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INVOLUTIONS WHOSE FIXED SET HAS THREE
OR FOUR COMPONENTS: A SMALL

CODIMENSION PHENOMENON

E. M. BARBARESCO, P. E. DESIDERI and P. L. Q. PERGHER∗

Abstract
Let T : M → M be a smooth involution on a closed smooth manifold and F = ⋃n

j=0 Fj the

fixed point set of T , where Fj denotes the union of those components of F having dimension j

and thus n is the dimension of the component of F of largest dimension. In this paper we prove
the following result, which characterizes a small codimension phenomenon: suppose that n ≥ 4 is
even and F has one of the following forms: 1) F = Fn ∪F 3 ∪F 2 ∪{point}; 2) F = Fn ∪F 3 ∪F 2;
3) F = Fn ∪ F 3 ∪ {point}; or 4) F = Fn ∪ F 3. Also, suppose that the normal bundles of Fn, F 3

and F 2 in M do not bound. If k denote the codimension of Fn, then k ≤ 4. Further, we construct
involutions showing that this bound is best possible in the cases 2) and 4), and in the cases 1) and
3) when n is of the form n = 4t , with t ≥ 1.

1. Introduction

Throughout this paper, the involved cobordism notions will be understood in
the unoriented sense. Let F be a disjoint (finite) union of smooth and closed
manifolds and M be a smooth and closed manifold equipped with a smooth
involution T : M → M whose fixed point set is F . Suppose that F is not a
boundary. If n is the dimension of a component of F of maximal dimension
and k is the codimension of this component, then k ≤ 3

2n; this follows from
the famous Five Halves Theorem of J. Boardman, announced in [1], and its
strengthened version of [11]. In fact, the Five Halves Theorem asserts that this
is valid when M is not a boundary, and in [11] R. E. Stong and C. Kosniowski
established the same conclusion under the weaker hypothesis that (M, T ) is
a nonbounding involution. The assertion then follows from the fact that the
equivariant cobordism class of (M, T ) is determined by the cobordism class
of the normal bundle of F in M (see [4]).

The generality of this result, which is valid for every n ≥ 1, allows the
possibility that fixed components of all dimensions j , 0 ≤ j ≤ n, occur; in
this way, it is natural to ask whether there exist better bounds for k when we
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omit some components of F and restrict the set of involved dimensions n. This
question is inspired by the following results of the literature:

1) (R. E. Stong and C. Kosniowski, [11], 1978): if F = Fn has constant
dimension n (and so Fn is not a boundary), then k ≤ n. For each fixed n, with
the exception of the dimensions n = 1 and n = 3, the maximal value k = n is
achieved by taking the involution (F n ×Fn, T ), where Fn is any nonbounding
n-dimensional manifold and T is the twist involution, T (x, y) = (y, x); that
is, one has in this case an (best possible) improvement for the Boardman bound
by omitting the j -dimensional components of F with j < n and excluding
n = 1 and 3.

2) (D. C. Royster, [15], 1980): in this case, the result in question is referring
to an intriguing improvement for the Boardman bound, which characterizes
a small codimension phenomenon, given by n odd and the omission of the
j -dimensional components of F with 0 < j < n. Specifically, if n is odd
and F has the form F = Fn ∪ {point}, then k ≤ 1. Evidently, this bound
is best possible, and is realized by the involution (RP n+1, T ), where RP n+1

is the (n + 1)-dimensional real projective space and T [x0, x1, . . . , xn+1] =
[−x0, x1, . . . , xn+1], with n odd.

This class of problems was introduced by P. Pergher in [12], where the
above Royster result was enlarged in the following way: if F has the form
F = Fn ∪ {point}, where n = 2p with p odd, then k ≤ p + 3. This case
(F = Fn ∪ {point}) was completed by R. Stong and P. Pergher in [14], in the
following (best possible) way: writing n = 2pq, where p ≥ 0 and q is odd,
then k ≤ n + p − q + 1 if p ≤ q and k ≤ n + 2p−q if p > q.

