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HOLOMORPHY TYPES AND THE FOURIER-BOREL
TRANSFORM BETWEEN SPACES OF ENTIRE

FUNCTIONS OF A GIVEN TYPE
AND ORDER DEFINED ON

BANACH SPACES

VINÍCIUS V. FÁVARO∗ and ARIOSVALDO M. JATOBÁ

Abstract
Let E be a Banach space and � be a π1-holomorphy type. The main purpose of this paper is
to show that the Fourier-Borel transform is an algebraic isomorphism between the dual of the
space Expk

�,A(E) of entire functions on E of order k and �-type strictly less than A and the

space Expk′
�′,0,(λ(k)A)−1 (E

′) of entire functions on E′ of order k′ and �′-type less than or equal to

(λ(k)A)−1. The same is proved for the dual of the space Expk
�,A(E) of entire functions on E of

order k and �-type less than or equal to A and the space Expk′
�′,(λ(k)A)−1 (E

′) of entire functions

on E′ of order k′ and �′-type strictly less than (λ(k)A)−1. Moreover, the Fourier-Borel transform
is proved to be a topological isomorphism in certain cases.

1. Introduction

Let E be a Banach space whose dual E′ has the bounded approximation prop-
erty. Gupta [6] proved that the Borel transform establishes an algebraic iso-
morphism between the dual of the space HNb(E) of nuclearly-entire functions
of bounded type defined on E and the space Exp(E′) of entire functions of
exponential-type defined on E′. Matos [11] proved the same for the dual of the
space HÑb,(s;(r,q))(E) of (s; (r, q))-quasi-nuclear entire functions of bounded
type defined on E and the space Exp(s ′,m(r ′;q ′))(E

′) of absolutely (s ′, m(r ′; q ′))-
summing entire functions of exponential type defined on E′. Still in this line,
Mujica [15] proved that the Borel transform establishes an algebraic isomorph-
ism between the dual of the space Hσ(p)b(E) of σ(p)-nuclear entire functions
of bounded type defined on E and the space Expτ(p)(E

′) of absolutely τ(p)-
summing entire functions of exponential type defined on E′. The concept of
π1-holomorphy type is introduced in [3] in order to generalize all these results.
There it is proved that if � is a π1-holomorphy type, then the Borel transform
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establishes an algebraic isomorphism between the dual of the space H�b(E)

of �-holomorphy type entire functions of bounded type defined on E and the
space Exp�′(E′) of entire functions of �′-exponential type defined on E′. The
aforementioned results generalize results of this type obtained by Malgrange
[7].

A major step in the generalization of the spaces of entire functions of nuclear
bounded type defined on E was accomplished in 1984 by Matos [9] through
the introduction of the so-called “spaces of nuclear entire functions of a given
type and order defined on E”. Such spaces also generalize the spaces of entire
functions of a given type and order defined on Cn of Martineau [8]. Matos [9]
also studied duality results via the Fourier-Borel transform on the dual of these
spaces. Using the results obtained in [9], he considered in [10] existence and
approximation results for convolution equations defined on spaces of nuclear
entire functions of a given type and order.

Following this line of thought, the first author extended the scope of this
investigation by considering in [1], [2] the aforementioned results for spaces of
entire functions of a given type and order defined using classes of (s; (r, q))-
quasi-nuclear polynomials.

The main goal of this paper is to replace these classes of homogeneous
polynomials by holomorphy types and π1-holomorphy types to introduce the
spaces of � entire functions of a given type and order defined on E and to
prove duality results via the Fourier-Borel transform for these spaces. More
precisely, for a given π1-holomorphy type �, in Theorems 4.6 and 4.9 we
prove that the Fourier-Borel transform identifies algebraically the dual of
Expk

�,0,A(E) with Expk′
�′,(λ(k)A)−1(E

′). Furthermore in Theorem 4.10 we prove
that the Fourier-Borel transform is a topological isomorphism between the
dual of Expk

�,A(E) and Expk′
�′,0,(λ(k)A)−1(E

′), considering the strong topology

on the dual of Expk
�,A(E). To prove this topological isomorphism we need to

characterize the bounded subsets of Expk
�,A(E).

The paper is organized as follows. Section 2 provides the precise defini-
tions of the spaces we shall work with and the corresponding notation. Some
basic results are also proved. In Section 3 we prove the aforementioned char-
acterization of the bounded sets of Expk

�,A(E). The main results are proved
in Section 4. The results we prove can be regarded as a positive answer to a
question posed in [3, p. 926].

2. Notation and Preliminaries Results

In this work, N denotes the set of positive integers and N0 denotes the set
N ∪ {0}. The letters E and F will always denote complex Banach spaces and
E′ represents the topological dual of E. For A > 0, BA(0) denotes the ball
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of center 0 and radius A in a normed space. The space of all continuous j -
homogeneous polynomials from E into F is denoted by P(jE; F) and the
space of all holomorphic mappings from an open subset U ⊂ E into C is
denoted by H (U). When F = C we write P(jE) instead of P(jE; C).

We begin remembering the concept of holomorphy type, introduced by
Nachbin [13].

Definition 2.1. A holomorphy type � from E to F is a sequence of Banach
spaces (P�(jE; F))∞j=0, the norm on each of them being denoted by ‖ · ‖�,
such that the following conditions hold true:

(1) Each P�(jE; F) is a vector subspace of P(jE; F).

(2) P�(0E; F) coincides with P(0E; F) = F as a normed vector space.

