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CONTINUOUS HOMOMORPHISMS AND RINGS
OF INJECTIVE DIMENSION ONE

SHOU-TE CHANG and I-CHIAU HUANG

Abstract
Let S be an R-algebra and � be an ideal of S. We define the continuous hom functor from R-Mod
to S-Mod with respect to the �-adic topology on S. We show that the continuous hom functor
preserves injective modules iff the ideal-adic property and ideal-continuity property are satisfied
for S and �. Furthermore, if S is �-finite over R, we show that the continuous hom functor
also preserves essential extensions. Hence, the continuous hom functor can be used to construct
injective modules and injective hulls over S using what we know about R. Using the continuous
hom functor we can characterize rings of injective dimension one using symmetry for a special
class of formal power series subrings. In the Noetherian case, this enables us to construct one-
dimensional local Gorenstein domains. In the non-Noetherian case, we can apply the continuous
hom functor to a generalized form of the D+M construction. We may construct a class of domains
of injective dimension one and a series of almost maximal valuation rings of any complete DVR.

1. Introduction

Throughout this paper, R, S and T are rings, S is an R-algebra and � is an
ideal of S. When R is a domain we always use Q to denote Q(R), the field of
fractions of R, and K to denote a field containing Q(R). When X is used it
always stands for an indeterminate over whatever base ring used. All the rings
we consider are commutative with unity 1 and all the modules are unitary. We
will also use S-Mod and R-Mod to denote the category of S-modules and the
category of R-modules respectively.

For anyS-moduleN and anyR-moduleM , theAbelian group HomR(N, M)

of R-linear maps from N to M has a natural S-module structure given by
sf = f ◦ μs , where s ∈ S, f ∈ HomR(N, M) and μs is the multiplication by
s. What we are interested in is a subfunctor Hom�

R(S, −) of HomR(S, −) from
R-Mod to S-Mod, and we will call this functor the continuous hom functor of
S over R.

Let N be an S-module. Taking {α + �nN}n∈Z+ as a system of neighborhood
of any element α ∈ N , we have a topology on N , called the �-adic topology.
With respect to the �-adic topology on S and the discrete topology on M , the
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S-module

Hom�
R(S, M) = {f ∈ HomR(S, M): f (�n) = 0 for some n ∈ Z+}

is the collection of continuous homomorphisms from S to M . The continuous
hom functor has been used to construct injective modules when R → S is a
residually finite local homomorphism of Noetherian local rings. In this partic-
ular case, Hom�

R(S, −) preserves injective hulls of the residue fields and plays
an important role for concrete realization of Grothendieck duality [6], [8]. We
aim to find conditions on S, � and R in general for which the continuous hom
functor is well-behaving.

In §2 we investigate when the continuous hom functor preserves injective
objects. We may obtain the continuous hom functor as follows. First, apply
the functor HomR(S, −): R-Mod → S-Mod. It is well-known that this functor
preserves injective objects. Next, consider the �-torsion functor defined by
��(M) = {m ∈ M : �nm = 0 for some n} for any S-module M . (We remark
that the �-torsion functor is used to define local cohomology in the Noetherian
case [2]. In the non-Noetherian case, local cohomology is defined by another
condition using supports.) Let A be the full subcategory of S-Mod consisting
of modules with ��(M) = M . We further consider �� as a functor from S-Mod
to A , which preserves injective objects (cf. [12]). Finally, apply the inclusion
functor of A into S-Mod. It is essential to study when this functor preserves
injective objects.

In §2, we also describe two important “topological” conditions for S and �.
The first condition is called the ideal-adic property (Definition 2.1), which is
equivalent to a slightly weaker version of theArtin-Rees lemma. It says that the
�-adic topology on any S-ideal is the same as the inherited subspace topology.
The second condition, ideal continuity (see Definition 2.5), basically says that
if the restrictions of an R-linear map from an ideal J of S to M are continuous
on a collection of ideals contained in J which “covers” J as subspaces (note
that this is not an open cover) then the R-linear map is itself continuous on
J . Theorem 2.7 tells us that the continuous hom functor preserves injective
modules for all R if and only if the inclusion functor of A into S-Mod preserves
injective objects if and only if the ideal-adic property and the ideal-continuity
property are satisfied for S and �.

The two topological conditions are automatically satisfied when S is No-
etherian. For the rest of §2, we provide non-Noetherian examples satisfying
the two said topological conditions to show that there are plenty of such S and
�.

In §3, we have the second main result, Theorem 3.4, which says when S is
�-finite over R (see Definition 3.2) the continuous hom functor of S over R also
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preserves essential extensions. Thus, it gives rise to a method of constructing
injective hulls of cyclic modules in Corollary 3.6. With the existence of a trace,
Proposition 3.8 pins down our construction to concrete cases. Understanding of
injective hulls of cyclic modules is necessary in understanding the structure of
injective modules over non-Noetherian rings. Injective hulls are also essential
in constructing minimal injective resolutions.

