function v in & N C(£2), and define

8(1) = Fu(Pu + 1v)).

This construction yields that that 0 > g’(07), and g’(0") > 0, Since for all ¢
we have that g(0) < g(¢). The existence of g’(0") and g’(0™) follows from
Lemma 2.6 and Corollary 2.8 respectively. The last inequality and Lemma 2.6
gives us that

/(—v)(dd"u)” +/ vdu >0,
Q Q

and therefore it follows from Corollary 2.8 that g’(0~) = 0, and

O:/(—v)(a’d”u)"+/ vdu.
Q Q

/vdM:/v(ddCu)”.
Q Q

Lemma 3.1 in [11] yields that (ddu)" = du, since v was an arbitrary function
in& NC(Q).

Thus,

REMARK 1. The uniqueness of the solution for the equation (ddu)" = du
follows from the comparison principle (see, e.g., [1], [10]). Using Lemma 2.2,
uniqueness in & can be obtained in the following way.

PROPOSITION 3.1. For any i € M there exists at most one functionu € &,
for which the functional ¢, achieves its infimum on &,. In other words, there
exists at most one solution u € &, for the complex Monge-Ampeére equation
(ddu)* = p.

ProoF. Let S denote the set of solutions to Dirichlet’s problem with given
measure i € . Then we know by Lemma 2.2 that S is a convex set. Assume
that there exist functions u, v € S. Thenalsotu+ (1 —t)v € S,for0 <t < 1.
Furthermore, we have that for any 1 < k < n, and all ¢ € &, it holds that

n—k

f (—@)(ddu)* A (dd°vy'™* < ( / <—<p><ddfu>")" ( / (—<p)(dd0v>"> "
Q Q Q

- / m
Q
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This implies that for all 1 < k < n we have that

&) (—)(dd w)* A (ddv)"™ = (=) dp,

since otherwise we would have that tu + (1 —f)v & S. From (5) it follows that
(dd“w)* A (ddv)"* = dp.

Now we can use an argument from the proof of Theorem 3.15 in [13] to
prove that u = v. By [12], there exists a strictly plurisubharmonic exhaustion
function ¢ € & N C*(2) for Q. To complete the proof it is enough to show
that

/ d(u —v) Ad(u —v) A (ddyY)"" ! = 0.
Q
We shall prove this statement by induction. It is easy to see that
0= / d(u — v) AdS(u — v) A (dduw)* A (ddv) A ddy,
Q

fork+1=n-—2.
Assume that

0= / d(u — v) Ad(u — v) A (dd°uw)* A (ddv) A (ddy)P,
Q

fork+l=n—1-—p.
Then, for k +/ = n — 2 — p we have that

0< /Qd(u — ) AdC(u — V) A (ddu)* A (ddv) A (dd )Pt
= /Q —(u — v)dd® (u — v) A (ddu)* A (@dd°v)' A (@dd )T
= /ﬂ — Y (dd*(u — v))* A (ddu)* A (dd°v) A (dd“Y)P
= /Qdyf AdC(u —v) Add°(u —v) A (ddu)* A (ddv)' A (ddy)P

=

/ dy AdS(u —v) Addu A (ddu)* A (ddv)! A (ddSy)P
Q

+ f dyr Ad°(u —v) Addv A (ddu)* A (ddv)! A (ddy)P
Q
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< (/ dy AdY A (ddCuw)* T A (ddv)! A (ddyr)P
Q

x / dw —v) Ad(u — v) A ([dduw)™ A (ddv) A (dd"w)”)z
Q

+ ( / dyr AdSyr A (ddu)* A (ddv) A (ddSy)P
Q

x / dw —v) Ad(u — v) A [dduw)* A (ddv)F A (dd"w)”)z
Q

=0.

4. Proof of Theorem A
We shall need the following lemma.

LEMMA 4.1. Let u be a non-negative Radon measure such that u(£2) < oo.
If there exists a constant A > 0 such that

©) / () dp < Aey(@)F1 forall ¢ €&,
Q

then w € M,. Furthermore, for any sequence {v;} C &, such that e, (v;) < 1,
there exists a subsequence {v; } of {v;} that converges to a plurisubharmonic
function in the L'(u) topology. Finally, there exists a uniquely determined
Sfunction u € &, with (dd‘u)" = u.