(3) There is a real number σ ≥ 1 for which the following is true: given any
k ∈ N0, j ∈ N0, k ≤ j , a ∈ E, and P ∈ P�(jE; F), we have

d̂kP (a) ∈ P�(kE; F),

∥∥∥∥ 1

k!
d̂kP (a)

∥∥∥∥
�

≤ σ j‖P ‖�‖a‖j−k.

It is obvious that each inclusion P�(jE; F) ⊂ P(jE; F) is continuous
and ‖P ‖ ≤ σ j‖P ‖�.

Definition 2.2. Let (P�(jE))∞j=0 be a holomorphy type from E to C. If
ρ > 0 and k ≥ 1, we denote by Bk

�,ρ(E) the complex vector space of all

f ∈ H (E) such that d̂j f (0) ∈ P�(jE), for all j ∈ N0 and

‖f ‖�,k,ρ =
∞∑

j=0

ρ−j

(
j

ke

) j

k
∥∥∥∥ 1

j !
d̂j f (0)

∥∥∥∥
�

< +∞,

normed by ‖·‖�,k,ρ .

Proposition 2.3. For each ρ > 0 and k ≥ 1, Bk
�,ρ(E) is a Banach space.

Proof. Let (fn)
∞
n=1 be a Cauchy sequence in Bk

�,ρ(E). Given ε > 0, there
exists nε ∈ N such that

(1)

∞∑
j=0

ρ−j

(
j

ke

) j

k
∥∥∥∥ 1

j !
(d̂j fm(0) − d̂j fn(0))

∥∥∥∥
�

< ε,

for m, n ≥ nε. This implies that (d̂j fn(0))∞n=1 is a Cauchy sequence in P�(jE),
for all j ∈ N0. Hence there is Pj ∈ P�(jE), j ∈ N0, such that

lim
n→∞ d̂j fn(0) = Pj .
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Thus making n → ∞ in (1), we have

(2)

∞∑
j=0

ρ−j

(
j

ke

) j

k
∥∥∥∥ 1

j !
(d̂j fm(0) − Pj )

∥∥∥∥
�

< ε,

for all m ≥ nε. Set

f (x) =
∞∑

j=0

1

j !
Pj (x),

for all x ∈ E. To prove that f ∈ H (E), it is enough to show that

lim sup
j→∞

∥∥∥∥ 1

j !
Pj

∥∥∥∥
1
j

= 0.

Note that,

ρ−j

(
j

ke

) j

k
∥∥∥∥ 1

j !
Pj

∥∥∥∥
�

≤ ρ−j

(
j

ke

) j

k
∥∥∥∥ 1

j !
(d̂j fnε

(0) − Pj )

∥∥∥∥
�

+ ρ−j

(
j

ke

) j

k
∥∥∥∥ 1

j !
d̂j fnε

(0)

∥∥∥∥
�

≤ ε + ∥∥fnε

∥∥
�,k,ρ

.

This implies that

lim sup
j→∞

∥∥∥∥ 1

j !
Pj

∥∥∥∥
1
j

�

≤ lim sup
j→∞

ρ(ke)
1
k (ε + ‖fnε

‖�,k,ρ)
1
j

j
1
k

= 0.

Since ‖Pj‖ ≤ σ j‖Pj‖�, we have

lim sup
j→∞

∥∥∥∥ 1

j !
Pj

∥∥∥∥
1
j

≤ σ lim sup
j→∞

∥∥∥∥ 1

j !
Pj

∥∥∥∥
1
j

�

= 0.

Now

‖f ‖�,k,ρ ≤ ‖f − fnε
‖�,k,ρ + ‖fnε

‖�,k,ρ < ε + ‖fnε
‖�,k,ρ < +∞,

Hence f ∈ Bk
�,ρ(E) and by (2) we conclude that (fn)

∞
n=1 converges to f .

Definition 2.4. Let (P�(jE))∞j=0 be a holomorphy type from E to C.
If A ∈ (0, +∞) and k ≥ 1, we denote by Expk

�,A(E) the complex vector
space

⋃
ρ<A Bk

�,ρ(E) with the locally convex inductive limit topology. We
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consider the complex vector space Expk
�,0,A(E) = ⋂

ρ>A Bk
�,ρ(E) with the

projective limit topology. If A = +∞ and k ≥ 1, we consider the complex
vector space Expk

�,∞(E) = ⋃
ρ>0 Bk

�,ρ(E) with the locally convex inductive
limit topology and if A = 0 and k ≥ 1, we consider the complex vector
spaces Expk

�,0(E) = Expk
�,0,0(E) = ⋂

ρ>0 Bk
�,ρ(E) with the locally convex

projective limit topology.

As simple consequences of Definition 2.4 we have the following character-
izations:

Proposition 2.5. Let (P�(jE))∞j=0 be a holomorphy type from E to C and

k ∈ [1, +∞). If f ∈ H (E) is such that d̂j f (0) ∈ P�(jE), ∀j ∈ N0, then

(a) For each A ∈ (0, +∞], f ∈ Expk
�,A(E) if, and only if,

lim sup
j→∞

(
j

ke

) 1
k
∥∥∥∥ 1

j !
d̂j f (0)

∥∥∥∥
1
j

�

< A.

(b) For each A ∈ [0, +∞), f ∈ Expk
�,0,A(E) if, and only if,

lim sup
j→∞

(
j

ke

) 1
k
∥∥∥∥ 1

j !
d̂j f (0)

∥∥∥∥
1
j

�

≤ A.

