FROM JANTZEN TO ANDERSEN FILTRATION VIA TILTING EQUIVALENCE

JOHANNES KÜBEL*

Abstract

The space of homomorphisms between a projective object and a Verma module in category \mathcal{O} inherits an induced filtration from the Jantzen filtration on the Verma module. On the other hand there is the Andersen filtration on the space of homomorphisms between a Verma module and a tilting module. Arkhipov's tilting functor, a contravariant self-equivalence of a certain subcategory of \mathscr{O}, which maps projective to tilting modules induces an isomorphism of these kinds of Homspaces. We show that this equivalence identifies both filtrations.

1. Introduction

Let $\mathfrak{g} \supset \mathfrak{b} \supset \mathfrak{h}$ be a semisimple complex Lie algebra with a Borel and a Cartan. In BGG-category \mathcal{O}, prominent objects are indecomposable projective and tilting modules.

Tilting modules were introduced in [4] as selfdual Verma flag modules and the indecomposable tilting modules are classified by their highest weight. Let $\rho \in \mathfrak{h}^{*}$ be the halfsum of positive roots relative to \mathfrak{b} and let T denote the ring of regular functions on the line $\mathrm{C} \rho$. Then T is a quotient of the universal enveloping algebra of \mathfrak{h}. For every weight $\lambda \in \mathfrak{h}^{*}$ the quotient map $\mathfrak{b} \rightarrow \mathfrak{h}$ induces a \mathfrak{b}-module structure on \mathbb{C}. We denote this \mathfrak{b}-module by C_{λ}. The \mathfrak{h} module structure on T also lifts to a \mathfrak{b}-module structure by the map $\mathfrak{b} \rightarrow \mathfrak{h}$. Now we can form the Verma module $\Delta(\lambda)=U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} C_{\lambda} \in \mathfrak{g}-\bmod$ and the deformed Verma module

$$
\Delta_{T}(\lambda)=U(\mathrm{~g}) \otimes_{U(\mathfrak{b})}\left(\mathrm{C}_{\lambda} \otimes T\right) \in \mathfrak{g}-\bmod -T
$$

where tensor products without any specification are to be understood over C . The T-module structure on $\Delta_{T}(\lambda)$ is just multiplication from the right while the \mathfrak{b}-module structure on $\mathrm{C}_{\lambda} \otimes T$ is the tensor product representation.

[^0]Taking the direct sum of the T-dual weight spaces and twisting the contragredient \mathfrak{g}-module structure with a Chevalley automorphism leads to the deformed dual Verma module $\nabla_{T}(\lambda) \in \mathfrak{g}$-mod- T. We will see that every invertible T-module homomorphism on the λ-weight spaces extends to an injective homomorphism of \mathfrak{g} - T-bimodules

$$
\operatorname{Can}: \Delta_{T}(\lambda) \hookrightarrow \nabla_{T}(\lambda)
$$

which forms a basis of the T-module $\operatorname{Hom}_{\mathfrak{g}-T}\left(\Delta_{T}(\lambda), \nabla_{T}(\lambda)\right)$. Since T can be understood as a polynomial ring in one variable v we get the Jantzen filtration on $\Delta(\lambda)$ by taking the images of $\mathrm{Can}^{-1}\left(\nabla_{T}(\lambda) v^{i}\right)$ for $i=0,1,2,3, \ldots$ under the surjection $\Delta_{T}(\lambda) \rightarrow \Delta(\lambda)$ induced by $\cdot \otimes_{T}$ C. For a projective object $P \in \mathscr{O}$ we get an induced filtration on $\operatorname{Hom}_{\mathfrak{g}}(P, \Delta(\lambda))$.

Let \widehat{T} be the completion of T at the maximal ideal of 0 . So we can identify \widehat{T} with the ring of formal power series $\mathrm{C} \llbracket v \rrbracket$ in one variable. In this article, we will also introduce deformed tilting modules which are certain \mathfrak{g} - \widehat{T}-bimodules corresponding to tilting modules in \mathcal{O} after specializing with $\cdot \otimes_{\widehat{T}} \mathrm{C}$. Now let K be such a deformed tilting module and consider the composition pairing

$$
\operatorname{Hom}\left(\Delta_{\widehat{T}}(\lambda), K\right) \times \operatorname{Hom}\left(K, \nabla_{\widehat{T}}(\lambda)\right) \longrightarrow \operatorname{Hom}\left(\Delta_{\widehat{T}}(\lambda), \nabla_{\widehat{T}}(\lambda)\right) \cong \widehat{T}
$$

where all Hom-spaces are meant to be homomorphisms of \mathfrak{g} - \widehat{T}-bimodules. We will see that this is a nondegenerate pairing of free \widehat{T}-modules of finite rank and leads to an injection

$$
\operatorname{Hom}\left(\Delta_{\widehat{T}}(\lambda), K\right) \hookrightarrow\left(\operatorname{Hom}\left(K, \nabla_{\widehat{T}}(\lambda)\right)\right)^{*}
$$

where $(\cdot)^{*}$ denotes the \widehat{T}-dual.
Taking the preimages of the \widehat{T}-submodules $\left(\operatorname{Hom}\left(K, \nabla_{\widehat{T}}(\lambda)\right)\right)^{*} \cdot v^{i}$ under this embedding and applying $\cdot \otimes_{\widehat{T}} \mathrm{C}$ to these preimages defines the Andersen filtration on $\operatorname{Hom}_{\mathfrak{g}}\left(\Delta(\lambda), K \otimes_{\widehat{T}} \mathrm{C}\right)$.

In [10], Soergel introduces the tilting functor t which forms a contravariant self-equivalence of the category of modules with a Verma flag, i.e., a filtration with subquotients isomorphic to Verma modules. The functor t takes projective modules to tilting modules and sends a Verma module $\Delta(v)$ to the Verma module $\Delta(-2 \rho-v)$. So t induces an isomorphism of vector spaces

$$
\operatorname{Hom}_{\mathfrak{g}}(P, \Delta(\lambda)) \xrightarrow{\sim} \operatorname{Hom}_{\mathfrak{g}}(\Delta(-2 \rho-\lambda), t(P))
$$

which we denote by t as well. In this paper we will prove that t identifies the filtration induced by the Jantzen filtration on the left side with the Andersen filtration on the right side.

In [11], Soergel uses a hard Lefschetz argument to prove that the Andersen filtration on $\operatorname{Hom}_{\mathfrak{g}}(\Delta(\lambda), K)$ for K a tilting module coincides with the grading filtration induced from the graded version of \mathcal{O} as described in [3]. Since this is very similar to the result in [2] about the semisimplicity of the subquotients of the Jantzen filtration, the relation of both filtrations might give an alternative proof of this semisimplicity.

2. Preliminaries

This section contains some results about the deformed category \mathcal{O} of a semisimple complex Lie algebra \mathfrak{g} with Borel \mathfrak{b} and Cartan \mathfrak{h}, which one can also find in [5] and [11]. By S we will denote the universal enveloping algebra of the Cartan \mathfrak{G} which is equal to the ring of polynomial functions $\mathrm{C}\left[\mathfrak{b}^{*}\right]$. Let T be a commutative, associative, noetherian, unital, local S-algebra with structure morphism $\tau: S \rightarrow T$. We call T a local deformation algebra.

In this article we will mostly deal with the S-algebras $R=S_{(0)}$, the localization of S at the maximal ideal of $0 \in \mathfrak{h}^{*}$, localizations $R_{\mathfrak{p}}$ of R at a prime ideal \mathfrak{p} of height 1 or the residue fields of these rings $\mathrm{K}_{\mathfrak{p}}=R_{\mathfrak{p}} / R_{\mathfrak{p}} \mathfrak{p}$. To apply results of this section to both filtrations we will also be concerned with the power series ring $\mathrm{C} \llbracket v \rrbracket$ in one variable and the quotient field Q of S. All these rings are local deformation algebras.

2.1. Deformed category 0

Let T be a local deformation algebra with structure morphism $\tau: S \rightarrow T$ and let $M \in \mathfrak{g}-m o d-T$. For $\lambda \in \mathfrak{h}^{*}$ we set

$$
M_{\lambda}=\{m \in M \mid h m=(\lambda+\tau)(h) m \forall h \in \mathfrak{h}\}
$$

where $(\lambda+\tau)(h)$ is meant to be an element of T. We call the T-submodule M_{λ} the deformed λ-weight space of M.

We denote by \mathscr{O}_{T} the full subcategory of all bimodules $M \in \mathfrak{g}$-mod- T such that $M=\bigoplus_{\lambda \in \mathfrak{h}^{*}} M_{\lambda}$ and with the properties that for every $m \in M$ the $\mathfrak{b}-T$ bimodule generated by m is finitely generated as a T-module and that M is finitely generated as a \mathfrak{g} - T-bimodule. For example, if we put $T=\mathrm{C}, \mathscr{O}_{T}$ is just the usual BGG-category \mathcal{O}.

For $\lambda \in \mathfrak{h}^{*}$ we define the deformed Verma module

$$
\Delta_{T}(\lambda)=U(\mathrm{~g}) \otimes_{U(\mathfrak{b})} T_{\lambda}
$$

where T_{λ} denotes the $U(\mathfrak{b})$ - T-bimodule T with \mathfrak{b}-structure given by the composition $U(\mathfrak{b}) \rightarrow S \xrightarrow{\lambda+\tau} T$.

As in [11], we now introduce a functor

$$
d=d_{\tau}: \mathfrak{g} \otimes T-\bmod \longrightarrow \mathfrak{g} \otimes T-\bmod
$$

by letting $d M \subset \operatorname{Hom}_{T}(M, T)^{\sigma}$ be the sum of all deformed weight spaces in the space of homomorphisms of T-modules from M to T with its \mathfrak{g}-action twisted by an involutive automorphism $\sigma: \mathfrak{g} \rightarrow \mathfrak{g}$ with $\left.\sigma\right|_{\mathfrak{h}}=-\mathrm{id}$. We now set $\nabla_{T}(\lambda)=d \Delta_{T}(\lambda)$ for $\lambda \in \mathfrak{h}^{*}$ and call it the deformed nabla module. As in [11], one shows $d \nabla_{T}(\lambda) \cong \Delta_{T}(\lambda)$ and that tensoring with a finite dimensional representation E of \mathfrak{g} commutes with d up to the choice of an isomorphism $d E \cong E$.