With the cases F = Fn and F = Fn ∪ {point} completed, the next natural
step is the case F = Fn ∪ F j , 0 < j < n. Concerning this more general
case, recently some advances have been obtained; specifically, we find best
possible bounds for F = Fn ∪ F 1 in [9] and [10], F = Fn ∪ F 2 in [5], [6]
and [7], F = Fn ∪ Fn−1 in [8] and F = Fn ∪ F j with F j indecomposable in
[13]. Among these results, one particularly finds other cases involving small
codimension phenomena: if F = Fn ∪ F 1 and n is even, then k ≤ 2 [9],
and if F = Fn ∪ F 2 and n is odd, then k ≤ 3 [6]. Further, these bounds are
best possible. For F = Fn, F = Fn ∪ Fn−1, F = Fn ∪ F 1 (n odd) and
F = Fn ∪ F 2 (n even), small codimensions do not occur, which means that k

is not limited as a function of n.
If the fixed point set F of an involution (M, T ) is expressed as F =⋃n

j=0 F j , where F j denotes the union of those components of F having dimen-
sion j , then in all the discussion above each F j can be supposed connected.
This follows from the fact that, given two k-dimensional vector bundles over
closed j -dimensional manifolds, ξ → V and ν → N , the connected sum of ξ

and ν, ξ�ν (which is a k-dimensional vector bundle over V �N ), is cobordant as
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a bundle to the disjoint union ξ ∪ν. From [4], we then conclude that (M, T ) is
equivariantly cobordant to an involution whose j -dimensional part of the fixed
point set is connected. So the cases F = Fn and F = Fn ∪ F j , 0 ≤ j < n,
can be referred to as the one component case and two components case, re-
spectively. Further, if the normal bundle of some Fj in M is a boundary, it can
be equivariantly removed to give a new involution, equivariantly cobordant to
(M, T ) and with fixed point set F − F j (see [4]). Therefore such F j have no
influence in the context of looking for bounds for the possible codimensions.
This leads us to assume throughout this paper, without mention, that the normal
bundle over each mentioned F j does not bound.

The goal of this paper is to start the study of small codimension phenomena
when the number of components of F is greater than 2. While in the one and
two components cases one has standard sources of examples, the difficulty
with more components lies in constructing examples to detect the sharpness
of the obtained bounds. Also, the characteristic number computations to find
bounds require more sophistication.

We will prove the following

Theorem 1. Let (M, T ) be an involution having fixed point set of the form
F = Fn ∪ P , where n ≥ 4 is even and P has the possible forms:

1) P = F 3 ∪ F 2 ∪ {point};
2) P = F 3 ∪ F 2;
3) P = F 3 ∪ {point};
4) P = F 3.

As previously mentioned, suppose that the normal bundle to each F j does
not bound. Then, if k is the codimension of Fn, k ≤ 4. Further, there are
involutions showing that this bound is best possible in the cases 2) and 4), and
in the cases 1) and 3) with n of the form n = 4t , t ≥ 1.

Section 2 will be devoted to the construction of the above mentioned max-
imal involutions. The main tool will be a combination of a construction of
P. Conner and E. Floyd of [4] with a result of R. E. Stong and P. Pergher of
[14]. In Section 3 we prove the part “k ≤ 4”, using the Conner and Floyd the-
ory and some special polynomials in the characteristic classes of total spaces
of projective space bundles, introduced by Stong and Pergher in [14].

2. Maximal involutions

In order to construct the examples, we need to give some preliminaries and to
establish some notations.

If (M, T ) is an involution pair with fixed point set F and η → F is the
normal bundle of F in M , we call η → F the fixed data of (M, T ).
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For a vector bundle η → F and a natural number p ≥ 1, write pη → F for
the Whitney sum of p copies of η; R → F will denote the one dimensional
trivial vector bundle. If η is k-dimensional, write W(η) = 1+w1(η)+w2(η)+
· · · + wk(η) ∈ H ∗(F, Z2) for the Stiefel Whitney class of η; if F is a closed
smooth n-dimensional manifold, W(F) = 1+w1(F )+w2(F )+· · ·+wn(F )

will denote the Stiefel Whitney class of the tangent bundle of F .
From [4], one has an algebraic scheme to determine the cobordism class of

η, given by the set of Whitney numbers (or characteristic numbers) of η; such
modulo 2 numbers are obtained by evaluating n-dimensional Z2-cohomology
classes of the form wi1(F )wi2(F ) . . . wir (F )wj1(η)wj2(η) . . . wjs

(η) ∈
Hn(F, Z2) (that is, with i1 + i2 + · · · + ir + j1 + j2 + · · · + js = n) on
the fundamental homology class [F ] ∈ Hn(F, Z2).