Concrete descriptions of an injective hull for a given module is very subtle,
even though they are isomorphic to each other. To appreciate the importance
of such concrete descriptions, one may look at concrete aspects of Grothen-
dieck duality, for instance, in the paper [8]. Our philosophy is that important
information of a module can be obtained from reading its minimal injective
resolution. For an easy example, Kunz’s well-known symmetric criterion [10]
of the Gorenstein property of numerical semigroup rings K[[Xt1 , . . . , Xtm ]]
can be obtained from a dualizing complex [7]. The continuous hom functor
together with local cohomology play a dominant role in the constructions of
injective modules [6], which deals with the Noetherian case. This paper con-
siders the continuous hom functor beyond the Noetherian situation.

In §4, we apply our results from previous sections to rings of the form

S = R ⊕ R1X ⊕ · · · ⊕ Rn−1X
n−1 ⊕ K[[X]]Xn ⊂ K[[X]].

The continuous functor makes it possible to construct minimal injective res-
olutions for this type of rings. In Theorem 4.3, we establish the criterion of
symmetry to decide exactly when a ring of this type is of injective dimension
one!

Application of Theorem 4.3 in the Noetherian case gives us examples of one-
dimensional Gorenstein domains. We can recover the Gorenstein numerical
semigroup rings described by Kunz [10] using symmetry, or other analytically
irreducible local Gorenstein domains obtained by Barucci and Fröberg [1]
where symmetry is formulated in terms of dimension formulae. Our approach
is to replace the numerical formulae by duality of modules with respect to
an injective module and replace the Gorenstein property by finite injective
dimension. Thus, our approach naturally extends to the non-Noetherian case.
If we apply Theorem 4.3 to rings of the form

S = R ⊕ RX ⊕ · · · ⊕ RXn−1 ⊕ Q[[X]]Xn,

which is a generalization of the D + M construction, we will see that the
injectivity of Q((X))/S is equivalent to the self-duality of Q with respect to
Q/R (Definition 4.8). We will show that self-duality of the quotient fields is
preserved under such extensions (Proposition 4.12). In particular, we will be
able to construct a series of almost maximal valuation rings out of any complete
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DVR’s. Furthermore, we provide rings such as

Q[[t]] ⊕ Q((t))X2 ⊕ Q[[t]]X3 ⊕ Q((t))[[X]]X4

and

Q[[t2]] ⊕ Q((t))X2 ⊕ (
Q[[t2]] + Q((t2))t

)
X3 ⊕ Q((t))[[X]]X4

to give a more general idea how to construct rings of injective dimension 1 (see
Examples 4.15 and 4.16). Furthermore, the quotient field of any such ring is
self-dual with respect to its first cosyzygy, and the first cosyzygy is an injective
hull of the residue field if the domain is quasi-local.

2. Injective Modules

In this section we investigate the two topological conditions involving S and
� for the continuous hom functor to preserve injective modules.

Let N be an S-module. Then a submodule N ′ of N can be endowed with
the �-adic topology or the subspace topology inherited from N . In general, the
�-adic topology is finer than the subspace topology, since �nN ′ ⊂ �nN ∩ N ′
for any n ∈ Z+.

Definition 2.1 (Ideal-Adic). The �-adic topology on S is ideal-adic if for
any ideal J of S and for any given n ∈ Z+ there exists m such that �m∩J ⊂ �nJ .

The terminology “ideal-adic” stems from its equivalence to the condition
that the subspace topology on any given ideal of S is the same as its �-adic
topology.

For the rest of this paper we identify HomR(J, M) with HomS(J, HomR(S,

M)) via the map which sends an R-linear map f : J → M to the S-linear
map f̃ : J → HomR(S, M) given by (f̃ (α))(β) = f (αβ) for α ∈ J and
β ∈ S. Many modules we are interested in will be considered as submodules
of HomS(J, HomR(S, M)). We will also identify HomR(J/�nJ, M) with {f ∈
HomR(J, M): f (�nJ ) = 0}.

Definition 2.2 (Continuous Homomorphism). Suppose given an ideal J

of S and an R-module M . Define

Hom�
R(J, M) :=

⋃
n>0

HomR(J/�nJ, M) ⊂ HomR(J, M).

The elements in Hom�
R(J, M) are called continuous R-linear homomorphisms

from J to M , or we will simply say that f is continuous on J .
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For an ideal J of S and an R-module M , we have

Hom�
R(J, M) =

⋃
n>0

HomS(J, HomR(S/�n, M)) ⊂ HomS(J, Hom�
R(S, M)).

Note that f ∈ HomS(J, Hom�
R(S, M)) if and only if for any α ∈ J , there

exists some n such that f (α�n) = 0, that is, f is continuous on all principal
ideals contained in J . Thus, we have the following lemma.

Lemma 2.3. For an ideal J of S and an R-module M , the following state-
ments are equivalent:

• If an R-linear map f is continuous on all principle ideals contained in
J then f is continuous on J .

• Hom�
R(J, M) = HomS(J, Hom�

R(S, M)).

Interestingly, R is not an essential factor in the identity in Lemma 2.3 as
we will see in Proposition 2.4. It is elementary to verify that

(1) Hom�
R(J, M) = Hom�

S(J, HomR(S, M))

for any ideal J of S and any R-module M .

Proposition 2.4. The following statements are equivalent for all ideals J

of S:

(a) Hom�
Z(J, M) = HomS(J, Hom�

Z(S, M)) for any Z-module M;

(b) Hom�
R(J, M) = HomS(J, Hom�

R(S, M)) for any ring R such that S is
an R-algebra and any R-module M;

(c) Hom�
R(J, M) = HomS(J, Hom�

R(S, M)) for some ring R such that S is
an R-algebra and any R-module M;

(d) Hom�
S(J, M) = HomS(J, Hom�

S(S, M)) for any S-module M .