PrOOF. Assume that p is a non-negative Radon measure with @ (€2) < oo,
and take a function ¢ € &,. Then it follows from inequality (6) that there exists
a constant A > 0 such that

172
/(—<p) du < (/ (—¢)2du) w()'? < AV ()71 ()2
Q Q

= Cel(rp)ﬁ < 00,

where C = A2 ()12, Thus, & < L'(w).
Assume now that {v;} C & is a sequence such that

super(v;) < 1.
J

We can then pick a subsequence, again denoted by {v; }, which is convergent to
v € &), in the sense of distributions, and such that sequence {v; du} is weakly
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convergent to some measure v. Then we have by inequality (6) that there exists
a constant A > 0 such that

/(—vj)zdu < Ay < A,
Q

Thus, v; € L?*(1). Therefore, there exists a finite convex combination of
vj, denote this by wj, such that {w;} € & converges to some function
w € L*(u). Furthermore, dv = wdu. But {vj} is weakly convergent to
(lim sup v;)* w.r.t. the Lebesgue measure, and therefore {w;} is weak conver-
gent to (lim sup w;)* = (limsup v;)*. Hence, w = (lim sup v;)*, where (y)*
denotes the upper semicontinuous regularization of y.

The uniqueness part follows from Proposition 3.1, and therefore it remains
to prove that there exists a minimizer of _#,. Theorem B yields that exists
a function u € & such that (dd“u)" = p. Let {u;} € & be such that
lim;_, o0 £, (1) = infyeg £, (w). Using Lemma 2.2 together with what we
just have proved, we can pick a subsequence again denoted by {u;}, and a
function u € & such that

/|uj—u|d,u,—>0 as j — oo.

Q

Set v, = (supjzk u;)*. Then it follows that vy > uy, which implies that
e1(vy) < ei(ug) (see, e.g., [10] or Lemma 6.1 in [4]). Thus, v, € &. The
decreasing sequence {v;} converges to u, as j — 00, and e;(v;) — e;(u), as

k — oo. The monotone convergence theorem implies that limg_, o f QUdu =
fQ v du. Therefore, we have that

ei(u) = lim e (v;) = liminf e;(v;) < liminf e;(u;).
J—>00 J—>00 j—oo
Hence,
liminf #, (u;) = liminf ey (u;) 4+ lim / updp > e (u) — llully = Z.(u).
j—00o Jj—>o0 j—> Jo

Thus, u is a minimizer.

PrOOF OF THEOREM A. (3) = (2) Assume that condition (2) is not satisfied.
Then for all j there exists a sequence {u;} C & with

[ i = jertu .
Q
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Without loss of generality we can assume thate; (u;) = 1. Letv; = le:l llzul,
then by Lemma 2.2 we have that

J
el(vj n+l < Z el(ul)nﬂ = 212

which implies that v = Zfi | ,lzuz € &,. On the other hand,

[vde=Y 5 [ cudu Y=o
@ =1 Q =1

Thus, v ¢ L'(u), and a contradiction has been obtained.

(2) = (1) In this part of the proof we follow the idea from Theorem 5.1
in [10]. Assume that u is a non-negative Radon measure such that (1) holds.
Assume first that u is supported by a compact set K € €2, and let g denote
the relative extremal function for K (see, e.g., [19] for the definition of /).
Set

M = {v >0:suppv C K,/(—w)zdv < Cel(go)ﬁ for all ¢ € c%”l},
Q

where C > 2e(hg) " is a fixed constant. For a compact set L C K we have

that
hg < hp, and ei(hy) < ei(hg).

Therefore, it follows that

/(_90)2(ddchL)n 52||hL||/(—90)(0761%/))/\(ddChL)”_l
Q Q

<2 ( / <—<o><dd%o)") ( / (—hL)(ddChL)”>
Q Q

2
< Ce(p)r forall ¢ € &.