The following construction of P. Conner and E. Floyd will be useful (see
[4]): let (Mn, T ) be an involution defined on a closed n-dimensional manifold
Mn with fixed data η → F . On S1×Mn, consider the involutions − Id ×T and
c×Id, where S1 is the unit circle in the complex numbers, Id is the identity map
and c is the complex conjugation. Note that − Id ×T is free and commutes with
c×Id, hence c×Id induces an involution on the orbit space S1 ×Mn/−Id ×T ,
which is a closed (n + 1)-dimensional manifold. This involution, denoted by
�(Mn, T ), has (R ⊕ η → F) ∪ (R → Mn) as fixed data. If Mn bounds,
R → Mn bounds as a line bundle, so �(Mn, T ) is equivariantly cobordant to
an involution with fixed data R ⊕η → F . If S1 ×Mn/− Id ×T is a boundary,
we can repeat the process taking �2(Mn, T ), and so on.

We are now ready to give the required examples. For n ≥ 1, denote by
λn → RP n the canonical line bundle over the n-dimensional real projective
space, and for n ≥ 0 and p ≥ 0, consider the involution (RP n+p+1, Tn,p)

defined in homogeneous coordinates by

Tn,p[x0, x1, . . . , xn+p+1] = [−x0, −x1, . . . ,−xn, xn+1, . . . , xn+p+1].

The fixed data of Tn,p is

((p + 1)λn → RP n) ∪ ((n + 1)λp → RP p).

Now take n ≥ 4 even. Since n + 3 is odd, RP n+3 bounds, and thus
�(RP n+3, Tn,2) is equivariantly cobordant to an involution (Bn+4, f ) with
fixed data

(3λn ⊕ R → RP n) ∪ ((n + 1)λ2 ⊕ R → RP 2);
also, the fixed data of (RP n+4, Tn,3) is

(4λn → RP n) ∪ ((n + 1)λ3 → RP 3).
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Set α ∈ H 1(RP n, Z2) and β ∈ H 1(RP 3, Z2) for the generators of the one-
dimensional Z2-cohomology groups. Note that 4λn, 3λn⊕R and (n+1)λ2⊕R

do not bound because RP n and RP 2 do not bound; also, (n + 1)λ3 and
4λn ∪ (3λn ⊕ R) do not bound because

(w1((n + 1)λ3))
3[RP 3] = ((n + 1)β)3[RP 3] = β3[RP 3] = 1

and
(w1(4λn ∪ (3λn ⊕ R)))n[RP n ∪ RP n]

= (w1(4λn))
n[RP n] + (w1(3λn ⊕ R))n[RP n]

= (4α)n[RP n] + (3α)n[RP n] = 0 + αn[RP n] = 1.

Thus (RP n+4, Tn,3) and (RP n+4, Tn,3) ∪ (Bn+4, f ) are involutions showing
that the bound k ≤ 4 is best possible in the cases 4) and 2).

The examples for the cases 1) and 3) are a little more subtle. Write n = 2dq,
where d ≥ 1 and q is odd. In [14], R. Stong and P. Pergher showed that the
underlying manifold of �j (RP n+1, Tn,0) bounds for j = 1 if d = 1, and
for j ≤ 2d − 2 if d > 1. If n is of the form n = 4t , t ≥ 1, then d ≥ 2,
and thus the underlying manifold of �2(RP n+1, Tn,0) bounds. It follows that
�3(RP n+1, Tn,0) is equivariantly cobordant to an involution (Wn+4, g) with
fixed data

(λn ⊕ 3R → RP n) ∪ ((n + 4)R → {point}).
Now λn ⊕ 3R and (n + 4)R → {point} do not bound, and 4λn ∪ (λn ⊕ 3R)

does not bound because

(w1(4λn ∪ (λn ⊕ 3R)))n[RP n ∪ RP n] = αn[RP n] = 1.

Thus the involution (RP n+4, Tn,3) ∪ (Wn+4, g) realizes the bound k ≤ 4 in
the case 3).