Proof. (a) If f ∈ Expk
�,A(E), then there exists ρ < A such that f ∈

Bk
�,ρ(E) and

(3)

∞∑
j=0

ρ−j

(
j

ke

) j

k
∥∥∥∥ 1

j !
d̂j f (0)

∥∥∥∥
�

< +∞.

Thus
1

rc

= lim sup
j→∞

(
j

ke

) 1
k
∥∥∥∥ 1

j !
d̂j f (0)

∥∥∥∥
1
j

�

≤ ρ < A,

where rc denotes the radius of convergence of the power series

∞∑
j=0

(
j

ke

) j

k
∥∥∥∥ 1

j !
d̂j f (0)

∥∥∥∥
�

zj , z ∈ C.

On the other hand, if

α = lim sup
j→∞

(
j

ke

) 1
k
∥∥∥∥ 1

j !
d̂j f (0)

∥∥∥∥
1
j

�

< A,
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then, for all ρ ∈ ]α, A[, the series

∞∑
j=0

ρ−j

(
j

ke

) j

k
∥∥∥∥ 1

j !
d̂j f (0)

∥∥∥∥
�

is convergent. Thus f ∈ Bk
�,ρ(E) and so f ∈ Expk

�,A(E). Note that this proof
applies to A = +∞.

(b) If f ∈ Expk
�,0,A(E), then f ∈ Bk

�,ρ(E), for all ρ > A. Thus,

lim sup
j→∞

(
j

ke

) 1
k
∥∥∥∥ 1

j !
d̂j f (0)

∥∥∥∥
1
j

�

≤ ρ,

for all ρ > A and consequently

lim sup
j→∞

(
j

ke

) 1
k
∥∥∥∥ 1

j !
d̂j f (0)

∥∥∥∥
1
j

�

≤ A.

Conversely, if

lim sup
j→∞

(
j

ke

) 1
k
∥∥∥∥ 1

j !
d̂j f (0)

∥∥∥∥
1
j

�

≤ A,

it follows that

lim sup
j→∞

(
j

ke

) 1
k
∥∥∥∥ 1

j !
d̂j f (0)

∥∥∥∥
1
j

�

< ρ,

for all ρ > A. Thus, f ∈ Bk
�,ρ(E), for all ρ > A and so f ∈ Expk

�,0,A(E).
Note that this proof applies to A = 0.

Remark 2.6. Let us recall the original definition, due to Nachbin [12,
p. 226]: a function f ∈ H (E) is said to be of exponential type strictly less than
A if, for each ε > 0, there is c > 0 such that |f (x)| ≤ ce(A+ε)‖x‖ for every

x ∈ E. He also proved that this occurs if and only if lim supj→∞
∥∥d̂j f (0)

∥∥ 1
j <

A. In the same fashion, under the hypothesis of Proposition 2.5 we have the
following characterizations:

(a) f ∈ Exp1
�,A(E) if, and only if, lim sup

j→∞

∥∥d̂j f (0)
∥∥ 1

j

� < A.

(b) f ∈ Exp1
�,0,A(E) if, and only if, lim sup

j→∞

∥∥d̂j f (0)
∥∥ 1

j

� ≤ A.

To prove them, it is enough to use that limj→∞ j

e

(
1
j !

) 1
j = 1.
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Due to these results and to the original terminology of Nachbin, the elements
of Expk

�,A(E) are called entire functions of order k and �-exponential type
strictly less than A. For A = +∞ we drop out “strictly less than A”.

We call the elements of Expk
�,0,A(E) entire functions of order k and �-

exponential type less than or equal to A.
The next result shows that the spaces of Definition 2.4 have special struc-

tures.

Proposition 2.7. Let (P�(jE))∞j=0 be a holomorphy type from E to C.

(a) For each A ∈ (0, +∞] and k > 1, Expk
�,A(E) is a DF -space.

(b) For each A ∈ [0, +∞) and k > 1, Expk
�,0,A(E) is a Fréchet space.

Proof. Let (an)
∞
n=1 be a strictly increasing sequence of positive real num-

bers, converging to A. Hence
⋃

ρ<A Bk
�,ρ(E) = ⋃∞

n=1 Bk
�,an

(E) and it is not
difficult to prove that the inductive limit topologies given by Bk

�,ρ(E), ρ < A

and Bk
�,an

(E), n ∈ N, are equal. Since the inductive limit of a sequence of
DF -spaces is a DF -space (see Grothendieck [5, p. 171, Proposition 5]) we
have that Expk

�,A(E) is a DF -space and (a) is proved.
Now we prove (b). We have that Expk

�,0,A(E) is a complete locally convex
space, since it is the projective limit of complete Hausdorff locally convex
spaces (see [14, Proposition V.11]). Let (bn)

∞
n=1 be a strictly decreasing se-

quence of positive real numbers, converging to A. Since the topology of the
Expk

�,0,A(E) and the topology generated by ‖·‖�,bn
, n ∈ N, coincide, then

Expk
�,0,A(E) is metrizable.

In order to consider similar spaces of functions of infinite order, we intro-
duce some new definitions.