Proof. (a) ⇒ (b) ⇒ (c) ⇒ (d) is trivial. We now prove (d) ⇒ (a). LetM be a
Z-module and let � = HomZ(S, M). Using identity (1), we have Hom�

Z(S, M)

= Hom�
S(S, �). By repeated use of identity (1), we have Hom�

Z(J, M) =
Hom�

S(J, �) = HomS(J, Hom�
S(S, �)) = HomS(J, Hom�

Z(S, M)).

Definition 2.5 (Ideal-Continuity). The �-adic topology on S admits ideal-
continuity if one of the equivalent statements in Proposition 2.4 holds for all
ideals J of S.

Remember that the category A is the full subcategory of S-Mod consisting
of modules with ��(M) = M . It is easy to see that A is an abelian category.

Lemma 2.6. The functor ��: S-Mod → A preserves injective objects
(cf. [12, Ex. 4.6.3]).
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Proof. Let E be an injective S-module and let N ⊂ M be objects of A .

For any S-linear map f : N → ��(E), the map N
f→ ��(E) ↪→ E can be

extended to an S-linear map g: M → E. Obviously, g(M) ⊂ ��(E). Hence,
g factors through ��(E) and gives rise to an extension of f to M .

Next is the main result of this section.

Theorem 2.7. The following statements are equivalent.

(a) The inclusion functor of A into S-Mod preserves injective objects.

(b) The functor Hom�
R(S, −) preserves injective modules for all rings R

such that S is an R-algebra.

(c) The functor Hom�
S(S, −) preserves injective modules.

(d) The �-adic topology on S is ideal-adic and admits ideal-continuity.

Proof. By the discussion on �� and A , (a) ⇒ (b) is clear. The implication
(b) ⇒ (c) is trivial.

(c) ⇒ (a): Let E be an injective object in A . Find an injective hull E′ of E

in S-Mod. Then ��(E
′) = E ⊕ E′′ in A . Being a submodule of an injective

hull of E, E ⊕ E′′ is an essential extension of E. Thus E′′ = 0. By (c),
E = ��(E

′) ∼= Hom�
S(S, E′) is injective in S-Mod.

(a) and (c) ⇒ (d): Let J be an ideal of S. Find an injective S-module E

containing J/�nJ . Then E′ = ��(E) is an injective object containing J/�nJ

in A by Lemma 2.6. By (a), E′ is also injective in S-Mod. The S-linear map

J →→ J/�nJ
ι

↪→ E′ can be extended to an S-linear map S
g→ E′. Since

g(1) is killed by �m for some m, we have g(�mS) = 0, and so g factors as

S →→ S/�m g̃→ E′. Now let α ∈ J ∩ �m. Then ι(α + �nJ ) = g̃(α + �m) = 0.
This implies that α ∈ �nJ , that is, �m ∩ J ⊂ �nJ . Thus, the �-topology on S

is ideal-adic.
To show the �-adic topology on S admits ideal-continuity, take an S-linear

map f : J → Hom�
S(S, M). We embed M into an injective S-module E. By

the injectivity of Hom�
S(S, E), the map J

f→ Hom�
S(S, M) → Hom�

S(S, E)

extends to some g: S → Hom�
S(S, E). Since g(1) is killed by �n for some n,

we haveg(�n) = 0. Thus, f (�nJ ) = g(�nJ ) = 0 andf ∈ Hom�
S(J, HomR(S,

M)) = Hom�
S(J, M). We have proved that Hom�

S(J, M) = HomS(J,

Hom�
S(S, M)).

(d) ⇒ (a): Let E be an injective object in A . Note that in this case E ∼=
HomS(S, E) = Hom�

S(S, E). If J be an ideal of S and f ∈ HomS(J, E), then
the ideal-continuity property guarantees that f ∈ HomS(J, Hom�

S(S, E)) =
Hom�

S(J, E), and so we have that f : J → E factors as f : J → J/�nJ → E
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for some n. Find m such that �m ∩ J ⊂ �nJ . The map f factors as

J → J/(�m ∩ J ) → J/�nJ → E.

Since J/(�m ∩ J ) is a submodule of S/�m in A , J/(�m ∩ J ) → J/�nJ → E

can be extended to g : S/(�m∩J ) → E. The composite S → S/(�m∩J )
g→ E

is an extension of f in S-Mod. Thus E is injective in S-Mod.

It is quite obvious when S is Noetherian, the �-adic topology on S is ideal-
adic and admits ideal-continuity for any ideal � of S. For non-Noetherian
examples, we introduce the following notion.

Definition 2.8. Let S be a subring of T . If � is both an ideal of S and an
ideal of T , we say that � is an ideal of S along T .

It is clear that � = �T if � is an ideal of S along T . Note that in this case
J� for any ideal J of S and any power of � are also ideals of S along T .

Proposition 2.9. Let S be a subring of a Noetherian ring T , and let � be
an ideal of S along T . Then the �-adic topology on S is ideal-adic and admits
ideal-continuity.