Finally, note that 4λn ∪ (3λn ⊕R)∪ (λn ⊕ 3R) does not bound because the
base space RP n ∪ RP n ∪ RP n is cobordant to RP n. Then this vector bundle
is cobordant to a nonbounding 4-dimensional vector bundle μ → Gn, where
Gn is a connected closed n-dimensional manifold. From [4], there exists an
involution (Kn+4, h) equivariantly cobordant to (RP n+4, Tn,3) ∪ (Bn+4, f ) ∪
(Wn+4, g), and with fixed data

(μ → Gn) ∪ ((n + 1)λ3 → RP 3)

∪ ((n + 1)λ2 ⊕ R → RP 2) ∪ ((n + 4)R → {point}).
Then (Kn+4, h) realizes the bound in question in the case 1).
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3. A small codimension phenomenom

Let (M, T ) be an involution having fixed point set of the form F = Fn ∪ P ,
where n ≥ 4 is even and P is as described in the statement of the main theorem.
We will prove that, if k is the codimension of Fn, then k ≤ 4.

If η → F is the fixed data of an involution, denote by E the total space
of the real projective space bundle associated to η, RP(η) → F , and by
ξ → E the line bundle of the double cover S(η) → E, S(η) the sphere
bundle of η. It is known, from the Conner and Floyd exact sequence of
[4], that ξ → E bounds as a line bundle. Then, if dim(E) = r , any class
P = P(w1(E), . . . , wr(E), w1(ξ)) ∈ Hr(E, Z2), given by a polynomial of
dimension r in the classes wi(E) and w1(ξ), gives the zero characteristic num-
berP [E]; in this case, P [E] splits into a modulo 2 sum of factors corresponding
to the connected components of F .

Returning to our particular case, denote by Ei , i = 0, 2, 3 and n, the
total space of the projective space bundle corresponding to the i-dimensional
component, and by ξi → Ei the corresponding line bundle. Our strategy will
be first to select four special polynomials, P1, P2, P3 and P4, with dimension
n + k − 1, leading to a modulo 2 system of equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4∑
i=1

P1[Ei] = 0

4∑
i=1

P2[Ei] = 0

4∑
i=1

P3[Ei] = 0

4∑
i=1

P4[Ei] = 0

P1, P2, P3 and P4 will be built under the hypothesis, by contradiction, that
k > 4. After computation of the terms Pi[Ej ], this system will be reduced to a
system of equations in four variables, these variables being four special charac-
teristic numbers of the normal bundle over the 3-dimensional component. The
zero solution will be the unique solution of this system. Then we will prove
that these four characteristic numbers determine the cobordism class of any
bundle over a 3-dimensional closed manifold. This will imply that the normal
bundle over the 3-dimensional component bounds, giving the contradiction.

Denote by ηi → F i , i = 0, 2, 3 and n, the normal bundle over the i-
dimensional component. To avoid excessive notation, write W(F i) = 1 +
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w1 + w2 + · · · + wi , W(ηi) = 1 + v1 + · · · + vn+k−i and W(ξi) = 1 + c for
the Stiefel-Whitney classes.

From [2, p. 517], the Stiefel-Whitney class of Ei is

W(Ei) = (1+w1 +· · ·+wi)((1+c)n+k−i +(1+c)n+k−i−1v1 +· · ·+vn+k−i ),

where here we are suppressing bundle maps.
To construct the polynomials Pi , i = 1, 2, 3 and 4, we consider the class

W̃ (Ei) = W(Ei)

(1 + c)k
= 1 + w1(Ei) + w2(Ei) + · · ·

(1 + c)k
= 1 + W̃1 + W̃2 + · · ·

This kind of class was introduced by Stong and Pergher in [14]. Each W̃j is
a polynomial in the classes ws(Ei) and c, which means that it can be used to
yield the required polynomials. Thus, since k > 4, it makes sense to set P1 =
W̃ n+4

1 ck−5, P2 = W̃ n
1 W̃ 2

2 ck−5 and P3 = W̃ n−1
1 W̃2W̃3c

k−5. We recall that, if Sq
is the Steenrod operation, then the Wu formula implies that Sqj evaluated on a
characteristic class of a bundle gives a polynomial in the characteristic classes
of this bundle. Therefore, by the Cartan formula, Sq1(W̃3) is a polynomial in
the classes ws(Ei) and c; we define P4 = W̃ n

1 Sq1(W̃3)c
k−5. Next we compute

Pi[Ej ] for i = 1, 2, 3, 4 and j = 0, 2, 3, n.
1) Since F 0 = {point}, E0 = RP n+k−1 and

W̃ (E0) = (1 + c)n+k

(1 + c)k
= (1 + c)n.

Because n is even, W̃1 = nc = 0. Thus Pi = 0 for i = 1, 2, 3, 4.
2) On F 2, one has

W̃ (E2) = (1 + w1 + w2)[(1 + c)n−2 + (1 + c)n−3v1 + (1 + c)n−4v2].