Definition 2.8. Let (P�(jE))∞j=0 be a holomorphy type from E to C. If
A ∈ [0, +∞), we denote by H�b(B 1

A
(0)) the complex vector space of all

f ∈ H (B 1
A
(0)) such that d̂j f (0) ∈ P�(jE), for all j ∈ N0 and

lim sup
j→∞

∥∥∥∥ 1

j !
d̂j f (0)

∥∥∥∥
1
j

�

≤ A,

endowed with the locally convex topology generated by the family of semi-
norms (p∞

�,ρ)ρ>A, where

p∞
�,ρ(f ) =

∞∑
j=0

ρ−j

∥∥∥∥ 1

j !
d̂j f (0)

∥∥∥∥
�

.
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We also denote H�b(B 1
A
(0)) by Exp∞

�,0,A(E) and we also write Exp∞
�,0(E)

= Exp∞
�,0,0(E). Note that the space Exp∞

�,0(E) coincides with the space
H�b(E) of [3].

Proposition 2.9. Let (P�(jE))∞j=0 be a holomorphy type from E to C. If
A ∈ [0, +∞), then H�b(B 1

A
(0)) is a Fréchet space.

Proof. Let (an)
∞
n=1 be a strictly decreasing sequence of positive real num-

bers, converging to A. Since (p∞
�,an

)∞n=1 and (p∞
�,ρ)ρ>A generate the same

topology, we have that H�b(B 1
A
(0)) is a locally convex and metrizable topo-

logical vector space. Let (fk)
∞
k=1 be a Cauchy sequence in H�b(B 1

A
(0)) and

ρ > A. Proceeding as in Proposition 2.3 we conclude that

p∞
�,ρ(fk − f ) → 0, when k → ∞.

Hence H�b(B 1
A
(0)) is complete.

We next define certain spaces of germs of holomorphic functions.
Let L = ⋃

ρ<A H�(B 1
ρ
(0)) and define the following equivalence relation:

f ∼ g ⇐⇒ there is ρ ∈ (0, A) such that f |B 1
ρ

(0) = g|B 1
ρ

(0).

We denote by L/∼ the set of all equivalence classes of elements of L and by
[f ] the equivalence class which has f as one representative. If we define the
operations

[f ] + [g] = [f |B 1
ρ

(0) + g|B 1
ρ

(0)],

where ρ ∈ (0, A) is such that f |B 1
ρ

(0), g|B 1
ρ

(0) ∈ H�b(B 1
ρ
(0)), and

λ[f ] = [λf ], λ ∈ C,

then L/∼ becomes a vector space. For each ρ ∈ (0, A), let iρ : H�b(B 1
ρ
(0)) →

L/∼ be given by iρ(f ) = [f ].

Definition 2.10. For A ∈ (0, +∞], we define H�b(B 1
A
(0)) = L/∼ with

the locally convex inductive limit topology generated by the family (iρ)ρ∈(0,A).

An equivalent way to introduce this space is the following:

Definition 2.11. Let (P�(jE))∞j=0 be a holomorphy type from E to C. For
ρ > 0, we define the complex vector space H ∞

� (B 1
ρ
(0)) of all f ∈ H (B 1

ρ
(0))

such that d̂j f (0) ∈ P�(jE), for all j ∈ N0 and

∞∑
j=0

ρ−j

∥∥∥∥ 1

j !
d̂j f (0)

∥∥∥∥
�

< +∞,
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which is a Banach space with the norm p∞
�,ρ introduced in Definition 2.8.

As in Definition 2.10, we consider an equivalence relation on L =⋃
ρ<A H ∞

� (B 1
ρ
(0)), and for A ∈ (0, +∞], we define Exp∞

�,A(E) = L/∼ =⋃
ρ<A H ∞

� (B 1
ρ
(0))/∼ with the locally convex inductive limit topology.

It is not difficult to prove that H�b(B 1
A
(0)) and Exp∞

�,A(E) coincide algeb-
raically and are topologically isomorphic.

Due to this definition we denote the space H�b(B 1
A
(0)) by Exp∞

�,A(E), and

since limk→∞
(

j

ke

) 1
k = 1, we use the notation ‖·‖�,∞,ρ instead of p∞

�,ρ .

Proposition 2.12. Let (P�(jE))∞j=0 be a holomorphy type from E to C.
Then

(a) For each A ∈ (0, +∞], Exp∞
�,A(E) is a DF -space.

(b) For each A ∈ [0, +∞), Exp∞
�,0,A(E) is a Fréchet space.

Proof. Note that (b) is exactly Proposition 2.9 and the proof of (a) follows
as in Proposition 2.7.

Proposition 2.13. Let (P�(jE))∞j=0 be a holomorphy type from E to C.

(a) If k ∈ [1, +∞] and A ∈ (0, +∞], then the Taylor series at 0 for each
element of Expk

�,0,A(E) converges to the element in the topology of the
space.

(b) If k ∈ [1, +∞] and A ∈ [0, +∞), then the Taylor series at 0 for each
element of Expk

�,A(E) converges to the element in the topology of the
space.

Proof. For each f in the appropriate space we have

(4)

∥∥∥∥f −
n∑

j=0

1

j !
d̂j f (0)

∥∥∥∥
�,k,ρ

=
∞∑

j=n+1

ρ−j

(
j

ke

) j

k
∥∥∥∥ 1

j !
d̂j f (0)

∥∥∥∥
�

, k ∈ [1, +∞).

(5) p∞
�,ρ

(
f −

n∑
j=0

1

j !
d̂j f (0)

)
=

∞∑
j=n+1

ρ−j

∥∥∥∥ 1

j !
d̂j f (0)

∥∥∥∥
�

.