Proposition 2.1 ([11], Proposition 2.12.).
(1) For all λ the restriction to the deformed weight space of λ together with the two canonical identifications $\Delta_{T}(\lambda)_{\lambda} \xrightarrow{\sim} T$ and $\nabla_{T}(\lambda)_{\lambda} \xrightarrow{\sim} T$ induces an isomorphism

$$
\operatorname{Hom}_{\mathscr{O}_{T}}\left(\Delta_{T}(\lambda), \nabla_{T}(\lambda)\right) \xrightarrow{\sim} T
$$

(2) For $\lambda \neq \mu$ in \mathfrak{h}^{*} we have $\operatorname{Hom}_{O_{T}}\left(\Delta_{T}(\lambda), \nabla_{T}(\mu)\right)=0$.
(3) For all $\lambda, \mu \in \mathfrak{h}^{*}$ we have $\operatorname{Ext}_{\mathcal{O}_{T}}^{1}\left(\Delta_{T}(\lambda), \nabla_{T}(\mu)\right)=0$.

Corollary 2.2 ([11], Corollary 2.13.). Let $M, N \in \mathscr{O}_{T}$. If M has a $\Delta_{T^{-}}$ flag and $N a \nabla_{T}$-flag, then the space of homomorphisms $\operatorname{Hom}_{\mathscr{O}_{T}}(M, N)$ is a finitely generated free T-module and for any homomorphism $T \rightarrow T^{\prime}$ of local deformation algebras the obvious map defines an isomorphism

$$
\operatorname{Hom}_{\mathscr{O}_{T}}(M, N) \otimes_{T} T^{\prime} \xrightarrow{\sim} \operatorname{Hom}_{\mathscr{O}_{T^{\prime}}}\left(M \otimes_{T} T^{\prime}, N \otimes_{T} T^{\prime}\right)
$$

Proof. This follows from Proposition 2.1 by induction on the length of the $\Delta_{T^{-}}$and $\nabla_{T^{-}}$-flag.

If $\mathfrak{m} \subset T$ is the unique maximal ideal in our local deformation algebra T we set $\mathrm{K}=T / \mathrm{m} T$ for its residue field.

Theorem 2.3 ([5], Propositions 2.1 and 2.6).
(1) The base change $\cdot \otimes_{T} \mathrm{~K}$ gives a bijection

$$
\left\{\begin{array}{c}
\text { simple isomorphism } \\
\text { classes of } \mathscr{O}_{T}
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { simple isomorphism } \\
\text { classes of } \mathscr{O}_{\mathrm{K}}
\end{array}\right\}
$$

(2) The base change $\cdot \otimes_{T} \mathrm{~K}$ gives a bijection

$$
\left\{\begin{array}{c}
\text { projective isomorphism } \\
\text { classes of } \mathscr{O}_{T}
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { projective isomorphism } \\
\text { classes of } \mathscr{O}_{K}
\end{array}\right\}
$$

Remark 2.4. The category \mathscr{O}_{K} is the direct summand of the category \mathscr{O} over the Lie algebra $\mathfrak{g} \otimes \mathrm{K}$ consisting of all objects whose weights lie in the complex affine subspace $\tau+\mathfrak{h}^{*}=\tau+\operatorname{Hom}_{C}(\mathfrak{h}, \mathrm{C}) \subset \operatorname{Hom}_{\mathrm{K}}(\mathfrak{h} \otimes \mathrm{K}, \mathrm{K})$ for τ being the restriction to \mathfrak{G} of the map that makes K to a S-algebra. So the simple objects of \mathscr{O}_{K} as well as the ones of \mathscr{O}_{T} are parametrized by their highest weight in \mathfrak{h}^{*}. Denote by $L_{T}(\lambda)$ the simple object with highest weight λ. We also use the usual partial order on \mathfrak{h}^{*} to partially order $\tau+\mathfrak{h}$.

Theorem 2.5 ([5], Propositions 2.4 and 2.7). Let T be a local deformation algebra and K its residue field. Let $L_{T}(\lambda)$ be a simple object in \mathcal{O}_{T}.
(1) There is a projective cover $P_{T}(\lambda)$ of $L_{T}(\lambda)$ in \mathscr{O}_{T}. Every projective object in \mathscr{O}_{T} is isomorphic to a direct sum of projective covers.
(2) $P_{T}(\lambda)$ has a Verma flag, i.e., a finite filtration with subquotients isomorphic to Verma modules, and for the multiplicities we have the $B G G$ reciprocity formula

$$
\left(P_{T}(\lambda): \Delta_{T}(\mu)\right)=\left[\Delta_{\mathrm{K}}(\mu): L_{\mathrm{K}}(\lambda)\right]
$$

for all Verma modules $\Delta_{T}(\mu)$ in \mathscr{O}_{T}.
(3) Let $T \rightarrow T^{\prime}$ be a homomorphism of local deformation algebras and let P be a projective object in \mathscr{O}_{T}. Then $P \otimes_{T} T^{\prime}$ is projective in $\mathscr{O}_{T^{\prime}}$ and the natural transformation

$$
\operatorname{Hom}_{\mathscr{O}_{T}}(P, \cdot) \otimes_{T} T^{\prime} \longrightarrow \operatorname{Hom}_{\mathscr{O}_{T^{\prime}}}\left(P \otimes_{T} T^{\prime}, \cdot \otimes_{T} T^{\prime}\right)
$$

is an isomorphism of functors from \mathcal{O}_{T} to T^{\prime}-mod.
Remark 2.6. Since Fiebig in [5] works over a complex symmetrizable Kac-Moody algebra, he has to introduce truncated subcategories and has to set some finiteness assumptions. In case of a finite dimensional semisimple Lie algebra we do not need these technical tools.

2.2. Block decomposition

Let T again denote a local deformation algebra and K its residue field.
Definition 2.7. Let \sim_{T} be the equivalence relation on \mathfrak{h}^{*} generated by $\lambda \sim_{T} \mu$ if $\left[\Delta_{K}(\lambda): L_{K}(\mu)\right] \neq 0$.

Definition 2.8. Let $\Lambda \in \mathfrak{h}^{*} / \sim_{T}$ be an equivalence class. We define $\mathscr{O}_{T, \Lambda}$ to be the full subcategory of \mathscr{O}_{T} consisting of all modules M such that every highest weight of a subquotient of M lies in Λ.

Proposition 2.9 ([5], Proposition 2.8). The functor

$$
\begin{gathered}
\bigoplus_{\Lambda \in h^{*} / \sim_{T}} \mathcal{O}_{T, \Lambda} \longrightarrow \mathcal{O}_{T} \\
\left(M_{\Lambda}\right)_{\Lambda \in \mathfrak{h}^{*} / \sim_{T}} \longmapsto \bigoplus_{\Lambda \in \mathfrak{h}^{*} / \sim_{T}} M_{\Lambda}
\end{gathered}
$$

is an equivalence of categories.
The isomorphism above is called block decomposition.
Later we will be especially interested in the case $T=R=S_{(0)}$ where $S_{(0)}$ denotes the localization of S at the maximal ideal generated by \mathfrak{h}, i.e., the maximal ideal of $0 \in \mathfrak{h}^{*}$. Since $\sim_{R}=\sim_{c}$, the block decomposition of \mathscr{O}_{R} corresponds to the block decomposition of the BGG-category \mathcal{O} over \mathfrak{g}.

Let $\tau: S \rightarrow \mathrm{~K}$ be the induced map that makes K into a S-algebra. Restricting to \mathfrak{G} and extending with K yields a K-linear map $\mathfrak{G} \otimes \mathrm{K} \rightarrow \mathrm{K}$ which we will also call τ. Let $\mathscr{R} \supset \mathscr{R}^{+}$be the root system with positive roots according to our data $\mathfrak{g} \supset \mathfrak{b} \supset \mathfrak{h}$. For $\lambda \in \mathfrak{h}_{\mathfrak{K}}^{*}=\operatorname{Hom}_{\mathrm{K}}(\mathfrak{h} \otimes K, K)$ and $\check{\alpha} \in \mathfrak{h}$ the dual root of a root $\alpha \in \mathscr{R}$ we set $\langle\lambda, \check{\alpha}\rangle_{\mathrm{K}}=\lambda(\check{\alpha}) \in \mathrm{K}$. Let \mathscr{W} be the Weyl group of $(\mathfrak{g}, \mathfrak{h})$.

Definition 2.10. For \mathscr{R} the root system of \mathfrak{g} and $\Lambda \in \mathfrak{h}^{*} / \sim_{T}$ we define

$$
\mathscr{R}_{T}(\Lambda)=\left\{\alpha \in \mathscr{R} \mid\langle\lambda+\tau, \check{\alpha}\rangle_{\mathrm{K}} \in \mathrm{Z} \subset \mathrm{~K} \text { for some } \lambda \in \Lambda\right\}
$$

and call it the integral roots corresponding to Λ. Let $\mathscr{R}_{T}^{+}(\Lambda)$ denote the positive roots in $\mathscr{R}_{T}(\Lambda)$ and set

$$
\mathscr{W}_{T}(\Lambda)=\left\langle\left\{s_{\alpha} \in \mathscr{W} \mid \alpha \in \mathscr{R}_{T}^{+}(\Lambda)\right\}\right\rangle \subset \mathscr{W}
$$

We call it the integral Weyl group with respect to Λ.
From [5] Corollary 3.3 it follows that

$$
\Lambda=\mathscr{W}_{T}(\Lambda) \cdot \lambda \quad \text { for any } \quad \lambda \in \Lambda
$$

where we denote by \cdot the ρ-shifted dot-action of the Weyl group, i.e., $w \cdot \rho=$ $w(\lambda+\rho)-\rho$.