Proof. Suppose given any ideal J of S. By the Artin-Rees lemma for T ,
for any n there exists m such that �m ∩ J ⊂ �mT ∩ JT ⊂ �nJT = �nJ since
� = �T . Hence the �-topology on S is ideal-adic.

If f : J → M is an R-linear homomorphism which is continuous on
αS for every α ∈ J , then f |�J is also continuous on βS for every β ∈ �J .
Since �J = �JT is also an ideal of T , from the Noetherian case we have
that f |�JT is continuous with respect to the �-adic topology on T , that is,
f (�n(�J )) = f (�n(�JT )) = 0 for some n. Hence f is continuous on J with
respect to �-adic topology on S.

Let S be a subring of K[[X]]. The conductor � of S along K[[X]] is the
largest K[[X]]-ideal contained in S, that is,

� = {ϕ ∈ S: ϕK[[X]] ⊂ S}.
The conductor � is proper (that is, � �= S or equivalently � �= K[[X]]) if
and only S is a proper subring of K[[X]]. If � is non-zero, it is of the form
K[[X]]Xn for some n ≥ 0. By Proposition 2.9, the �-adic topology on S is
ideal-adic and admits ideal-continuity.

The class of rings ideal-adic and admitting ideal-continuity is not restricted
to those in Proposition 2.9. For example, let S be the localization of the ring
K[Xr : 0 < r ∈ R] at the maximal ideal (Xr : 0 < r ∈ R). We denote
X0 := 1. Every nonzero element of S can be written as Xrφ, where φ is a unit
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of S. Thus an ideal I of S is generated by those Xr with Xr ∈ I . For a real
number c ≥ 0, we denote by Ic the ideal of S generated by those Xr ∈ S with
r ≥ c; we denote by I+

c the ideal of S generated by those Xr ∈ S with r > c.
A non-zero ideal of S is either of the form Ic or of the form I+

c . For c ∈ R, the
ideal I+

c is not finitely generated while Ic is principal. It is easy to see that

(a) I+
c � Ic � I+

d � Id for d < c;

(b) IcId = Ic+d and IcI
+
d = I+

c I+
d = I+

c+d .

Proposition 2.10. Let S be as above and � = Ic or I+
c where c > 0. Then

the �-adic topology of S is ideal-adic and admits ideal-continuity. If � = I+
c ,

then � is not an ideal of any Noetherian ring containing S.

Proof. Take any nonzero proper ideal J = Id or I+
d . For any n, choose

m such that mc > nc + d. Then �m ∩ J ⊂ Imc ⊂ I+
nc+d ⊂ �nJ . Hence

the �-adic topology of S is ideal-adic. Now let M be any S-module and let
f ∈ HomS(J, M) be such that f is continuous on Sα for all α ∈ J . In
particular, suppose Xr ∈ J and f (�nXr) = 0 for some n. Find m such that
mc + d > nc + r . Then �mJ ⊂ Imc+d ⊂ I+

nc+r ⊂ �nXr . Hence f (�mJ ) = 0,
that is, f ∈ Hom�

S(J, M). Therefore, the �-adic topology of S admits ideal-
continuity.

Assume that � = I+
c is an ideal of a Noetherian ring T containing S. We

may choose Xr1 , . . . , Xrs which generate � as an ideal of T . With r = min{ri :
i = 1, . . . , s}, we have � = T Xr . Since r > c, there exists a positive integer n

such that r − (1/n) > c. Let α be an element in T such that αXr = Xr−(1/n).
Choose a positive integer m > c. Then αmnXm ∈ T � = � ⊂ S. On the other
hand, αmnXmXrmn = (αXr)mnXm = Xrmn. Since S is a domain, we get the
contradiction that 1 = αmnXm ∈ �.

3. Injective Hulls

To construct injective hulls, we need to study essential extensions of modules
under the continuous hom functor. It turns out that certain topological finiteness
is sufficient for the continuous hom functor to preserve essential extensions.

Definition 3.1. Let � be an ideal of S. We say that � and � are adically
equivalent if and only if a power of � is contained in � and a power of � is
contained in �.

Remark. When two ideals � and � of S are adically equivalent, the �-adic
topology is the same as the �-adic topology. Any property satisfied by the �-adic
topology is also satisfied by the �-adic topology. In particular, Hom�

R(S, M) =
Hom�

R(S, M) for any R-module M .
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Theorem 3.4 is the main result for this section. Note that neither the ideal-
adic nor the ideal-continuity property is required.

Definition 3.2 (Adic Finite). The �-adic topology on S is finite over R,
or S is �-finite over R, if S/� is a finite R-module for some ideal � of S which
is adically equivalent to �.

Lemma 3.3. Let � be any ideal of S which is adically equivalent to �. Then
HomR(S/�, M) ⊆ Hom�

R(S, M) is essential for any R-module M .

Proof. The inclusion is obvious. Suppose given any non-zero continuous
homomorphism f ∈ Hom�

R(S, M). Then f must annihilate some power of
�. Find the smallest n such that f (�n) = 0, and find a ∈ �n−1 \ �n such that
f (a) �= 0. Then af is a non-zero element in HomR(S/�, M).

Theorem 3.4. Let S be an R-algebra. If S is �-finite over R, the functor
Hom�

R(S, −) preserves essential extensions.