Since the topology of Expk
�,0,A(E), k ∈ [1, +∞], is generated by the corres-

ponding families of seminorms and since (4) and (5) are valid for the respective
ρ > 0, we have the convergence on Expk

�,0,A(E) when n tends to infinity. Now
consider the space Expk

�,A(E), k ∈ [1, +∞]. Since Expk
�,A(E) is locally con-

vex, there is a family of seminorms (qi)i∈I , where I is a directed set, that
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defines the topology of it. Since the inclusion iρ : Bk
�,ρ(E) → Expk

�,A(E) is
continuous for all ρ < A, then there exists C > 0 such that

(6) qi(g) = qi(iρ(g)) ≤ C‖g‖�,k,ρ,

for all g ∈ Bk
�,ρ(E) and i ∈ I . Let g = f −∑n

j=0
1
j ! d̂

j f (0). Since (4) and (5)

go to zero when n tends to infinity, it follows from (6) that qi

(∑n
j=0

1
j ! d̂

j f (0)
)

→ qi(f ) and the result is proved.

Now we are interested in proving that the exponential function eϕ , ϕ ∈
E′, belongs to the spaces in question. To prove this we need that the holo-
morphy type � has some properties, more specifically we need that � be a
π1-holomorphy type. This concept was introduced in [3] and we remember it
below.

Definition 2.14. Let (P�(jE; F))∞j=0 be a holomorphy type from E to
F . The holomorphy type � is said to be a π1-holomorphy type if the following
conditions hold:

(1) ‖φj ⊗ b‖� = ‖φ‖j‖b‖ for all φ ∈ E′, b ∈ F and j ∈ N0;

(2) For each j ∈ N0, Pf (jE; F) is dense in (P�(jE; F), ‖ · ‖�), where
Pf (jE; F) denotes the space of all j -homogeneous polynomials of finite
type.

Proposition 2.15. Let (P�(jE))∞j=0 be a π1-holomorphy type from E to C.

(a) If k ∈ (1, +∞] and A ∈ (0, +∞], then eϕ belongs to Expk
�,A(E), for

all ϕ ∈ E′.

(b) If k ∈ (1, +∞] and A ∈ [0, +∞), then eϕ belongs to Expk
�,0,A(E), for

all ϕ ∈ E′.

(c) If k = 1 and A ∈ (0, +∞], then eϕ belongs to Exp1
�,A(E), for all ϕ ∈ E′

such that ‖ϕ‖ < A.

(d) If k = 1 and A ∈ (0, +∞], then eϕ belongs to Exp1
�,0,A(E), for all

ϕ ∈ E′ such that ‖ϕ‖ ≤ A.

Proof. By Definition 2.14 (1) we have ‖d̂j (eϕ)(0)‖� = ‖ϕ‖j . Let k ∈
(1, +∞), then 1−k

k
< 0 and

lim sup
j→∞

(
j

e

) 1−k
k

= 0.
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Thus

lim sup
j→∞

(
j

ke

) 1
k
(

1

j !

) 1
j ∥∥d̂j (eϕ)(0)

∥∥ 1
j

�

= lim sup
j→∞

(
j

ke

) 1
k
(

1

j !

) 1
j

‖ϕ‖

= ‖ϕ‖
(

1

k

) 1
k

lim sup
j→∞

(
j

e

) 1−k
k

(
j

e

)(
1

j !

) 1
j

= ‖ϕ‖
(

1

k

) 1
k

lim sup
j→∞

(
j

e

) 1−k
k

= 0

and it follows from Proposition 2.5 that (a) and (b) are proved, for k ∈ (1, +∞).
If k = +∞, we have

lim sup
j→∞

∥∥∥∥ 1

j !
d̂j (eϕ)(0)

∥∥∥∥
1
j

�

= lim sup
j→∞

(
1

j !

) 1
j

‖ϕ‖ = 0,

Thus (a) follows from Definition 2.8 and (b) follows from Definition 2.11.
Now we prove (c) and (d). Since

lim sup
j→∞

j

e

(
1

j !

) 1
j ∥∥d̂j (eϕ)(0)

∥∥ 1
j

� = lim sup
j→∞

‖ϕ‖ = ‖ϕ‖,

then (c) and (d) follow from Proposition 2.5 when ‖ϕ‖ < A and ‖ϕ‖ ≤ A,
respectively.

Proposition 2.16. Let (P�(jE))∞j=0 be a π1-holomorphy type from E to C.

(a) The vector subspace generated by all eϕ, ϕ ∈ E′, is dense in:
(a.1) Expk

�,A(E) if k ∈ (1, +∞] and A ∈ (0, +∞].

(a.2) Expk
�,0,A(E) if k ∈ (1, +∞] and A ∈ [0, +∞).

(b) The vector subspace generated by eϕ , ϕ ∈ E′, ‖ϕ‖ < A, is dense in
Exp1

�,A(E) if A ∈ (0, +∞).

(c) The vector subspace generated by eϕ , ϕ ∈ E′, ‖ϕ‖ ≤ A, is dense in
Exp1

�,0,A(E) if A ∈ (0, +∞).

Proof. Let g be the closure of Expk
�,A(E), k ∈ (1, +∞]. By Defini-

tion 2.14 (2), Pf (jE) is dense in P�(jE), for all j ∈ N0. Using this fact
in addition with Proposition 2.13 we only have to show that Pf (jE) ⊆ g, for
each j ∈ N0. Now the result follows using similar arguments to that used in
[1, Proposition 2.16]. The other cases also follow using analogue arguments.
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3. Bounded Sets

As mentioned in the Introduction, in order to prove that the Fourier-Borel
transform is sometimes a topological isomorphism we need to characterize
the bounded subsets of Expk

�,A(E), k ∈ [1, +∞], A ∈ (0, +∞]. We also
characterize the bounded subsets of Expk

�,0,A(E), k ∈ [1, +∞], A ∈ [0, +∞),
in order to prove that the inverse of the Fourier-Borel transform defined on the
dual of Expk

�,0,A(E) is continuous.
We denote by SA the family of all sequences α = (αj )

∞
j=0 of real numbers

αj ≥ 0, such that lim supj→∞ α
1
j

j ≤ A.