Since most of our following constructions commute with base change, we are particularly interested in the case when $T=R_{\mathfrak{p}}$ is a localization of R at a prime ideal \mathfrak{p} of height one. Applying the functor $\cdot \otimes_{R} R_{\mathfrak{p}}$ we split the deformed category \mathscr{O}_{T} into generic and subgeneric blocks which is content of the next

Lemma 2.11 ([6], Lemma 3). Let $\Lambda \in \mathfrak{h}^{*} / \sim_{R}$ and let $\mathfrak{p} \in R$ be a prime ideal.
(1) If $\check{\alpha} \notin \mathfrak{p}$ for all roots $\alpha \in \mathscr{R}_{R}(\Lambda)$, then Λ splits under $\sim_{R_{\mathfrak{p}}}$ into generic equivalence classes.
(2) If $\mathfrak{p}=R \check{\alpha}$ for a root $\alpha \in \mathscr{R}_{R}(\Lambda)$, then Λ splits under $\sim_{R_{\mathfrak{p}}}$ into subgeneric equivalence classes of the form $\left\{\lambda, s_{\alpha} \cdot \lambda\right\}$.

We recall that we denote by $P_{T}(\lambda)$ the projective cover of the simple object $L_{T}(\lambda)$. It is indecomposable and up to isomorphism uniquely determined. For an equivalence class $\Lambda \in \mathfrak{h}^{*} / \sim_{T}$ which contains λ and is generic, i.e., $\Lambda=\{\lambda\}$, we get $P_{T}(\lambda)=\Delta_{T}(\lambda)$. If $\Lambda=\{\lambda, \mu\}$ and $\mu<\lambda$, we have $P_{T}(\lambda)=\Delta_{T}(\lambda)$ and there is a non-split short exact sequence in \mathscr{O}_{T}

$$
0 \longrightarrow \Delta_{T}(\lambda) \longrightarrow P_{T}(\mu) \longrightarrow \Delta_{T}(\mu) \longrightarrow 0
$$

In this case, every endomorphism $f: P_{T}(\mu) \rightarrow P_{T}(\mu)$ maps $\Delta_{T}(\lambda)$ to $\Delta_{T}(\lambda)$ since $\lambda>\mu$. So f induces a commutative diagram

Since endomorphisms of Verma modules correspond to elements of T, we get a map

$$
\begin{aligned}
\chi: \operatorname{End}_{O_{T}}\left(P_{T}(\mu)\right) & \longrightarrow T \oplus T \\
f & \longmapsto\left(f_{\lambda}, f_{\mu}\right)
\end{aligned}
$$

For $\mathfrak{p}=R \check{\alpha}$ we define $R_{\alpha}:=R_{\mathfrak{p}}$ for the localization of R at the prime ideal p.

Proposition 2.12 ([5], Corollary 3.5). Let $\Lambda \in \mathfrak{h}^{*} / \sim_{R_{\alpha}}$. If $\Lambda=\{\lambda, \mu\}$ and $\lambda=s_{\alpha} \cdot \mu>\mu$, the map χ from above induces an isomorphism of R_{α}-modules

$$
\operatorname{End}_{\mathscr{O}_{R_{\alpha}}}\left(P_{R_{\alpha}}(\mu)\right) \cong\left\{\left(t_{\lambda}, t_{\mu}\right) \in R_{\alpha} \oplus R_{\alpha} \mid t_{\lambda} \equiv t_{\mu} \bmod \check{\alpha}\right\}
$$

3. Tilting modules and tilting equivalence

In this chapter, T will be a localization of $R=S_{(0)}$ at a prime ideal $\mathfrak{p} \subset R$ and let K be its residue field. Let $\lambda \in \mathfrak{h}^{*}$ be such that $\Delta_{\mathrm{K}}(\lambda)$ is a simple object in \mathscr{O}_{K}. Thus, we have $\Delta_{K}(\lambda) \cong \nabla_{K}(\lambda)$ and the canonical inclusion Can : $\Delta_{T}(\lambda) \hookrightarrow \nabla_{T}(\lambda)$ becomes an isomorphism after applying $\cdot \otimes_{T}$ K. So by Nakayama's lemma, we conclude that Can was bijective already.

3.1. Deformed tilting modules

Definition 3.1. By \mathscr{K}_{T} we denote the full subcategory of \mathscr{O}_{T} which
(1) includes the self-dual deformed Verma modules
(2) is stable under tensoring with finite dimensional \mathfrak{g}-modules
(3) is stable under forming direct sums and summands.

Remark 3.2. For $T=S / S \mathfrak{h}=\mathrm{C}$ the category \mathscr{K}_{T} is just the usual subcategory of tilting modules of the category \mathscr{O} over \mathfrak{g}. In general, \mathscr{K}_{K} is the category of tilting modules of category \mathcal{O} over the Lie algebra $\mathfrak{g} \otimes \mathrm{K}$ whose weights live in the affine complex subspace $\tau+\mathfrak{h}^{*} \subset \operatorname{Hom}_{K}(\mathfrak{h} \otimes K, K)$, where $\tau: \mathfrak{h} \otimes \mathrm{K} \rightarrow \mathrm{K}$ comes from the map that makes K into an S-algebra.

Proposition 3.3. The base change $\cdot \otimes_{T} \mathrm{~K}$ gives a bijection

$$
\left\{\begin{array}{c}
\text { isomorphism classes } \\
\text { of } \mathscr{K}_{T}
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { isomorphism classes } \\
\text { of } \mathscr{K}_{\mathrm{K}}
\end{array}\right\}
$$

Proof. For $K, H \in \mathscr{K}_{T}$ with $K \otimes_{T} \mathrm{~K} \cong H \otimes_{T} \mathrm{~K}$ we conclude $K \cong H$ from Nakayama's lemma applied to the weight spaces, since the weight spaces of tilting modules are finitely generated and free over T. This shows injectivity.

For surjectivity we only have to show that every indecomposable tilting module in \mathscr{O}_{K} has an indecomposable preimage in \mathscr{K}_{T}. Since we are not working over a complete local ring we cannot apply the idempotent lifting lemma as in the proof of Proposition 3.4. in [11]. Rather, the proof works very similar to the proof of Theorem 6 in [8].

Let $K \in \mathscr{O}_{\mathrm{K}}$ be an indecomposable tilting module. For the sake of simplicity, we will assume the highest weight of K to be regular. The singular case is treated analogously.

If the highest weight λ of K is minimal in its equivalence class under \sim_{T} then, $K \cong \Delta_{K}(\lambda) \cong \nabla_{K}(\lambda)$ and we can take $\Delta_{T}(\lambda)$ as a preimage of K in \mathscr{K}_{T}.

Now denote by $\bar{\lambda}$ the equivalence class of λ in $\mathfrak{h}^{*} / \sim_{T}$ and let $\lambda=w \cdot \mu$ with $w \in \mathscr{W}_{T}(\bar{\lambda})$ and μ minimal in $\mathscr{W}_{T}(\bar{\lambda}) \cdot \lambda$. In addition, let $w=s_{1} s_{2} \ldots s_{n}$ be a minimal expression of w with simple reflections $s_{i} \in \mathscr{W}_{T}(\bar{\lambda})$. We denote by $\theta_{i}=\theta_{i}^{\mathrm{K}}$ the translation functor of \mathscr{O}_{K} through the s_{i}-wall. Then K is a direct summand of the tilting module

$$
M=\theta_{1} \ldots \theta_{n} \Delta_{K}(\mu)
$$

and we get a decomposition $M \cong K \oplus K^{\prime} . K^{\prime}$ decomposes into indecomposable tilting modules with highest weights of the form $w^{\prime} \cdot \mu$ and $l(w)>l\left(w^{\prime}\right)$ where l denotes the length of a Weyl group element. By using induction on
the length of w, we get a preimage $\tilde{K} \in \mathscr{K}_{T}$ of K^{\prime} together with a splitting inclusion

$$
\tilde{K} \otimes_{T} \mathrm{~K} \hookrightarrow M
$$

Using Nakayama's lemma, this induces a splitting lift

$$
\tilde{K} \hookrightarrow \theta_{1}^{T} \ldots \theta_{n}^{T} \Delta_{T}(\mu)
$$

where θ_{i}^{T} denotes the T-deformed wall-crossing functor of \mathcal{O}_{T} corresponding to θ_{i}^{K}. Finally, the cokernel of this inclusion is the indecomposable tilting module in \mathscr{K}_{T} we were looking for.

3.2. Tilting functor

Let \mathscr{M}_{T} denote the subcategory of all modules in \mathscr{O}_{T} admitting a Verma flag. We recall the map $\tau: S \rightarrow T$ which makes T into a S-algebra. We get a new S-algebra structure on T via $\tau \circ \gamma: S \rightarrow T$, where $\gamma: S \rightarrow S$ is the isomorphism given by $\gamma(h)=-h$ for all $h \in \mathfrak{h}$. We denote this new S-algebra by \bar{T}. Let $S_{2 \rho}$ be the semiregular $U(\mathfrak{g})$-bimodule of [10]. If N is a $\mathrm{g} \otimes T$-module which decomposes into weight spaces we get a \bar{T}-module

$$
N^{\star}=\bigoplus_{\lambda \in \mathfrak{h}^{*}} \operatorname{Hom}_{T}\left(N_{\lambda}, T\right)
$$

Then we get a $\mathfrak{g} \otimes \bar{T}$-module via the \mathfrak{g}-action $(X f)(v)=-f(X v)$ for all $X \in \mathfrak{g}, f \in N^{\star}$ and $v \in N$.