Proof. Let � be an ideal of S which is adically equivalent to � such that
S/� is a finite R-module. Let M ⊂ E be an essential extension of R-modules
and let e1, . . . , en be generators of S/� as an R-module. Given a non-zero
f ∈ HomR(S/�, E), we choose

b1 =
⎧⎨⎩

1, if f (e1) = 0;

an element of R such
if f (e1) �= 0.

that b1f (e1) ∈ M \ {0},
For 1 ≤ i ≤ n − 1, we choose bi+1 ∈ R inductively from b1, . . . , bi . Let

bi+1 =
⎧⎨⎩

1, if b1b2 . . . bif (ei+1) = 0;

an element of R such that
otherwise.

b1b2 . . . bi+1f (ei+1) ∈ M \ {0},
We obtain an element b1b2 . . . bn ∈ R such that b1b2 . . . bnf ∈ HomR(S/�,

M). We see by induction on i that b1b2 . . . bif is not zero, since, in each
step either b1 . . . bibi+1f (ej ) = b1 . . . bif (ej ) �= 0 for some j �= i + 1 or
b1 . . . bi+1f (ei+1) �= 0. Hence HomR(S/�, E) is essential over HomR(S/�,

M). By Lemma 3.3, the extension Hom�
R(S, E) ⊃ HomR(S/�, E) is essential.

We conclude that Hom�
R(S, E) is essential over HomR(S/�, M), and hence

also essential over Hom�
R(S, M).

Combining results from §2 and this section, we have the following result.

Corollary 3.5. Assume that the �-adic topology on S is ideal-adic, admits
ideal-continuity and is finite over R. If E is an injective hull of M over R, then
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Hom�
R(S, E) is an injective hull of Hom�

R(S/�, M) over S where � is an ideal
adically equivalent to �.

Next, we concentrate on constructing injective hulls of cyclic modules over
S. This is particularly important in the non-Noetherian case since in that case
it is not enough to only study injective hulls of residue fields of local rings.

Corollary 3.6. Assume that the �-adic topology on S is ideal-adic,
admits ideal-continuity and is finite over R. Let I be an ideal of R and
σ ∈ Hom�

R(S, R/I). If Hom�
R(S, R/I) is essential overSσ , then Hom�

R(S, E)

is an injective hull of S/ Ann σ for any injective hull E of R/I .

The notion of trace occurs in constructions of injective hulls.

Definition 3.7 (Trace). Let A be a commutative ring and B be an A-
algebra. A torsion free element σ in HomA(B, A) is a trace of B if HomA(B, A)

= Bσ .

The reader is referred to [9, Appendix F] for discussions on the connection
between the “classical traces” and “traces” in the sense of Definition 3.7.

Proposition 3.8. Assume that the �-adic topology on S is ideal-adic,
admits ideal-continuity and is finite over R. Let I be an ideal of R such that
S/(IS + �) has a trace as an R/I -algebra. Then Hom�

R(S, E) is an injective
hull of S/(IS + �) over S for any injective hull E of R/I over R.

Proof. By Lemma 3.3, Hom�
R(S, R/I) is essential over HomR(S/�, R/I).

Since I (S/�) is in the kernel of any R-linear map S/� → R/I , the canonical
map

HomR(S/(IS + �), R/I) → HomR(S/�, R/I)

is an isomorphism. A map S/(IS + �) → R/I is R-linear if and only if it
is R/I -linear, i.e., HomR/I (S/(IS + �), R/I) = HomR(S/(IS + �), R/I).
A trace σ of S/(IS + �) gives a required isomorphism HomR(S/�, R/I) �
Sσ � S/(IS + �). Now the result follows from Corollary 3.6.

A local homomorphism is residually finite if the induced field extension on
the residue fields is finite. If R → S is residually finite, a trace of the residue
field of S over the residue field of R always exists.

Corollary 3.9 ([6, Proposition 3.4]). If (R, �) → (S, �) is a residually
finite local homomorphism of Noetherian local rings, then Hom�

R(S, E) is an
injective hull of S/� over S, where E is an injective hull of R/� over R.
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4. Symmetry and Self-duality

In this section we study the following class of subrings of K[[X]]
(2){

S = R0 ⊕ R1X ⊕ · · · ⊕ Rn−1X
n−1 ⊕ K[[X]]Xn, where Rn−1 � K;

R = R0; � = K[[X]]Xn; n ≥ 1.

Throughout this section, we will use the convention that Ri = K for i ≥ n

and Ri = 0 for i < 0. Note that Q(S) = K((X)) and � is the conductor of S.
Hence by Proposition 2.9, the �-adic topology on S is ideal-adic and admits
ideal-continuity. Since the ideal � = S ∩ XK[[X]] is adically equivalent to
�, S is also �-finite over R. We want to study when such a ring is of injective
dimension one, that is, when K((X))/S is injective.

Let M be an R-module. Since any function in Hom�
R(S, M) vanishes on a

sufficiently high power of �, Hom�
R(S, M) can be identified with⊕

i≥0 HomR(RiX
i, M). By the S-module structure of Hom�

R(S, M), it is
natural to denote an element f in HomR(RiX

i, M) as fiX
−i where fi ∈

HomR(Ri, M) is given by fi(a) = f (aXi) for a ∈ Ri . Hence we will write

Hom�
R(S, M) =

⊕
i≥0

HomR(Ri, M)X−i .