Proposition 3.1. For k ∈ [1, +∞), A ∈ (0, +∞] and α ∈ S 1
A

, the
seminorm p�,k,α defined by

p�,k,α(f ) =
∞∑

j=0

αj

(
j

ke

) j

k
∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

,

is continuous on Expk
�,A(E).

For k = +∞, A ∈ (0, +∞] and α ∈ S 1
A

the seminorm p�,∞,α defined by

p�,∞,α(f ) =
∞∑

j=0

αj

∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

,

is continuous on Exp∞
�,A(E).

Proof. For ρ ∈ (0, A), we have 1
A

< 1
ρ

. Since α ∈ S 1
A

, there is C(ρ) > 0

such that αj ≤ C(ρ) 1
ρj , for all j ∈ N0, Thus,

p�,k,α(f ) ≤ C(ρ)

∞∑
j=0

1

ρj

(
j

ke

) j

k
∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

= C(ρ)‖f ‖�,k,ρ,

for all k ∈ [1, +∞) and

p�,∞,α(f ) ≤ C(ρ)

∞∑
j=0

1

ρj

∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

= C(ρ)p∞
�,ρ(f ).

Hence p�,k,α and p�,∞,α are continuous in Expk
�,A(E) and Exp∞

�,A(E), re-
spectively.
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Proposition 3.2. For k ∈ [1, +∞) and A ∈ (0, +∞], a subset B of
Expk

�,A(E) is bounded if, and only if, there is ρ ∈ (0, A) such that

(7) lim sup
j→∞

(
j

ke

) 1
k
(

sup
f ∈B

∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

) 1
j

≤ ρ.

For k = +∞ and A ∈ (0, +∞], a subset B of Exp∞
�,A(E) is bounded if, and

only if, there is ρ ∈ (0, A) such that

(8) lim sup
j→∞

(
sup
f ∈B

∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

) 1
j

≤ ρ.

Proof. Let k ∈ [1, +∞) and B be a bounded subset of Expk
�,A(E). By

Grothendieck [5, p. 171, Proposition 5], B is contained in the closure of a
bounded subset of some Bk

�,ρn
(E), since Expk

�,A(E) is the inductive limit
of a sequence of DF -spaces of type Bk

�,ρn
(E), where (ρn)

∞
n=1 is a strictly

increasing sequence of positive real numbers converging to A. Without loss of
generality we suppose that B is contained in the closed unit ball of Bk

�,ρ(E),
for some ρ ∈ (0, A). Now to get our result it is enough to show that the
clousure, for the topology in Expk

�,A(E), of this ball is contained in a ball of
some Bk

�,δ(E), for some δ ∈ (0, A). In fact, if this is true we have

sup
f ∈B

‖f ‖�,k,δ ≤ M,

for some M > 0 and so

δ−j

(
j

ke

) j

k

sup
f ∈B

∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

≤ M,

for all j ∈ N0. Therefore,

lim sup
j→∞

(
j

ke

) 1
k
(

sup
f ∈B

∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

)
1
j ≤ δ,

and (7) follows.
Let BBk

�,ρ (E) = {g ∈ Bk
�,ρ(E); ‖g‖�,k,ρ ≤ 1} be the unit ball of Bk

�,ρ(E).

If f belongs to BBk
�,ρ (E) (closure of BBk

�,ρ (E) in Expk
�,A(E)), then there is a

net (fi)i∈I in BBk
�,ρ (E) converging to f in the topology of Expk

�,A(E). Since
‖fi‖�,k,ρ ≤ 1, we have

(9) ρ−j

(
j

ke

) j

k
∥∥∥∥ d̂j fi(0)

j !

∥∥∥∥
�

≤ 1,
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for all j ∈ N0 and for all i ∈ I . Now, for each j ∈ N0, Proposition 3.1 ensures
that the seminorm p�,k,α , given by

p�,k,α(g) = ρ−j

(
j

ke

) j

k
∥∥∥∥ d̂j g(0)

j !

∥∥∥∥
�

where αj = ρ−j and αl = 0, for l �= j , is continuous in Expk
�,A(E). Since

p�,k,α(fi) converges to p�,k,α(f ), it follows from (9) that

ρ−j

(
j

ke

) j

k
∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

≤ 1,

for all j ∈ N0. Since f was chosen arbitrarily, we have

(
j

ke

) j

k

sup
f ∈B

Bk
�,ρ

(E)

∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

≤ ρj ,

for all j ∈ N0. Hence, if δ ∈ (ρ, A) we have

sup
f ∈B

‖f ‖�,k,δ ≤
∞∑

j=0

1

δj

(
j

ke

) j

k

sup
f ∈B

∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

≤
∞∑

j=0

(
ρ

δ

)j

= 1

1 − ρ

δ

.