Now we get a functor

$$
t_{T}^{\prime}: \mathscr{M}_{T} \longrightarrow \mathcal{M}_{\bar{T}}^{o p p}
$$

by setting $t_{T}^{\prime}(M)=\left(S_{2 \rho} \otimes_{U(\mathrm{~g})} M\right)^{\star}$.
For T a localization of S at a prime ideal \mathfrak{p} which is stable under γ, for a residue field of this or for the ring $\mathrm{C} \llbracket v \rrbracket$ of formal power series coming from a line $\mathrm{C} \lambda \subset \mathfrak{h}^{*}, \gamma$ induces an isomorphism of S-algebras $\gamma: T \xrightarrow{\sim} \bar{T}$ which induces an equivalence of categories

$$
\gamma: \mathscr{M}_{T} \longrightarrow \mathscr{M}_{\bar{T}}
$$

Theorem 3.4 ([6], Section 2.6). The functor $t_{T}=\left(S_{2 \rho} \otimes_{U(\mathrm{~g})} \cdot\right)^{\star} \circ \gamma$ induces an equivalence of categories

$$
t_{T}: \mathscr{M}_{T} \longrightarrow \mathcal{M}_{T}^{o p p}
$$

which makes short exact sequences to short exact sequences and sends a Verma module $\Delta_{T}(\lambda)$ to the Verma module $\Delta(-2 \rho-\lambda)$ for any weight $\lambda \in \mathfrak{h}^{*}$.

Remark 3.5. The non-deformed tilting functor for category \mathscr{O} over a Zgraded Lie algebra was discovered by Soergel in [10]. This work was mainly motivated by the article [1] of Arkhipov in which he proves a semi-infinite duality between certain categories over a Z-graded associative algebra. In [6] Fiebig formulates a deformed version of the tilting functor which is the one we use in the above theorem.

Proposition 3.6. Let $\lambda \in \mathfrak{h}^{*}$. Then

$$
t_{T}\left(P_{T}(\lambda)\right) \cong K_{T}(-2 \rho-\lambda)
$$

where $P_{T}(\lambda)$ denotes the indecomposable projective cover of $L_{T}(\lambda)$ and $K_{T}(\mu)$ the up to isomorphism unique indecomposable deformed tilting module with highest weight $\mu \in \mathfrak{h}^{*}$.

Proof. We set $\mu=-2 \rho-\lambda$. This proof is very similar to the proof of Proposition 3.1 of [9]. As we have already seen, the tilting module $K_{T}(\mu)$ can be described as the up to isomorphism unique indecomposable module in \mathscr{O}_{T} with the properties:
(1) $K_{T}(\mu)$ admits a Verma flag
(2) $K_{T}(\mu)$ has a ∇_{T}-flag
(3) $K_{T}(\mu)_{\mu}$ is free of rank one over T
(4) If γ is a weight of $K_{T}(\mu)$, we have $\gamma \leq \mu$.

Since t_{T} is fully faithful, we already conclude the indecomposability of $t_{T}\left(P_{T}(\lambda)\right)$. Theorem 3.4 also tells us that $t_{T}\left(P_{T}(\lambda)\right)$ has a Verma flag. By BGG-reciprocity we get a short exact sequence

$$
N \hookrightarrow P_{T}(\lambda) \rightarrow \Delta_{T}(\lambda)
$$

where N has a Verma flag in which the occurring weights are strictly larger than λ. By applying t_{T} we get a new short exact sequence

$$
t_{T}(N) \leftarrow t_{T}\left(P_{T}(\lambda)\right) \hookleftarrow t_{T}\left(\Delta_{T}(\lambda)\right)
$$

By induction on the length of the Verma flag of N we conclude that the weights of $t_{T}(N)$ are strictly smaller than μ. So the weight space $\left(t_{T}\left(P_{T}(\lambda)\right)\right)_{\mu}$ is free of rank one, since $t_{T}\left(\Delta_{T}(\lambda)\right) \cong \Delta_{T}(\mu)$. Now, $P_{T}(\lambda)$ being projective and t_{T} being fully faithful, we get

Now we set $D_{T}=t_{T}\left(P_{T}(\lambda)\right)$ and consider the diagramm

Since coker has a Verma flag we conclude $\operatorname{Ext}_{\mathscr{O}_{T}}^{1}\left(\right.$ coker, $\left.D_{T}\right)=0$ using induction on the length of a Verma flag of coker. So the restriction induces a surjection $\operatorname{Hom}_{\mathscr{O}_{T}}\left(K_{T}(\mu), D_{T}\right) \rightarrow \operatorname{Hom}_{\mathscr{O}_{T}}\left(\Delta_{T}(\mu), D_{T}\right)$ and we get a map $\alpha: K_{T}(\mu) \rightarrow D_{T}$ which induces the identity on $\Delta_{T}(\mu)$. For the same reason we also get a map $\beta: D_{T} \rightarrow K_{T}(\mu)$ with the same property, since coker' has a Verma flag while $K_{T}(\mu)$ admits a nabla flag which implies $\operatorname{Ext}_{\mathcal{O}_{T}}^{1}\left(\operatorname{coker}^{\prime}, K_{T}(\mu)\right)=0$ by Proposition 2.1. Applying the base change functor $\cdot \otimes_{T} \mathrm{~K}$, we get two maps $\varphi:=(\beta \circ \alpha) \otimes \mathrm{id}_{\mathrm{K}}: K_{\mathrm{K}}(\mu) \rightarrow K_{\mathrm{K}}(\mu)$ and $\psi:=(\alpha \circ \beta) \otimes \mathrm{id}_{\mathrm{K}}: D_{T} \otimes_{T} \mathrm{~K} \rightarrow D_{T} \otimes_{T} \mathrm{~K}$ which induce the identity on $\Delta_{\mathrm{K}}(\mu)$. We conclude that φ and ψ are not nilpotent and since $D_{T} \otimes_{T} \mathrm{~K}$ and $K_{K}(\mu)$ have finite length and are indecomposable, it follows from the Fitting lemma that φ and ψ are isomorphisms. Now by Nakayama's lemma applied to all weight spaces, we conclude $K_{T}(\mu) \cong D_{T}$.

Lemma 3.7. Let $T \rightarrow T^{\prime}$ be a homomorphism of S-algebras where also T^{\prime} is a localization of S at a prime ideal which is stable under γ, its residue field or the ring of formal power series $\mathbb{C} v \rrbracket$. Let $M, N \in \mathscr{M}_{T}$ and let M be projective in \mathcal{O}_{T}. Then the diagram

$$
\begin{aligned}
& \qquad \operatorname{Hom}_{\mathscr{O}_{T}}(M, N) \otimes_{T} T^{\prime} \longrightarrow \operatorname{Hom}_{\mathscr{O}_{T^{\prime}}}\left(M \otimes_{T} T^{\prime}, N \otimes_{T} T^{\prime}\right) \\
& \qquad{ }^{t_{T} \otimes \mathrm{id}_{T^{\prime}}} \\
& \downarrow_{T^{\prime}} \\
& \operatorname{Hom}_{\mathscr{O}_{T}}\left(t_{T}(N), t_{T}(M)\right) \otimes_{T} T^{\prime} \longrightarrow \operatorname{Hom}_{\mathscr{O}_{T^{\prime}}}\left(t_{T^{\prime}}\left(N \otimes_{T} T^{\prime}\right), t_{T^{\prime}}\left(M \otimes_{T} T^{\prime}\right)\right) \\
& \text { commutes, where the horizontals are the base change isomorphisms and the } \\
& \text { verticals are induced by the tilting functors } t_{T} \text { resp. } t_{T^{\prime}} \text {. }
\end{aligned}
$$

Proof. All composition factors of the tilting functor commute with base change in the sense of the lemma.

4. The Jantzen and Andersen filtrations

We fix a deformed tilting module $K \in \mathscr{K}_{T}$ and let $\lambda \in \mathfrak{h}^{*}$. The composition of homomorphisms induces a T-bilinear pairing

$$
\begin{aligned}
\operatorname{Hom}_{\mathscr{O}_{T}}\left(\Delta_{T}(\lambda), K\right) \times \operatorname{Hom}_{\mathscr{O}_{T}}\left(K, \nabla_{T}(\lambda)\right) & \longrightarrow \operatorname{Hom}_{\mathscr{O}_{T}}\left(\Delta_{T}(\lambda), \nabla_{T}(\lambda)\right) \cong T \\
(\varphi, \psi) & \longmapsto \psi \circ \varphi
\end{aligned}
$$

For any T-module H we denote by H^{*} the T-module $\operatorname{Hom}_{T}(H, T)$. As in [11] Section 4 one shows that for T a localization of S at a prime ideal \mathfrak{p} or for $T=\mathrm{C} \llbracket v \rrbracket$ our pairing is nondegenerate and induces an injective map

$$
E=E_{T}^{\lambda}(K): \operatorname{Hom}_{\mathscr{O}_{T}}\left(\Delta_{T}(\lambda), K\right) \longrightarrow\left(\operatorname{Hom}_{\mathscr{O}_{T}}\left(K, \nabla_{T}(\lambda)\right)\right)^{*}
$$

of finitely generated free T-modules.
Let $C \delta \subset \mathfrak{h}^{*}$ be a line not contained in any hyperplane corresponding to a reflection of the Weyl group. We set $T=\mathrm{C} \llbracket v \rrbracket$ to be the ring of formal power series around the origin in $\mathrm{C} \delta$. Now we get a filtration on $\operatorname{Hom}_{\mathscr{O}_{T}}\left(\Delta_{T}(\lambda), K\right)$ by taking the preimages of $\left(\operatorname{Hom}_{\mathscr{O}_{T}}\left(K, \nabla_{T}(\lambda)\right)\right)^{*} \cdot v^{i}$ for $i=0,1,2, \ldots$ under E.

Definition 4.1 ([11], Definition 4.2). Given $K_{C} \in \mathscr{K}_{\mathrm{C}}$ a tilting module of \mathcal{O} and $K \in \mathscr{K}_{\subset \llbracket v \rrbracket}$ a preimage of K_{C} under the functor $\cdot \otimes_{\mathrm{C} \llbracket v \rrbracket} \mathrm{C}$, which is possible by Proposition 3.3 with $S \rightarrow \mathrm{C} \llbracket v \rrbracket$ the restriction to a formal neighbourhood of the origin in the line $\mathrm{C} \rho$, then the image of the filtration defined above under specialization $\cdot \otimes_{\complement \llbracket v \rrbracket} \mathrm{C}$ is called the Andersen filtration on $\operatorname{Hom}_{\mathfrak{g}}\left(\Delta(\lambda), K_{\mathrm{C}}\right)$.