If j ≤ i and aj ∈ Rj then (ajX
j )(fiX

−i ) = (ajfi)X
j−i where ajfi ∈

HomR(Ri−j , M). If j > i, then (ajX
j )(fiX

−i ) = 0.
For the rest of this section we will use M∨ to denote HomR(M, K/Rn−1)

for any R-module M unless otherwise noted. There is a well-defined canonical
map K/Rn−1−i → R∨

i which sends a ∈ K/Rn−1−i to the map b �→ ab.

Definition 4.1. We say S as in (2) is symmetric if the canonical maps
K/Rn−1−i → R∨

i are isomorphisms for all i.

Remark. For i < 0, both K/Rn−1−i and Ri are 0 and naturally K/Rn−1−i

→ R∨
i is an isomorphism. For i ≥ n, both K/Rn−1−i and Ri are K . The

canonical map K → K∨ is always a monomorphism.

Lemma 4.2. Let S be a subring of T [[X]] and R = S/(S ∩ XT [[X]]). Let
� be an S-module and M be the submodule of elements in � which are killed
by S ∩ XT [[X]]. If � is injective over S then M is injective over R.

Proof. Since M ∼= HomS(R, �), it is injective over R if � is injective
over S.

Theorem 4.3 (Criterion of symmetry). Let S, R and K be as given in (2).
Then S is of injective dimension 1 if and only if K/Rn−1 is an injective R-
module and S is symmetric.
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Proof. Let � be as given in (2). The canonical maps K/Rn−1−i → R∨
i

induce a canonical homogeneous S-linear map
(3)


 :
K((X))

S
=

⊕
i≥0

(
K

Rn−1−i

)
Xn−1−i −→ Hom�

R

(
S,

K

Rn−1

)
�

⊕
i≥0

R∨
i X−i

with a negative degree shift by n − 1.
When S is symmetric, the map 
 in (3) is an isomorphism. Thus K((X))/S

is isomorphic to Hom�
R(S, K/Rn−1) which is injective by Theorem 2.7 when

K/Rn−1 is injective.
Now assume S is of injective dimension 1, that is, we assume K((X))/S

is injective. Since K/Rn−1 is isomorphic to the submodule K/Rn−1X
n−1 in-

side K((X))/S which is killed by S ∩ XK[[X]], it is an injective R-module
by Lemma 4.2. To show that S is symmetric, it suffices to show that 
 is
an isomorphism. As S-modules, Hom�

R(S, K/Rn−1) is an injective hull of
R∨

0
∼= K/Rn−1 using Corollary 3.5 and � = S ∩ XK[[X]]. Being inject-

ive, K((X))/S contains a submodule E containing (K/Rn−1)X
n−1 and iso-

morphic to Hom�
R(S, K/Rn−1). The restriction 
|E of the canonical map (3)

is one-to-one, since E is essential over (K/Rn−1)X
n−1 and the restriction of


 to (K/Rn−1)X
n−1 is one-to-one. Furthermore, the restriction 
|E is onto,

since Hom�
R(S, K/Rn−1) is an injective hull of R∨

0 = 
((K/Rn−1)X
n−1) and


(E) is an injective module. Thus 
 is onto and we have a decomposition
K((X))/S = E ⊕ ker 
 with ker 
 being an injective module. We claim
that ker 
 = 0. Since for i ≥ n and i < 0, the map K/Rn−1−i → R∨

i is
an injection, ker 
 is a submodule of ⊕0≤i≤n−2(K/Ri)X

i . This implies that
Xn−1 ker 
 = 0. But ker 
 is divisible, which means that every element of
ker 
 can be written as Xn−1f for some f ∈ ker 
. Therefore ker 
 = 0.

Corollary 4.4. Let S, R, K and � be as given in (2). If S is of in-
jective dimension 1, then the first cosyzygy K((X))/S of S is isomorphic to
Hom�

R(S, K/R).

Before applying the criterion of symmetry, we first establish when S as
given in (2) would be Noetherian.

Proposition 4.5. Let S be a subring of T [[X]] such that S ∼= R ⊕ (S ∩
XT [[X]]) and XnT [[X]] ⊂ S for some n. The following two conditions are
equivalent:

(a) S is a Noetherian ring;

(b) R is a Noetherian ring and T is a finitely generated R-module.

Proof. First assume (a). The ring R as a quotient of S is Noetherian as well.
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Choose finitely many power series anjX
n + a(n+1)jX

n+1 + · · · generating the
ideal XnT [[X]] of S. Then T is finitely generated by anj as an R-module.

Now we assume (b). Suppose given a non-zero ideal J of S. Let Ii be the
R-module consisting of elements b with certain bXi + bi+1X

i+1 + · · · ∈ J .
Since Xn ∈ S, we have that Ii ⊆ Ii+n ⊆ Ii+2n ⊆ · · · is an ascending chain of
R-submodules of T for each i. Find m large enough so that Ii+kn = Ii+(m−1)n

for all 0 ≤ i ≤ n − 1 and k ≥ m. Being a submodule of T , Ii is finitely
generated for each i, and so we can find finitely many power series fij =
bijX

i +b(i+1)jX
i+1 +· · · ∈ J so that bij generate Ii over R. Then J is finitely

generated by fij where i < mn. Indeed, any element g ∈ J may be written as

g =
∑

i<(m−1)n

aij fij +
∑

(m−1)n≤i<mn

gijfij ,

where aij ∈ R and gij ∈ R[[Xn]] ⊂ S.