Because n is even,

W̃1 = (n − 2)c + v1 + w1 = v1 + w1.

Since dim(F 2) = 2 and n ≥ 4, by dimensional reasons Pi = 0 for i =
1, 2, 3, 4.

3) On Fn, one has

W̃ (En) = (1 + w1 + · · · + wn)

[
1 + v1

1 + c

+ v2

1 + c2
+ v3

(1 + c)3
+ · · · + vk

(1 + c)k

]
.
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Then,

W̃1 = w1 + v1,

W̃2 = v1c + v2 + w1v1 + w2,

and W̃3 = v1c
2 + w1v1c + v3 + w1v2 + w2v1 + w3.

Since Sq1(c2) = 0, the Cartan formula gives

Sq1(v1c
2 + w1v1c) = v2

1c
2 + w1v1c

2 + w1v
2
1c + w2

1v1c

and so W̃ n
1 Sq1(W̃3) = 0 by dimensional reasons. Also

W̃ n+4
1 = (w1 + v1)

n+4,

W̃ n
1 W̃ 2

2 = (w1 + v1)
n(v2

1c
2 + v2

2 + w2
1v

2
1 + w2

2)

and W̃ n−1
1 W̃2W̃3 = (w1 + v1)

n−1(v1c + v2 + w1v1 + w2)

· (v1c
2 + w1v1c + v3 + w1v2 + w2v1 + w3).

Note that each term of the above polynomials has a factor of dimension
at least n + 1 coming from the cohomology of Fn, which gives Pi = 0 for
i = 1, 2, 3, 4.

4) On F 3, one has

W̃ (E3) = (1 + w1 + w2 + w3)[(1 + c)n−3

+ (1 + c)n−4v1 + (1 + c)n−5v2 + (1 + c)n−6v3].

Because n is even and by dimensional reasons, W̃1 = (n − 3)c + v1 + w1 =
c + v1 + w1 and

W̃ n+4
1 = (v1 + w1 + c)n+4 =

n+4∑
j=0

(
n + 4

j

)
(v1 + w1)

j cn+4−j

=
{

cn+4, if n ≡ 0 mod 4,

cn+4 + (v2
1 + w2

1)c
n+2, if n ≡ 2 mod 4.

Thus

P1[E3] =
{

cn+k−1[E3], if n ≡ 0 mod 4,

(cn+k−1 + (v2
1 + w2

1)c
n+k−3)[E3], if n ≡ 2 mod 4.
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Denoting by

W(η3) = 1

W(η3)
= 1 + v1 + v2 + v3

the dual Stiefel-Whitney class of η3, the Conner formula of [3] gives that

xcn+k−i[E3] = xv4−i[F
3],

for every x ∈ Hi−1(F 3) and 1 ≤ i ≤ 4 (this follows from the fact that
H ∗(E3, Z2) is a free H ∗(F 3, Z2)-module with basis {1, c, c2, . . . , cn+k−4},
with multiplication determined by the relation cn+k−3 = v1c

n+k−4+v2c
n+k−5+

v3c
n+k−6). Since v1 = v1 and v3 = v3

1 + v3, this gives

P1[E3] =
{

v3[F 3] = (v3
1 + v3)[F3], if n ≡ 0 mod 4,

(v3 + (v2
1 + w2

1)v1)[F 3] = (v3 + w2
1v1)[F 3], if n ≡ 2 mod 4.

To compute Pi[E3], i = 2, 3 and 4, we use the same approach above and
the following ingredients:

i) the relations w3 = w1w2 = w3
1 = 0, which follow from the fact that every

3-dimensional manifold bounds; and the relations w2v1 = w2
1v1, w1v

2
1 = 0

and w1v2 = v1v2 + v3, which are valid for every vector bundle over a 3-
dimensional manifold (see the proof of the fact stated at the end of the paper).

ii)

W̃2 =
(

n − 3

2

)
c2 + (n − 4)v1c + (n − 3)w1c + v2 + w1v1 + w2

=
{

w1c + v2 + w1v1 + w2, if n ≡ 0 mod 4,

c2 + w1c + v2 + w1v1 + w2, if n ≡ 2 mod 4;

iii)