In a similar manner we get the Jantzen filtration on a Verma module:
Definition 4.2. Let $\varphi: \Delta_{C \llbracket v \rrbracket}(\lambda) \hookrightarrow \nabla_{C \llbracket v \rrbracket}(\lambda)$ be a generator of the $C \llbracket v \rrbracket-$ module $\operatorname{Hom}_{O_{C \llbracket v \|}}\left(\Delta_{\subset \llbracket v \rrbracket}(\lambda), \nabla_{C \llbracket v \rrbracket}(\lambda)\right)$. Then $\Delta_{C \llbracket v \rrbracket}(\lambda)$ yields a filtration by the preimages of $v^{i} \cdot \nabla_{С \llbracket v \|}(\lambda)(i=0,1,2, \ldots)$ under φ. The induced filtration on $\Delta(\lambda)$ after specialization is called Jantzen filtration.

The Jantzen filtration on a Verma module $\Delta(\lambda)$ induces a filtration on the vector space $\operatorname{Hom}_{\mathfrak{g}}(P, \Delta(\lambda))$, where P is a projective object in \mathcal{O}. Now consider again the embedding $\Delta_{\mathrm{C} \llbracket v \rrbracket}(\lambda) \hookrightarrow \nabla_{\mathrm{C}_{\llbracket v \rrbracket}}(\lambda)$. Let $P_{\mathrm{C} \llbracket v \rrbracket}$ denote the up to isomorphism unique projective object in $\mathscr{O}_{\mathrm{C} \llbracket v \|}$ that maps to P under $\cdot \otimes_{\mathrm{C} \llbracket v \|} \mathrm{C}$, which is possible by Theorem 2.3. Then we get the same filtration by taking the preimages of $\operatorname{Hom}_{O_{C\|v\|}}\left(P_{C_{\llbracket v \rrbracket}}, \nabla_{\mathrm{C}[v \|}(\lambda)\right) \cdot v^{i}, i=0,1,2, \ldots$, under the induced inclusion

$$
J=J_{T}^{\lambda}(P): \operatorname{Hom}_{\mathscr{O}_{T}}\left(P_{T}, \Delta_{T}(\lambda)\right) \longrightarrow \operatorname{Hom}_{\mathscr{O}_{T}}\left(P_{T}, \nabla_{T}(\lambda)\right)
$$

for $T=\mathrm{C} \llbracket v \rrbracket$ and taking the images of these filtration layers under the map $\operatorname{Hom}_{\mathscr{O}_{T}}\left(P_{T}, \Delta_{T}(\lambda)\right) \rightarrow \operatorname{Hom}_{\mathfrak{g}}(P, \Delta(\lambda))$ induced by $\cdot \otimes_{T} C$.

For what follows, we define $\mu^{\prime}=-2 \rho-\mu$ and $\lambda^{\prime}=-2 \rho-\lambda$. To avoid ambiguity, we sometimes write $(\cdot)^{*_{T}}$, when we mean the T-dual of the T module in brackets.

Theorem 4.3. Let $\lambda, \mu \in \mathfrak{h}^{*}$. Denote by $R=S_{(0)}$ the localization of S at 0 . There exists an isomorphism $L=L_{R}(\lambda, \mu)$ which makes the diagram

commutative. Here $J=J_{R}^{\mu}\left(P_{R}(\lambda)\right)$ and $E=E_{R}^{\mu^{\prime}}\left(K_{R}\left(\lambda^{\prime}\right)\right)$ denote the inclusions defined above and $t=t_{R}$ denotes the isomorphism induced by the tilting functor.

Proof. If λ is not contained in the equivalence class of μ under $\sim_{R}=\sim_{C}$ all Hom-spaces occurring in the diagram are 0 by block decomposition and the assertion of the proposition is true.

So let us assume λ to be in the equivalence class of μ. It is easy to see that J and E commute with base change and we have also verified this property for t in Lemma 3.7 already. Let $\mathfrak{p} \subset R$ be a prime ideal of height 1 . We abbreviate Hom $=\operatorname{Hom}_{\mathscr{O}_{R_{\mathrm{p}}}}, P=P_{R}(\lambda), K=K_{R}\left(\lambda^{\prime}\right), \Delta=\Delta_{R_{\mathrm{p}}}(\mu), \nabla=$ $\nabla_{R_{\mathrm{p}}}(\mu), \Delta^{\prime}=\Delta_{R_{\mathfrak{p}}}\left(\mu^{\prime}\right)$ and $\nabla^{\prime}=\nabla_{R_{\mathfrak{p}}}\left(\mu^{\prime}\right)$. After applying $\cdot \otimes_{R} R_{\mathfrak{p}}$ to our diagram and the base change isomorphisms of Theorem 2.5 and Corollary 2.2 we get a diagram of $R_{\mathfrak{p}}$-modules

$$
\begin{gather*}
\operatorname{Hom}\left(P \otimes_{R} R_{\mathfrak{p}}, \Delta\right) \xrightarrow{J} \quad \operatorname{Hom}\left(P \otimes_{R} R_{\mathfrak{p}}, \nabla\right) \\
\downarrow^{t} \tag{2}\\
\operatorname{Hom}\left(\Delta^{\prime}, K \otimes_{R} R_{\mathfrak{p}}\right) \xrightarrow{E}\left(\operatorname{Hom}\left(K \otimes_{R} R_{\mathfrak{p}}, \nabla^{\prime}\right)\right)^{*_{R_{\mathfrak{p}}}}
\end{gather*}
$$

where we omit the index $R_{\mathfrak{p}}$ for t, J and E.
We want to show that we get an isomorphism $L_{R_{\mathfrak{p}}}$ of $R_{\mathfrak{p}}$-modules as the missing right vertical of the upper diagram to make it commutative for every prime ideal $\mathfrak{p} \subset R$ of height 1 . By block decomposition we get

$$
P_{R}(\lambda) \otimes_{R} R_{\mathfrak{p}} \cong \bigoplus_{i=1}^{n} P_{R_{\mathfrak{p}}}\left(\lambda_{i}\right)
$$

for certain indecomposable projective objects $P_{R_{\mathrm{p}}}\left(\lambda_{i}\right) \in \mathscr{O}_{R_{\mathrm{p}}}$ and $\lambda_{i} \in \bar{\lambda}$ where $\bar{\lambda}$ denotes the equivalence class of λ under $\sim_{R}=\sim_{c}$. Since t is fully faithful and respects base change we also get a decomposition

$$
K_{R}\left(\lambda^{\prime}\right) \otimes_{R} R_{\mathfrak{p}} \cong t_{R_{\mathfrak{p}}}\left(P_{R}(\lambda) \otimes_{R} R_{\mathfrak{p}}\right) \cong \bigoplus_{i=1}^{n} t_{R_{\mathfrak{p}}}\left(P_{R_{\mathfrak{p}}}\left(\lambda_{i}\right)\right)
$$

It is easy to see that J, E and t respect these decompositions. Hence, we get in formulas

$$
\begin{aligned}
J\left(\operatorname{Hom}_{\mathscr{O}_{R_{p}}}\left(P_{R_{p}}\left(\lambda_{i}\right), \Delta_{R_{p}}(\mu)\right)\right) & \subset \operatorname{Hom}_{\mathscr{O}_{R_{p}}}\left(P_{R_{p}}\left(\lambda_{i}\right), \nabla_{R_{p}}(\mu)\right) \\
t\left(\operatorname{Hom}_{\mathscr{O}_{R_{p}}}\left(P_{R_{p}}\left(\lambda_{i}\right), \Delta_{R_{p}}(\mu)\right)\right) & =\operatorname{Hom}_{\mathscr{O}_{R_{p}}}\left(t\left(\Delta_{R_{p}}(\mu)\right), t\left(P_{R_{p}}\left(\lambda_{i}\right)\right)\right) \\
E\left(\operatorname{Hom}_{\mathscr{O}_{R_{p}}}\left(t\left(\Delta_{R_{p}}(\mu)\right), t\left(P_{R_{p}}\left(\lambda_{i}\right)\right)\right)\right) & \subset\left(\operatorname{Hom}_{\mathscr{O}_{R_{p}}}\left(t\left(P_{R_{p}}\left(\lambda_{i}\right)\right), \nabla_{R_{p}}\left(\mu^{\prime}\right)\right)\right)^{* R_{p}}
\end{aligned}
$$

where we omit the index $R_{\mathfrak{p}}$ of our maps.
Let $Q=$ Quot (S) be the quotient field of S. Since all deformed Verma modules over Q are simple, we get $\Delta_{Q}(\mu) \cong \nabla_{Q}(\mu)$ and $\Delta_{Q}\left(\mu^{\prime}\right) \cong \nabla_{Q}\left(\mu^{\prime}\right)$, respectively. Hence, after applying $\cdot \otimes_{R} Q$ to our diagram we get an isomorph$\operatorname{ism} L_{Q}$ which makes the following diagram commutative

$\operatorname{Hom}_{\mathscr{O}_{Q}}\left(t_{Q}\left(\Delta_{Q}(\mu)\right), t_{Q}\left(P_{R}(\lambda) \otimes_{R} Q\right)\right) \xrightarrow{E_{Q}}\left(\operatorname{Hom}_{\mathscr{O}_{Q}}\left(t_{Q}\left(P_{R}(\lambda) \otimes_{R} Q\right), \nabla_{Q}\left(\mu^{\prime}\right)\right)\right)^{*_{Q}}$
Let $\mathfrak{p} \subset R$ be a prime ideal of height one. So $\mathfrak{p}=R \gamma$ for an irreducible element $\gamma \in R$. If $\gamma \notin \mathrm{C} \check{\alpha}$ for all $\alpha \in \mathscr{R}^{+}$or $\gamma \in \mathrm{C} \check{\alpha}$ for one $\alpha \in \mathscr{R}$ but with $\langle\mu+\rho, \check{\alpha}\rangle_{\mathrm{C}} \notin \mathbf{Z}$, the block of μ in $\mathscr{O}_{R_{\mathrm{p}}}$ is generic by Lemma 2.11 and we conclude $P_{R_{\mathrm{p}}}(\mu) \cong \Delta_{R_{\mathrm{p}}}(\mu) \cong \nabla_{R_{\mathrm{p}}}(\mu)$. But in this case all maps $J_{R_{\mathrm{p}}}, E_{R_{\mathrm{p}}}$ and $t_{R_{\mathrm{p}}}$ are isomorphisms and so we get the claimed $R_{\mathfrak{p}}$-isomorphism $L_{R_{\mathrm{p}}}$ of our diagram (2). So we can assume $\mathfrak{p}=R \check{\alpha}$ for some $\alpha \in \mathscr{R}^{+}$and $\langle\mu+\rho, \check{\alpha}\rangle_{\mathcal{C}} \in \mathbf{Z}$.