Hence, for every compact set L C K we have that (dd“h)" € M. Fix vy € M
and define

M = {sz:v(Q):l,supvaK,

f( @)2dv < (— (Q))el(w)nil forallgoe%l},
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where T = sup{v(2) : v € /}. Then we have for v € ./ that

L (T —v(2)) dvy + vo(2) dv)
/(—w)
Tv(£2)

/X 2 dvy VD 3:/(— Y dv
o T TJlg *

< (CL(Q) + )e (@)

=< Tvo(Q) T %

C C
< pEs for all & .
_<w®) )“@ oral wea

Hence,

(T — v(£2))vo + vo(£2)v)

e M forall ve /.
Tvy(2)

Thus, /' is a convex and weak*-compact set of probability measures. Then
it follows from [22] that there exists a function f € L'(u), and a measure
v € M such that u = fdv + v;, where v; is orthogonal to .#’. Note that
since (dd°h)" € M, then all measures orthogonal to .4’ must be carried by
a pluripolar sets. Thus, v identically 0, since w vanishes on pluripolar sets.
Furthermore, by Lemma 4.1, we know that for each u € .’ there exists a
uniquely determined function u € &, with (dd‘u)" = u.

For each j let u; be a non-negative Radon measure defined by u; =
min(f, j)dv. The measure p; satisfy inequality (6), since v have this prop-
erty. Therefore there exists a unique function u; € & with (ddu;)" = du,;.
Theorem 4.5 in [10] yields that {u;} is a decreasing sequence that converges
pointwise to a function u € & with (dd“u)" = u. Finally, if u only satisfy (1),
let {K;} be an increasing sequence of compact subsets of Q with Q = ; K,
and set u; = xx; diu. We can then proceed as before.

(1) = (4) Assume that there exists a function u € & such that (dd“u)" = u.
Let {v]’.} C &, be a sequence with e, (v]’.) <1, {vjf} converges in the sense of
distributions, and select a weak*-convergent subsequence {v; du} of {vj’. du}
converging to dv for some measure v < 0. Let € C3°(2),0 < ¢ < 1. Then
we have that ¥ (ddu)" < (dd‘u)". Then we have that the measure ¥ (dd“u)”"
satisfies condition (2), and therefore also (1). Thus, there exists a function
¢ € & such that (dd“p)" = ¥ (dd‘u)", and from the proof of the implication
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(2)= (1) it follows that u < ¢. This, together with Theorem 2.1 yields that

/(_vj)wdﬂ N f (—o)dp)" < €1 ()™ (/ (—qr))(cid‘ip)")n+l
Q Q o

n

e1 () ( / (—uwf(ddm)”)"“
Q

e ()7 ( / (—u)y du) o
Q

This means that dv is absolutely continuous w.r.t. du, and therefore there
exists a function f € L'(n), f < 0, such that dv = f du. Now let ¥ be a
function defined on Q2 with 0 < i < 1. By a similar argument as above, we
get that

IA

%) /wfduz lim / v
Q J70JQ

(Choose Y, € Cy°(2) so that f [ — Y |(—f —u)du < e and continue as
above.)

Hence, there exist finite convex combinations of v;, denoted by w;, that
converges to f in L'(u). Therefore there exists a subsequence {w;,} of {w;}
that converges to f a.e. w.r.t. [u]. From now on we shall use the notation {w;}
instead of {w;,}. Setv = lim‘;ﬁw(supkzj ve)*, then it follows from Fatou’s
lemma that f < v. Furthermore, we get that lim; _, » (Sup;~ j wi)* = v, since
{vj/.}, {v;} and {w;} converge as distributions to the same limit v € &), and

/vd,u:/ 'lim(supwk)*d/L:/ lim(supwk)d/L:/fd,u.
Q Q Q Q

J=0 k>j J70 k>j

Thus,v = f = limj_mo(supkzj vp) a.e. w.r.t. [u], and it follows from (7) that

lim vde:/ vdu.

Then
/|vj—vlduf/(maka—vj)du—l—/(maka—v)d,u:Il—i—Ig.
Q Q k=j Q k=j

But 7, converges to 0, as j — oo, since

lim/makadu: lim/vjdu,
j—oo Jo k=j j— Jo
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and I, converges to 0 by the monotone convergence theorem. Thus,

lim lvi —v|ldu =0,
Q

j—>oo

i.e. v; converges to v in L'(w). In other words, every subsequence of {v]/.}
contains a subsequence that converges to v = f = lim;_, oo (Sup; ; v) 1In

L' ().

10.
11.

12.

13.

14.

15.

16.

17.
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