Remark. (1) To show “(b) ⇒ (a)”, it is sufficient to assume R[[Xn]] ⊂ S

for some n, instead of assuming XnT [[X]] ⊂ S.
(2) This proposition for the case when S = R⊕XT [[X]], is the main result

in [5]. It also generalizes the Noetherian criterion for generalized semigroup
rings [1, Proposition 7].

By Proposition 4.5, the ring S in (2) is Noetherian if and only if it is of
the form in the next corollary. We recover a result by Barucci and Fröberg
[1, Theorem 15], which also follows from results by Campillo, Delgado and
Kiyek [3].

Corollary 4.6. Let

S = κ ⊕ V1X ⊕ · · · ⊕ Vn−1X
n−1 ⊕ XnK[[X]]

be a ring where κ ⊂ K is a finite field extension, Vi is a subspace of K

for 1 ≤ i ≤ n − 1 and Vn−1 �= K . Then S is Gorenstein if and only if
dimκ Vi + dimκ Vn−1−i = dimκ K .

Proof. Write dim for dimκ and let d = dim K .
The “Only if” part: By the criterion of symmetry, we have dim K =

dim K∨, that is, d = d(d − dim Vn−1). Hence dim Vn−1 = d − 1. For 0 ≤
i ≤ n − 1, we have the required equality d − dim Vn−1−i = dim K/Vn−1−i =
dim V ∨

i = dim Vi .
The “If” part: Note that K/Vn−1 is injective over κ . It follows that dim Vn−1

= d − 1 and thus dim V ∨
i = dim Vi for all i. It is easy to see that the ca-

nonical map K ↪→ K∨ is an isomorphism by comparing the dimensions.
The composition of the canonical maps K → K/Vn−1−i → V ∨

i factors
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also as K
∼→ K∨ →→ V ∨

i . The kernel of the composition has dimension
d −dim Vi = dim Vn−1−i . Since Vn−1−iVi ⊂ Vn−1, the kernel is Vn−1−i . Thus,
we have K/Vn−1−i

∼= V ∨
i . By the criterion of symmetry, S is of injective

dimension 1, and hence Gorenstein.

Note that, if dimκ K = 1, the ring S reduces to K[[Xt1 , . . . , Xtm ]], where
the g.c.d. of t1, . . . , tm is 1. The corollary becomes Kunz’s criterion [10] that
the Noetherian ring S is Gorenstein if and only if the semigroup generated by
t1, . . . , tm is symmetric. An immediate application of this corollary gives the
following examples.

Example 4.7. (1) Let κ ⊂ K be a finite field extension. The Noetherian
ring S = κ ⊕ κX ⊕ · · · ⊕ κXn−1 ⊕ K[[X]]Xn is Gorenstein if and only if
dimκ K ≤ 2.

(2) Let K = κ[α] be a finite field extension of degree n + 1 over κ and let
Ri = κ + κα + · · · + καi . Then the Noetherian ring S = R0 ⊕ R1X ⊕ · · · ⊕
Rn−1X

n−1 ⊕ K[[X]]Xn is Gorenstein.

For the non-Noetherian case (for instance when R0 is not a field), we need
something to replace the dimension of vector spaces, which is used in [1], [3]
to characterize Gorenstein rings.

Definition 4.8. Let A be any commutative ring and let M and N be A-
modules. We say N is self-dual with respect to M over A if N ∼= HomA(N, M).
A domain R is with self-dual quotients if Q = Q(R) is self-dual with respect
to Q/R over R.

Lemma 4.9. Consider the ring S as given in (2) where K is a finite extension
of Q = Q(R). If K is self-dual with respect to K/Rn−1, then the canonical
map K → K∨ = HomR(K, K/Rn−1) is an isomorphism.

Proof. Note that the canonical map is Q-linear since both K and K∨ are
K-modules and hence Q-modules. If K is self-dual with respect to K/Rn−1,
then the canonical map K ↪→ K∨ is also an isomorphism since dimQ(R) K∨ =
dimQ(R) K < ∞.

Proposition 4.10. Let R be a domain and not a field and let

(4) S = R ⊕ RX ⊕ · · · ⊕ RXn−1 ⊕ Q[[X]]Xn,

where Q = Q(R). Then S is of injective dimension 1 if and only if R is of
injective dimension 1 and with self-dual quotients.

If, in addition, (R, �) is a local domain and Q/R is an injective hull of
R/�, then S is also a local domain with maximal ideal � = �+(S∩Q[[X]]X)

and Q((X))/S is an injective hull of S/�.
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Proof. The first part of the statement follows from Lemma 4.9 and the
criterion of symmetry. To see the second part, let � = XnQ[[X]]. Then
Q((X))/S ∼= Hom�

R(S, Q/R) by Corollary 4.4. Let � = S ∩ XQ[[X]]. Then
� is adically equivalent to �. By Corollary 3.5, Q((X))/S is an injective hull
of HomR(S/�, R/�) ∼= R/� ∼= S/� as S-modules.