By Proposition 4.5 below we get

$$
\begin{aligned}
& L_{Q}\left(\operatorname{Hom}_{\mathscr{O}_{R_{\mathfrak{p}}}}\left(P_{R}(\lambda) \otimes_{R} R_{\mathfrak{p}}, \nabla_{R_{\mathfrak{p}}}(\mu)\right)\right) \\
&=\left(\operatorname{Hom}_{\mathscr{O}_{R_{\mathfrak{p}}}}\left(t\left(P_{R}(\lambda)\right) \otimes_{R} R_{\mathfrak{p}}, \nabla_{R_{\mathfrak{p}}}\left(\mu^{\prime}\right)\right)\right)^{*_{R_{\mathfrak{p}}}} \\
& \subset\left(\operatorname{Hom}_{\mathscr{O}_{Q}}\left(t\left(P_{R}(\lambda)\right) \otimes_{R} Q, \nabla_{Q}\left(\mu^{\prime}\right)\right)\right)^{*_{Q}}
\end{aligned}
$$

Here we identify both $R_{\mathfrak{p}}$-modules with submodules of the according Q-vector spaces.

In conclusion, for every prime ideal $\mathfrak{p} \subset R$ of height 1 the restriction of L_{Q} to the according $R_{\mathfrak{p}}$-lattice leads to the sought-after $R_{\mathfrak{p}}$-isomorphism $L_{R_{\mathrm{p}}}$ that makes the diagram (2) commutative. Since E, J and t respect base change we get an isomorphism which we will also call $L=L_{R_{\mathrm{p}}}$ that makes
 commutative.

But then we also get an isomorphism L_{R} which is the restriction of the Q-linear map L_{Q} to $\operatorname{Hom}_{\mathscr{O}_{R}}\left(P_{R}(\lambda), \nabla_{R}(\mu)\right)$ and makes the diagram

$\bigcap_{\mathfrak{p} \in \mathfrak{ß}} \operatorname{Hom}_{\mathscr{O}_{R}}\left(t\left(\Delta_{R}(\mu)\right), t\left(P_{R}(\lambda)\right)\right) \otimes_{R} R_{\mathfrak{p}} \xrightarrow{E} \bigcap_{\mathfrak{p} \in \mathfrak{\beta}}\left(\operatorname{Hom}_{\mathscr{O}_{R}}\left(t\left(P_{R}(\lambda)\right), \nabla_{R}\left(\mu^{\prime}\right)\right)\right)^{*} \otimes_{R} R_{p}$ commutative, where \mathfrak{B} denotes the set of all prime ideals of R of height one. Since all Hom-spaces of this diagram are finitely generated free R-modules, it equals diagram (1) which finishes the proof.

Corollary 4.4. Let $P \in \mathcal{O}$ be a projective object, $\mu \in \mathfrak{h}^{*}$ and let $t=t_{\mathrm{C}}$ be the tilting functor. Then $K=t(P)$ is a tilting object in \mathcal{O} and the isomorphism $t: \operatorname{Hom}_{\mathfrak{g}}(P, \Delta(\mu)) \xrightarrow{\sim} \operatorname{Hom}_{\mathfrak{g}}(\Delta(-2 \rho-\mu), K)$ induced by the tilting functor identifies the filtration induced by the Jantzen filtration with the Andersen filtration.

Proof. Consider the restriction map $S=\mathrm{C}\left[\mathfrak{h}^{*}\right] \rightarrow \mathrm{C} \llbracket v \rrbracket$ to a formal neighbourhood of the origin in the line $\mathrm{C} \rho$. Since this map factors through R, we get a homomorphism $R \rightarrow \mathrm{C} \llbracket v \rrbracket$ of S-algebras. Since the maps from the Theorem above commute with base change $\cdot \otimes_{R} \mathrm{C} \llbracket v \rrbracket$, we get a commuting diagram

where $P_{\subset \llbracket v \rrbracket}$ (resp. $K_{\subset \llbracket v \rrbracket}$) denotes the unique (up to isomorphism) deformed projective (resp. tilting) module in $\mathscr{O}_{\mathrm{C} \llbracket v \|}$ that maps to P (resp. K) under $\cdot \otimes_{\mathrm{C} \llbracket v \rrbracket}$ C, $\mu^{\prime}=-2 \rho-\mu$ and $(\cdot)^{*}$ means the $\mathrm{C} \llbracket v \rrbracket$-dual. Since $L\left(v^{i} \operatorname{Hom}_{\mathscr{O}_{\mathrm{C}\|v\|}}\left(P_{C \llbracket v \rrbracket}\right.\right.$, $\left.\left.\nabla_{\mathrm{C} \llbracket v \|}(\mu)\right)\right)=v^{i}\left(\operatorname{Hom}_{O_{C \llbracket v \|}}\left(K_{\subset \llbracket v \rrbracket}, \nabla_{\mathrm{C} \llbracket v \|}\left(\mu^{\prime}\right)\right)\right)^{*}$, the preimages of these submodules under J resp. E are identified by t. Applying $\cdot \otimes_{\mathrm{C} \llbracket v \rrbracket} \mathrm{C}$ to the left vertical of the diagram yields the claim.

For the next Proposition we assume $\mathfrak{p}=R \check{\alpha}$ for some $\alpha \in \mathscr{R}^{+}$and $\langle\mu+$ $\rho, \check{\alpha}\rangle_{\mathrm{C}} \in \mathbf{Z}$.

Proposition 4.5. With the notation and identifications from the proof of Theorem 4.3 we get

$$
\begin{aligned}
& L_{Q}\left(\operatorname{Hom}_{\mathscr{O}_{R_{\mathfrak{p}}}}\left(P_{R}(\lambda) \otimes_{R} R_{\mathfrak{p}}, \nabla_{R_{\mathfrak{p}}}(\mu)\right)\right) \\
& \quad=\left(\operatorname{Hom}_{\mathscr{O}_{R_{\mathfrak{p}}}}\left(t\left(P_{R}(\lambda)\right) \otimes_{R} R_{\mathfrak{p}}, \nabla_{R_{\mathfrak{p}}}\left(\mu^{\prime}\right)\right)\right)^{* R_{\mathfrak{p}}} \\
& \quad \subset\left(\operatorname{Hom}_{\mathscr{O}_{Q}}\left(t\left(P_{R}(\lambda)\right) \otimes_{R} Q, \nabla_{Q}\left(\mu^{\prime}\right)\right)\right)^{* Q}
\end{aligned}
$$

Proof. Since all maps t, J, E respect the decomposition of $P_{R}(\lambda) \otimes_{R} R_{\mathfrak{p}} \cong$ $\bigoplus_{i=1}^{n} P_{R_{\mathrm{p}}}\left(\lambda_{i}\right)$, we only have to prove the statement for the indecomposable summands of this decomposition. In formulas we want to show

$$
\begin{equation*}
L_{Q}\left(\operatorname{Hom}_{\mathscr{O}_{R_{p}}}\left(P_{R_{p}}\left(\lambda_{i}\right), \nabla_{R_{p}}(\mu)\right)\right)=\left(\operatorname{Hom}_{\mathscr{O}_{R_{p}}}\left(t\left(P_{R_{p}}\left(\lambda_{i}\right)\right), \nabla_{R_{p}}\left(\mu^{\prime}\right)\right)\right)^{* R_{p}} \tag{3}
\end{equation*}
$$

for all $i \in\{1, \ldots, n\}$. Here, the right side is again meant to be the $R_{\mathfrak{p}}$-lattice in the Q-vector space $\operatorname{Hom}_{\mathscr{O}_{Q}}\left(t\left(P_{R_{\mathrm{p}}}\left(\lambda_{i}\right)\right) \otimes_{R_{\mathrm{p}}} Q, \nabla_{Q}\left(\mu^{\prime}\right)\right)^{* Q}$.

Both Hom-spaces in (3) are free and of the same rank over $R_{\mathfrak{p}}$. From the description of the projective covers in the generic and subgeneric case it follows

$$
\begin{aligned}
\operatorname{rk}_{R_{p}}\left(\operatorname{Hom}_{\mathscr{O}_{R_{p}}}\left(P_{R_{p}}\left(\lambda_{i}\right), \nabla_{R_{p}}(\mu)\right)\right) & =\operatorname{dim}_{K}\left(\operatorname{Hom}_{\mathscr{O}_{\mathrm{K}}}\left(P_{\mathrm{K}}\left(\lambda_{i}\right), \nabla_{\mathrm{K}}(\mu)\right)\right) \\
& =\left(P_{\mathrm{K}}\left(\lambda_{i}\right): \Delta_{K}(\mu)\right) \leq 1
\end{aligned}
$$

where K denotes the residue field of $R_{\mathfrak{p}}$.
Now we will proceed in several steps to prove (3). From the choice of \mathfrak{p} it follows that the equivalence class of μ under $\sim_{R_{p}}$ equals $\left\{\mu, s_{\alpha} \cdot \mu\right\}$ where again s_{α} is the reflection corresponding to the root $\alpha \in \mathscr{R}$ acting by the dot-action on \mathfrak{h}^{*}. If $\mu=s_{\alpha} \cdot \mu$, we are in the generic case and our maps are isomorphisms which proves the claim for this case. So let us further assume $\mu \neq s_{\alpha} \cdot \mu$.