The case k = +∞ is analogous.
Now suppose that (7) and (8) hold. It is a known result of the theory of to-

pological vector spaces that a subset L of a locally convex space X is bounded,
if and only if, each continuous seminorm on X is bounded on L (see Grothen-
dieck [5, p. 25]). We use this result to prove that B is bounded. Let k ∈ [1, +∞]
and p be a continuous seminorm. Then, there is C > 0 such that

p(f ) ≤ C‖f ‖�,k,ρ,

for all f ∈ Expk
�,A(E), that is

(10) sup
f ∈B

p(f ) ≤ C sup
f ∈B

‖f ‖�,k,ρ

Thus, we have from (7) that

sup
f ∈B

‖f ‖�,k,ρ ≤
∞∑

j=0

1

ρj

(
j

ke

) j

k

sup
f ∈B

∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

< +∞,
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when k ∈ [1, +∞), and from (8) that

sup
f ∈B

‖f ‖�,k,ρ ≤
∞∑

j=0

1

ρj
sup
f ∈B

∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

< +∞,

when k = +∞. Hence, B is bounded in Expk
�,A(E).

Corollary 3.3. For k ∈ [1, +∞] and A ∈ (0, +∞], a subset B of
Expk

�,A(E) is bounded if, and only if, there is ρ ∈ (0, A) such that B is
contained and bounded in Bk

�,ρ(E).

Proof. It follows immediately from Proposition 3.2.

Proposition 3.4. For k ∈ [1, +∞) and A ∈ [0, +∞), a subset B of
Expk

�,0,A(E) is bounded if, and only if,

(11) lim sup
j→∞

(
j

ke

) 1
k
(

sup
f ∈B

∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

) 1
j

≤ A.

For k = +∞ and A ∈ [0, +∞), a subset B of Exp∞
�,0,A(E) is bounded if, and

only if,

(12) lim sup
j→∞

(
sup
f ∈B

∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

) 1
j

≤ A.

Proof. Let k ∈ [1, +∞) and B be a bounded subset of Expk
�,0,A(E).

Then B is bounded in Bk
�,ρ(E), for all ρ > A (see Grothendieck [5, p. 24,

Proposition 11]). Thus,

lim sup
j→∞

(
j

ke

) 1
k
(

sup
f ∈B

∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

) 1
j

≤ A.

The case k = +∞ is analogous.
Now, suppose that (11) holds. Then for each ε > 0, there is C(ε) > 0 such

that (
j

ke

) j

k

sup
f ∈B

∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

≤ C(ε)(A + ε)j ,

for all j ∈ N0. If ρ > A, we have

ρ−j

(
j

ke

) j

k

sup
f ∈B

∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

≤ C(ε)

(
A + ε

ρ

)j

,
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for all j ∈ N0. Choose ε > 0 be such that ρ > A + ε. Thus

sup
f ∈B

‖f ‖�,k,ρ ≤
∞∑

j=0

1

ρj

(
j

ke

) j

k

sup
f ∈B

∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

≤ C(ε)

∞∑
j=0

(
A + ε

ρ

)j

< +∞.

Hence, B is bounded in Bk
�,ρ(E) for each ρ > A, and so B is bounded in

Expk
�,0,A(E),

4. Fourier-Borel Transforms: Main Results

We start this section recalling the isomorphism given by Borel transform ac-
cording to [3].

Let � be a π1-holomorphy type from E to F . We define the Borel transform

B�: [P�(jE; F)]′ → P(jE′; F ′)

by B�T (ϕ)(y) = T (ϕjy), for all T ∈ [P�(jE; F)]′, ϕ ∈ E′ and y ∈ F . It is
clear that B� is well-defined and linear. By condition (1) of Definition 2.14,
we have that B� is continuous and ‖B�T ‖ ≤ ‖T ‖. And by condition (2) we
have that B� is injective.

We denote by P�′(jE′; F ′) the range of B� in P(jE′; F ′) and define
a norm on P�′(jE′; F ′) by ‖B�T ‖�′ = ‖T ‖. Thus ([P�(jE; F)]′, ‖·‖) is
isometrically isomorphic to (P�′(jE′; F ′), ‖·‖�′).

The next result explains why we use the norm ‖·‖�′ instead of the usual sup
norm on P(jE′; F ′).

Proposition 4.1 ([3, Proposition 2.6]). Let (P�(jE; F))∞j=0 be a π1-
holomorphy type from E to F . If the Borel transform

B�: ([P�(jE; F)]′, ‖·‖) → (P(jE′; F ′), ‖·‖)
is a topological isomorphism onto its range, then PN(jE; F) = P�(jE; F) as
sets, and the identity mapping PN(jE; F) → P�(jE; F) is a topological iso-
morphism, where PN(jE; F) denotes the space of all j -homogeneous nuclear
polynomials from E to F .

Here we are considering the usual norm on P(jE′; F ′).

The next result ensures that the inclusion P�′(jE′; F ′) ↪→ P(jE′; F ′) is
continuous.
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Proposition 4.2. If (P�(jE; F))∞j=0 is a π1-holomorphy type from E to C,
then for each j ∈ N0, the inclusion P�′(jE′; F ′) ⊂ P(jE′; F ′) is continuous
and ‖B�T ‖ ≤ ‖B�T ‖�′ , for all T ∈ [P�(jE; F)]′.

Proof. It is enough to see that

‖B�T ‖ = sup
‖φ‖≤1

sup
‖y‖≤1

|T (φmy)| ≤ ‖T ‖ = ‖B�T ‖�′ .