Among rings of injective dimension 1, there are plenty of domains with
self-dual quotients. We start with the Noetherian case.

Proposition 4.11. Let R be a local Gorenstein domain of dimension 1.
Then R is complete if and only if it is with self-dual quotients.

Proof. Under our assumption, Q/R is an injective hull of the residue field
of R and the functor ∨ = HomR(−, Q/R) is the Matlis dual. We have a
commutative diagram

0 −−−−−→ R −−−−−→ Q −−−−−→ Q/R −−−−−→ 0

↓ι ↓can. ↓�

0 −−−−−→ (Q/R)∨ −−−−−→ Q∨ −−−−−→ R∨ −−−−−→ 0

with exact rows, where the map R → (Q/R)∨ is identified with the map from
R to its completion. From 5-lemma, Q is self-dual with respect to Q/R if and
only if ι is an isomorphism if and only if R is complete.

Self-duality of quotient fields is preserved under suitable base change.

Proposition 4.12 (Stability of Self-Duality). Let R, S, K and � be as in (2)
where K = Q = Q(R). If Q is self-dual with respect to an R-module E (not
necessarily injective), then Q((X)) is self-dual with respect to Hom�

R(S, E)

over S.

Proof. Let α: Q → HomR(Q, E) be an R-isomorphism. Write elements
of Q((X)) as Laurent series of X. Let

�: Q((X)) → HomS(Q((X)), Hom�
R(S, E))

be the S-linear map given by ((�(f ))(g))(h) = (α(the constant term of
fgh))(1), where f, g ∈ Q((X)) and h ∈ S. Clearly, � is one-to-one. To show
that � is onto, suppose given an S-linear map ϕ: Q((X)) → Hom�

R(S, E).
Observe first that

(ϕ(g))(h) = (hϕ(g))(1) = (ϕ(gh))(1),

where g ∈ Q((X)) and h ∈ S. This implies that ϕ is determined by the
values (ϕ(f ))(1) for all f ∈ Q((X)). From linearity and the property that
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any element of Hom�
R(S, E) is annihilated by sufficiently high powers of X,

we observe furthermore that ϕ is determined by the values (ϕ(aXi))(1) for
all a ∈ Q and i ∈ Z. In other words, ϕ is determined by the R-linear maps
Q → E given by a �→ (ϕ(aXi))(1), where i ∈ Z. Let a−i be the preimage of
the map a �→ (ϕ(aXi))(1) under α. Note that a−i = 0 for sufficiently large
i. So we obtain an element

∑
aiX

i ∈ Q((X)). Note that α is Q-linear since
HomR(Q, E) is a Q-module. For a ∈ Q,(

�
(∑

aiX
i
))

(aXj )(1) = (α(a−j a))(1) = (α(a−j ))(a) = (ϕ(aXj ))(1).

Hence �
(∑

aiX
i
) = ϕ.

Corollary 4.13. Let S, R be as given in (4). If R is of injective dimension
1 and with self-dual quotients, then so is S.

Proof. By Proposition 4.10, Q/R is injective and S is of injective dimen-
sion 1. By Proposition 4.12 and Corollary 4.4, the quotient field Q((X)) of S

is self-dual with respect to Q((X))/S.

Thus, we may construct many domains of injective dimension 1 and with
self-dual quotients. In particular, we may apply our results to the so-called
D + M construction.

Example 4.14 (Iterated D+M constructions). Let (S1, �1) be a complete
local Gorenstein domain of dimension 1 with the quotient field K1. For n ∈ Z+,
let (Sn+1, �n+1) be the domain with the quotient field Kn+1 defined recursively
by Sn+1 = Sn ⊕XnKn[[Xn]] where Xn is an indeterminate over Kn. The ideal
�n+1 := XnKn[[Xn]] is generated up to radical by Xn and �n+1 = �n+1 + �n.
For each n, Sn is a local domain of Krull dimension n.

We may prove by induction on n using Proposition 4.11 and Corollary 4.13
that Sn is of injective dimension 1 and with self-dual quotients. Furthermore,
Kn/Sn is an injective hull of the residue field of Sn.

Recall that a valuation ring is called almost maximal if and only if its
quotient field modulo the ring is injective [4, Theorem 4.4, Chapter IX]. Since
the D + M construction also preserves valuation rings, we have a series of
almost maximal valuation ring if S1 is a complete DVR.

Example 4.15. Let R be a domain of injective dimension 1 and with self-
dual quotients. From the discussions in this section, we see that (R, R) and
(Q, 0) are both dual pairs with respect to Q/R. We may construct more do-
mains of injective dimension 1 and with self-dual quotients using these dual
pairs as long as Rn−1 = R. For example, when n ≥ 4 is even,

S = R ⊕ QXn/2 ⊕ · · · ⊕ QXn−2 ⊕ RXn−1 ⊕ Q[[X]]Xn
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is such a domain.

Example 4.16. Using Lemma 4.9 and the criterion of symmetry, we can
construct more domains of injective dimension 1 and with self-dual quotients,
such as

S = κ[[t2]] ⊕ κ((t))X2 ⊕ (
κ[[t2]] + κ((t2))t

)
X3 ⊕ κ((t))[[X]]X4

where κ is a field and t is an indeterminate over κ . We leave the details to the
reader.
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