Case 1. Let $\lambda_{i} \notin\left\{\mu, s_{\alpha} \cdot \mu\right\}$. In this case both Hom-spaces in (3) are zero by block decomposition and the claim is true.

CASE 2. Let $\lambda_{i}=s_{\alpha} \cdot \mu>\mu$. In this case we get $P_{R_{p}}\left(\lambda_{i}\right) \cong \Delta_{R_{p}}\left(\lambda_{i}\right) \neq$ $\Delta_{R_{\mathrm{p}}}(\mu) \cong \nabla_{R_{\mathrm{p}}}(\mu)$ and therefore

$$
\begin{aligned}
\operatorname{Hom}_{\mathscr{O}_{R_{p}}}\left(P_{R_{p}}\left(\lambda_{i}\right), \Delta_{R_{p}}(\mu)\right) & =\operatorname{Hom}_{\mathscr{O}_{R_{p}}}\left(P_{R_{p}}\left(\lambda_{i}\right), \nabla_{R_{p}}(\mu)\right) \\
& =\operatorname{Hom}_{\mathscr{O}_{R_{p}}}\left(t\left(\Delta_{R_{p}}(\mu)\right), t\left(P_{R_{p}}\left(\lambda_{i}\right)\right)\right) \\
& =\left(\operatorname{Hom}_{\mathscr{O}_{R_{p}}}\left(t\left(P_{R_{p}}\left(\lambda_{i}\right)\right), \nabla_{R_{p}}\left(\mu^{\prime}\right)\right)\right)^{*}=0
\end{aligned}
$$

and we are done.
CASE 3. Let $\lambda_{i}=\mu<s_{\alpha} \cdot \mu$. Then we have $\Delta_{R_{\mathrm{p}}}(\mu)=\nabla_{R_{\mathrm{p}}}(\mu)$ and also $t\left(P_{R_{\mathrm{p}}}\left(\lambda_{i}\right)\right) \cong K_{R_{\mathrm{p}}}\left(-2 \rho-\lambda_{i}\right) \cong P_{R_{\mathrm{p}}}\left(-2 \rho-s_{\alpha} \cdot \mu\right)$. With these assumptions on λ_{i} and μ, we get an injection

$$
\varphi: t\left(\Delta_{\mathrm{K}}(\mu)\right) \hookrightarrow t\left(P_{\mathrm{K}}\left(\lambda_{i}\right)\right)
$$

Since $-2 \rho-s_{\alpha} \cdot \mu<-2 \rho-\mu$, the map φ is an embedding from a Verma module with dominant highest weight to the projective cover of the simple module with antidominant highest weight. These modules are objects of a subgeneric block of \mathscr{O}_{K} and this projective cover is self-dual. So dualizing φ leads to a surjection
$d \varphi: P_{\mathrm{K}}\left(-2 \rho-s_{\alpha} \cdot \mu\right) \rightarrow \nabla_{\mathrm{K}}(-2 \rho-\mu)$. But the composition $d \varphi \circ \varphi$ is nonzero. Thus, we get $E_{K}(\varphi) \neq 0$. Comparing dimensions over K, we get an isomorphism

$$
E_{\mathrm{K}}: \operatorname{Hom}_{\mathscr{O}_{\mathrm{K}}}\left(t\left(\Delta_{\mathrm{K}}(\mu)\right), t\left(P_{\mathrm{K}}\left(\lambda_{i}\right)\right)\right) \xrightarrow{\sim}\left(\operatorname{Hom}_{\mathscr{O}_{\mathrm{K}}}\left(t\left(P_{\mathrm{K}}\left(\lambda_{i}\right)\right), \nabla_{\mathrm{K}}\left(\mu^{\prime}\right)\right)\right)^{*}
$$

By Nakayama's lemma, we conclude that $E_{R_{\mathrm{p}}}$ is surjective and therefore an isomorphism.

We also have a surjective map $P_{K}\left(\lambda_{i}\right) \rightarrow \Delta_{K}(\mu)$ and with similar arguments we get an isomorphism of vector spaces

$$
\operatorname{Hom}_{\mathscr{O}_{\mathrm{K}}}\left(P_{\mathrm{K}}\left(\lambda_{i}\right), \Delta_{\mathrm{K}}(\mu)\right) \xrightarrow{\sim} \operatorname{Hom}_{\mathscr{O}_{\mathrm{K}}}\left(P_{\mathrm{K}}\left(\lambda_{i}\right), \nabla_{\mathrm{K}}(\mu)\right)
$$

and Nakayama's lemma finishes this case.
CASE 4. Let $\lambda_{i}=\mu>s_{\alpha} \cdot \mu$. Then we have $P_{R_{\mathrm{p}}}\left(\lambda_{i}\right)=\Delta_{R_{\mathrm{p}}}\left(\lambda_{i}\right)=\Delta_{R_{\mathrm{p}}}(\mu)$ and over the residue field K we get $E_{\mathrm{K}}(\mathrm{id}) \neq 0$ and $J_{\mathrm{K}}(\mathrm{id}) \neq 0$. And again by Nakayama's lemma we get two isomorpisms
$J: \operatorname{Hom}_{\overparen{O}_{R_{\mathrm{p}}}}\left(P_{R_{\mathrm{p}}}\left(\lambda_{i}\right), \Delta_{R_{\mathrm{p}}}(\mu)\right) \quad \xrightarrow{\sim} \operatorname{Hom}_{\overparen{O}_{R_{p}}}\left(P_{R_{p}}\left(\lambda_{i}\right), \nabla_{R_{\mathrm{p}}}(\mu)\right)$
$E: \operatorname{Hom}_{\mathscr{O}_{R_{p}}}\left(t\left(\Delta_{R_{p}}(\mu)\right), t\left(P_{R_{p}}\left(\lambda_{i}\right)\right)\right) \xrightarrow{\sim}\left(\operatorname{Hom}_{\mathscr{O}_{R_{p}}}\left(t\left(P_{R_{p}}\left(\lambda_{i}\right)\right), \nabla_{R_{p}}\left(\mu^{\prime}\right)\right)\right)^{*_{R_{p}}}$ and the claim is true.

CASE 5. Let $\lambda_{i}=s_{\alpha} \cdot \mu<\mu$. By the following two lemmas 4.6 and 4.7 we also get that the restriction of L_{Q} to the $R_{\mathfrak{p}}$-lattice induces an isomorphism in this case and the proof is finished.

For the following two lemmas let $\mathfrak{p}=R \check{\alpha}$ and $\{\lambda, \mu\}$ be an equivalence class under $\sim_{R_{\mathrm{p}}}$ with $\lambda=s_{\alpha} \cdot \mu<\mu$ and set $\lambda^{\prime}=-2 \rho-\lambda$.

Lemma 4.6. The map

$$
J_{R_{p}}: \operatorname{Hom}_{\overparen{O}_{R_{p}}}\left(P_{R_{p}}(\lambda), \Delta_{R_{p}}(\mu)\right) \hookrightarrow \operatorname{Hom}_{\mathscr{O}_{R_{p}}}\left(P_{R_{p}}(\lambda), \nabla_{R_{p}}(\mu)\right)
$$

has image $\check{\alpha} \cdot \operatorname{Hom}_{\mathscr{O}_{R_{p}}}\left(P_{R_{p}}(\lambda), \nabla_{R_{p}}(\mu)\right)$.
Proof. After base change with the residue field K we get

$$
J_{\mathrm{K}}: \operatorname{Hom}_{\mathscr{O}_{\mathrm{K}}}\left(P_{\mathrm{K}}(\lambda), \Delta_{\mathrm{K}}(\mu)\right) \longrightarrow \operatorname{Hom}_{\mathscr{O}_{\mathrm{K}}}\left(P_{\mathrm{K}}(\lambda), \nabla_{\mathrm{K}}(\mu)\right)
$$

On the left side we have the generator $P_{\mathrm{K}}(\lambda) \rightarrow \Delta_{K}(\lambda) \hookrightarrow \Delta_{K}(\mu)$ which becomes

$$
P_{\mathrm{K}}(\lambda) \rightarrow \Delta_{\mathrm{K}}(\lambda) \hookrightarrow \Delta_{\mathrm{K}}(\mu) \rightarrow L_{\mathrm{K}}(\mu) \hookrightarrow \nabla_{\mathrm{K}}(\mu)
$$

on the right side. But since this map is zero we get

$$
J\left(\operatorname{Hom}_{\mathscr{O}_{R_{p}}}\left(P_{R_{p}}(\lambda), \Delta_{R_{p}}(\mu)\right)\right) \subset \check{\alpha} \cdot \operatorname{Hom}_{\mathscr{O}_{R_{p}}}\left(P_{R_{p}}(\lambda), \nabla_{R_{p}}(\mu)\right)
$$

Now we can lift the generator $j^{\prime}: P_{\mathrm{K}}(\lambda) \rightarrow \Delta_{\mathrm{K}}(\lambda) \hookrightarrow \Delta_{\mathrm{K}}(\mu)$ to a generator $j: P_{R_{p}}(\lambda) \rightarrow \Delta_{R_{\mathfrak{p}}}(\mu)$ of the $R_{\mathfrak{p}}$-module $\operatorname{Hom}_{\overparen{O}_{R_{p}}}\left(P_{R_{\mathfrak{p}}}(\lambda), \Delta_{R_{p}}(\mu)\right)$ via base change. Let also $l \in \operatorname{Hom}_{\mathscr{O}_{R_{\mathrm{p}}}}\left(P_{R_{\mathrm{p}}}(\lambda), \nabla_{R_{\mathrm{p}}}(\mu)\right)$ be a generator. Then we conclude $J_{R_{\mathfrak{p}}}(j)=c l$ for one $c \in R_{\mathfrak{p}}$ with $c \neq 0$. Multiplying with an appropriate invertible element of $R_{\mathfrak{p}}$ we can assume $c=(\check{\alpha})^{m}$ for $m \in \mathrm{~N}$.