W̃3 =
(

n − 3

3

)
c3 +

(
n − 4

2

)
v1c

2 +
(

n − 3

2

)
w1c

2 + (n − 5)v2c

+ (n − 4)w1v1c + (n − 3)w2c + w2v1 + w1v2 + v3

=
⎧⎨⎩

(v2 + w2)c + w2v1 + w1v2 + v3, if n ≡ 0 mod 4,

c3 + (v1 + w1)c
2 + (v2 + w2)c

+ w2v1 + w1v2 + v3, if n ≡ 2 mod 4;
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iv)

Sq1(W̃3)
† =

⎧⎪⎨⎪⎩
(v2 + w2)c

2 + (v1v2 + v3)c, if n ≡ 0 mod 4,

c4 + (v2
1 + w2

1 + v2 + w2)c
2

+ (v1v2 + v3)c, if n ≡ 2 mod 4;

v)

W̃ n
1 =

n∑
j=0

(
n

j

)
(v1 + w1)

j cn−j = cn +
(

n

2

)
(v2

1 + w2
1)c

n−2

=
{

cn, if n ≡ 0 mod 4,

cn + (v2
1 + w2

1)c
n−2, if n ≡ 2 mod 4,

and

W̃ n−1
1 = cn−1 + (v1 + w1)c

n−2

+
(

n − 1

2

)
(v2

1 + w2
1)c

n−3 +
(

n − 1

3

)
(v1 + w1)

3cn−4

=
⎧⎨⎩

cn−1 + (v1 + w1)c
n−2

+ (v2
1 + w2

1)c
n−3 + (v1 + w1)

3cn−4, if n ≡ 0 mod 4,

cn−1, if n ≡ 2 mod 4.

With these data in hand we obtain, by doing a routine calculation, that

P2[E3] =
{

w2
1v1[F 3], if n ≡ 0 mod 4,

v3[F 3], if n ≡ 2 mod 4,

P3[E3] =
{

w1v2[F 3], if n ≡ 0 mod 4,

(v3 + w2
1v1 + w1v2)[F 3], if n ≡ 2 mod 4,

and

P4[E3] =
{

(w2
1v1 + v3)[F 3], if n ≡ 0 mod 4,

(v3
1 + w2

1v1)[F 3], if n ≡ 2 mod 4.

Taking into account that a cohomology class v ∈ H 3(F 3, Z2) is zero if
and only if v[F 3] = 0, we conclude that our initial system is reduced to the

† In fact, by the Wu formula one has Sq1(v2 + w2) = v1v2 + v3 + w1w2 + w3 = v1v2 + v3;
also, Sq1(w2v1 + w1v2 + v3) = 0. The remaining calculation follows from the Cartan Formula.
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following systems of equations in the variables v3
1, v3, w1v2 and w2

1v1:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v3

1 + v3 = 0

w2
1v1 = 0

w1v2 = 0

w2
1v1 + v3 = 0

if n ≡ 0 mod 4,

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v3 + w2

1v1 = 0

v3 = 0

v3 + w2
1v1 + w1v2 = 0

v3
1 + w2

1v1 = 0

if n ≡ 2 mod 4.

In both cases, v3
1 = v3 = v2w1 = w2

1v1 = 0 is the unique solution. Thus, the
following fact will end our task:

Fact. The cobordism class of any vector bundle over a 3-dimensional
manifold F 3 is determined by the Whitney numbers v3

1[F 3], v3[F 3], v2w1[F 3]
and v1w

2
1[F 3].

Proof. The complete list of Whitney numbers in this case is w3[F 3],
w1w2[F 3], w3

1[F 3], v3[F 3], v1v2[F 3], v3
1[F 3], w1v

2
1[F 3], w1v2[F 3], w2

1v1[F 3]
and w2v1[F 3].

The first reduction is given by the fact that F 3 bounds: w3[F 3] =
w1w2[F 3] = w3

1[F 3] = 0.
Now let U = 1 + u1 be the Wu class of F 3. Then

W(F 3) = 1 + w1 + w2 + w3 = Sq(U) = 1 + u1 + u2
1,

which gives w2 = u2
1 = w2

1 and the next reduction, w2v1 = w2
1v1.

If x ∈ H 2(F 3, Z2), it is known that Sq1(x) = u1x; also, Sq1(v2
1) = 0.

Then one has the reduction w1v
2
1 = u1v

2
1 = Sq1(v2

1) = 0.
Finally, by the Wu formula,

w1v2 = u1v2 = Sq1(v2) = v1v2 + v3,

which makes v1v2[F 3] unnecessary.
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