On $\Delta_{R_{\nu}}(\mu)$ we have the filtration which comes from the preimages of $(\check{\alpha})^{i} \nabla_{R_{\mathrm{p}}}(\mu)$ under the inclusion $\Delta_{R_{\mathrm{p}}}(\mu) \hookrightarrow \nabla_{R_{\mathrm{p}}}(\mu)$. Denote by $\Delta_{\mathrm{K}}(\mu)_{i}$ the image of the i-th filtration layer under the surjection $\Delta_{R_{\mathrm{p}}}(\mu) \rightarrow \Delta_{K}(\mu)$ which is the i-th layer of the Jantzen filtration on $\Delta_{\mathrm{K}}(\mu)$. By the Jantzen sum formula we get

$$
\sum_{i>0} \operatorname{ch} \Delta_{\mathrm{K}}(\mu)_{i}=\sum_{\substack{\alpha \in \mathscr{R}^{+}, n \in \mathrm{~N} \\\langle\mu+\rho+\tau, \dot{\alpha}\rangle_{\mathrm{K}}=n}} \operatorname{ch} \Delta_{\mathrm{K}}(\mu-n \alpha)=\operatorname{ch} \Delta_{\mathrm{K}}\left(s_{\alpha} \cdot \mu\right)
$$

Since $\Delta_{K}\left(s_{\alpha} \cdot \mu\right)$ is simple, we conclude $\Delta_{K}(\mu)_{1} \cong \Delta_{K}\left(s_{\alpha} \cdot \mu\right)$ and $\Delta_{K}(\mu)_{2}=0$.
If $J_{R_{\mathrm{p}}}(j) \in(\check{\alpha})^{2} \cdot \operatorname{Hom}_{\mathcal{O}_{R_{\mathrm{p}}}}\left(P_{R_{\mathrm{p}}}(\lambda), \nabla_{R_{\mathrm{p}}}(\mu)\right)$ we would get $j^{\prime}\left(P_{\mathrm{K}}(\lambda)\right) \subset$ $\Delta_{K}(\mu)_{2}=0$, i.e., $j^{\prime}=0$, which is a contradiction to the choice of j^{\prime}. We conclude $J_{R_{p}}(j)=\check{\alpha} l$.

Lemma 4.7. The map

$$
E_{R_{\mathfrak{p}}}: \operatorname{Hom}_{\overparen{O}_{R_{\mathrm{p}}}}\left(t\left(\Delta_{R_{\mathfrak{p}}}(\mu)\right), t\left(P_{R_{p}}(\lambda)\right)\right) \hookrightarrow\left(\operatorname{Hom}_{\widehat{O}_{R_{\mathrm{p}}}}\left(t\left(P_{R_{p}}(\lambda)\right), \nabla_{R_{\mathrm{p}}}\left(\mu^{\prime}\right)\right)\right)^{* R_{p}}
$$

has image $\check{\alpha} \cdot\left(\operatorname{Hom}_{\mathscr{O}_{R_{\mathrm{p}}}}\left(t\left(P_{R_{\mathfrak{p}}}(\lambda)\right), \nabla_{R_{\mathfrak{p}}}\left(\mu^{\prime}\right)\right)\right)^{*_{R_{\mathrm{p}}}}$.
Proof. We have $t_{R_{\mathrm{p}}}\left(P_{R_{\mathrm{p}}}(\lambda)\right)=K_{R_{\mathrm{p}}}\left(\lambda^{\prime}\right)$ and by our assumptions we get $s_{\alpha} \cdot\left(\lambda^{\prime}\right)=\mu^{\prime}<\lambda^{\prime}$. But since μ^{\prime} is minimal in its equivalence class under $\sim_{R_{p}}$, we get an isomorphism $P_{\mathrm{K}}\left(\mu^{\prime}\right) \cong K_{\mathrm{K}}\left(\lambda^{\prime}\right)$ and then an inclusion γ^{\prime} : $\Delta_{K}\left(\mu^{\prime}\right) \hookrightarrow K_{K}\left(\lambda^{\prime}\right)$. Lifting this map with base change 2.2 , we get a basis γ of the $R_{\mathfrak{p}}$-module $\operatorname{Hom}_{\mathscr{O}_{R_{\mathfrak{p}}}}\left(\Delta_{R_{\mathfrak{p}}}\left(\mu^{\prime}\right), K_{R_{\mathfrak{p}}}\left(\lambda^{\prime}\right)\right)$. But every map $\Delta_{\mathrm{K}}\left(\mu^{\prime}\right) \rightarrow \nabla_{\mathrm{K}}\left(\mu^{\prime}\right)$ which factors through $K_{K}\left(\lambda^{\prime}\right)$ is zero already. So we conclude that

$$
E_{\mathrm{K}}: \operatorname{Hom}_{\mathscr{O}_{\mathrm{K}}}\left(\Delta_{\mathrm{K}}\left(\mu^{\prime}\right), K_{\mathrm{K}}\left(\lambda^{\prime}\right)\right) \longrightarrow\left(\operatorname{Hom}_{\mathscr{O}_{\mathrm{K}}}\left(K_{\mathrm{K}}\left(\lambda^{\prime}\right), \nabla_{\mathrm{K}}\left(\mu^{\prime}\right)\right)\right)^{*}
$$

is the zero map. If we now choose a basis δ of the free one dimensional $R_{\mathfrak{p}}$-module $\left(\operatorname{Hom}_{\mathscr{O}_{R_{\mathfrak{p}}}}\left(K_{R_{\mathfrak{p}}}\left(\lambda^{\prime}\right), \nabla_{R_{\mathfrak{p}}}\left(\mu^{\prime}\right)\right)\right)^{*}$ and eventually multiply it with an appropriate invertible element of $R_{\mathfrak{p}}$, we conclude $E_{R_{\mathfrak{p}}}(\gamma)=(\check{\alpha})^{n} \delta$ for $n>0$.

By Proposition 2.12 we get

$$
\begin{aligned}
\operatorname{End}_{\mathscr{O}_{\mathfrak{p}}}\left(K_{R_{\mathfrak{p}}}\left(\lambda^{\prime}\right)\right) & \cong \operatorname{End}_{\mathscr{O}_{R_{\mathfrak{p}}}}\left(P_{R_{\mathfrak{p}}}\left(\mu^{\prime}\right)\right) \\
& \cong\left\{(x, y) \in R_{\mathfrak{p}} \oplus R_{\mathfrak{p}} \mid x \equiv y \bmod \check{\alpha}\right\}
\end{aligned}
$$

where for $\varphi \in \operatorname{End}_{\mathscr{O}_{R_{\mathrm{p}}}}\left(K_{R_{\mathfrak{p}}}\left(\lambda^{\prime}\right)\right) x$ and y are given by the induced maps on the short exact sequences

If for φ we choose the homomorphism that corresponds to the tupel $(x, y)=$ $(0, \check{\alpha})$, the map on the cokernels of the diagram will factor through the middle and we get a map

$$
\Delta_{R_{p}}\left(\mu^{\prime}\right) \rightarrow K_{R_{p}}\left(\lambda^{\prime}\right) \longrightarrow \Delta_{R_{p}}\left(\mu^{\prime}\right)=\nabla_{R_{p}}\left(\mu^{\prime}\right)
$$

and the image of this map is $\check{\alpha} \nabla_{R_{\mathrm{p}}}\left(\mu^{\prime}\right)$. So we get $n=1$.
Remark 4.8. The last corollary shows the connection between the Jantzen and Andersen filtrations. Taking a projective generator of the block containing the Verma module $\Delta(\mu)$, the above filtration on the C-vector space $\operatorname{Hom}_{\mathfrak{g}}(P, \Delta(\mu))$ might carry enough information to get back the Jantzen filtration on $\Delta(\mu)$. If the map t between the two Hom-spaces induced by the tilting functor also respects the gradings coming from the graded version of category \mathscr{O}, the results of [11] about the Andersen filtration could give an alternative proof of the Jantzen conjecture about the semisimplicity of the subquotients of the Jantzen filtration which was proved in [2].

REFERENCES

1. Arkhipov, S., Semi-infinite cohomology of associative algebras and bar duality, Internat. Math. Res. Notices (1997:17), 833-863.
2. Beilinson, A., and Bernstein, J., A proof of Jantzen conjectures, pp. 1-50 in: I. M. Gelfand Seminar, Adv. Soviet Math. 16:1, Amer. Math. Soc., Providence, RI 1993.
3. Beilinson, A., Ginzburg, V., and Soergel, W., Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), 473-527.
4. Collingwood, D., and Irving, R., A decomposition theorem for certain self dual modules in the category \mathcal{O}, Duke Math. J. 58 (1989), 89-102.
5. Fiebig, P., Centers and translation functors for the category \mathcal{O} over Kac-Moody algebras, Math. Z. 243 (2003), 689-717.
6. Fiebig, P., The combinatorics of category \mathcal{O} over symmetrizable Kac-Moody algebras, Transform. Groups 11 (2006), 29-49.
7. Jantzen, J. C., Moduln mit einem höchsten Gewicht, Lecture Notes in Math. 750, Springer, Berlin 1979.
8. Soergel, W., Kategorie \mathcal{O}, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe, J. Amer. Math. Soc. 3 (1990), 421-445.
9. Soergel, W., Character formulas for tilting modules over quantum groups at roots of one, pp. 161-172 in: Current Developments in Mathematics 1997, Proc. Cambridge, MA, Int. Press, Boston 1999.
10. Soergel, W., Character formulas for tilting modules over Kac-Moody algebras, Represent. Theory 2 (1998), 432-448.
11. Soergel, W., Andersen-Filtration and hard Lefschetz, Geom. Funct. Anal. 17 (2008), 20662089.

DEPARTMENT MATHEMATIK
UNIVERSITÄT ERLANGEN
CAUERSTR. 11
91058 ERLANGEN
GERMANY
E-mail: kuebel@mi.uni-erlangen.de

[^0]: * I would like to thank Wolfgang Soergel and Peter Fiebig for many helpful discussions and for teaching me the necessary tools to write this article. I am also grateful to the referees for their valuable suggestions.

 Received 9 December 2010.