Definition 4.3. Let (P�(jE))∞j=0 be a π1-holomorphy type from E to C.
If ρ > 0 and k ≥ 1, we denote by Bk

�′,ρ(E
′) the complex vector space of all

f ∈ H (E′) such that d̂j f (0) ∈ P�′(jE′), for all j ∈ N0 and

‖f ‖�′,k,ρ =
∞∑

j=0

ρ−j

(
j

ke

) j

k
∥∥∥∥ 1

j !
d̂j f (0)

∥∥∥∥
�′

< +∞.

A simple adaptation of the proof of Proposition 2.3, using that the inclusion
P�′(jE′; F ′) ↪→ P(jE′; F ′) is continuous via Proposition 4.2, guarantees
that ‖·‖�′,k,ρ is a complete norm on Bk

�′,ρ(E
′).

For k ≥ 1, replace the spaces P�(jE)) and Bk
�,ρ(E)by the spaces P�′(jE′)

and Bk
�′,ρ(E), for all j ∈ N0, in Definition 2.4 to define the spaces Expk

�′,A(E′),
if A ∈ (0, +∞], and Expk

�′,0,A(E′), if A ∈ [0, +∞).
For k = +∞, do the same with Definitions 2.8, 2.10 and 2.11 to define the

spaces Exp∞
�′,A(E′), if A ∈ (0, +∞], and Exp∞

�′,0,A(E′), if A ∈ [0, +∞).
Analogues of Propositions 2.5, 2.7, 2.12 and 2.13 for the spaces we have

just defined hold with identical proofs (modulo the use of Proposition 4.2).
The analogous of Proposition 2.5 shall be refered to as Propositions 2.5′.

Now we introduce the Fourier-Borel transform:

Definition 4.4. Let (P�(jE))∞j=0 be a π1-holomorphy type from E to
C. For k ∈ (1, +∞] and A ∈ (0, +∞], the Fourier-Borel transform FT of
T ∈ [Expk

�,A(E)]′ is the function on E′ defined by FT (ϕ) = T (eϕ) ∈ C.
For k ∈ (1, +∞] and A ∈ [0, +∞), the Fourier-Borel transform FT of

T ∈ [Expk
�,0,A(E)]′ is the function on E′ defined by FT (ϕ) = T (eϕ) ∈ C.

For k = 1 and A ∈ (0, +∞], the Fourier-Borel transform FT of T ∈
[Exp1

�,A(E)]′ is the function on BA(0) ⊂ E′ defined by FT (ϕ) = T (eϕ) ∈ C.
In all cases, Proposition 2.15 ensures that FT is well-defined.

As usual we set A−1 = 1
A

, for A ∈ (0, +∞). If A = 0, we set A−1 = +∞
and if A = +∞, we set A−1 = 0. For k ∈ (1, +∞), we denote by k′
its conjugate, that is, 1

k
+ 1

k′ = 1. For k = 1, we set k′ = +∞ and for
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k = +∞, we set k′ = 1. We define λ(k) = k

(k−1)
k−1
k

, for k ∈ (1, +∞). Since

limk→1 λ(k) = 1 = limk→∞ λ(k), we set λ(1) = λ(∞) = 1.

Theorem 4.5. If (P�(jE))∞j=0 is a π1-holomorphy type from E to C, then
the mapping

F : [Expk
�,A(E)]′ −→ Expk′

�′,0,(λ(k)A)−1(E
′),

given by FT (ϕ) = T (eϕ), for all T ∈ [Expk
�,A(E)]′, with ϕ ∈ E′ and

k ∈ [1, +∞], establishes an algebraic isomorphism between these spaces, for
all A ∈ (0, +∞].

Proof. First we consider k ∈ (1, +∞) and let us prove that F is well-
defined. Let T ∈ [Expk

�,A(E)]′, then for each ρ ∈ (0, A) there is C(ρ) > 0
such that

|T (f )| ≤ C(ρ)‖f ‖�,k,ρ = C(ρ)

∞∑
j=0

ρ−j

(
j

ke

) j

k
∥∥∥∥ 1

j !
d̂j f (0)

∥∥∥∥
�

,

for all f ∈ Expk
�,A(E). Thus, for P ∈ P�(jE) we have

(13) |T (P )| ≤ C(ρ)ρ−j

(
j

ke

) j

k

‖P ‖�.

For Tj = T |P�(j E), it follows from the definition of the Borel transform that
B�Tj ∈ P�′(jE′), where B�Tj (ϕ) = Tj (ϕ

j ), for all ϕ ∈ E′ and ‖Tj‖ =
‖B�Tj‖�′ . Hence, it follows from (13) that

(14) ‖B�Tj‖�′ = ‖Tj‖ ≤ C(ρ)ρ−j

(
j

ke

) j

k

for each ρ ∈ (0, A), and we may write

(15) FT (ϕ) = T (eϕ) =
∞∑

j=0

1

j !
T (ϕj ) =

∞∑
j=0

1

j !
B�Tj (ϕ)
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for all ϕ ∈ E′. By (14) we have

lim sup
j→∞

(
j

k′e

) 1
k′ 1

(j !)
1
j

∥∥B�Tj

∥∥ 1
j

�′

≤ lim sup
j→∞

(C(ρ))
1
j

1

ρ

(
j

ke

) 1
k
(

j

k′e

) 1
k′ ( 1

j !

) 1
j

= 1

ρ

(
1

k

) 1
k
(

1

k′

) 1
k′

= 1

ρλ(k)
,

for all ρ ∈ (0, A). Hence

lim sup
j→∞

(
j

k′e

) 1
k′ ( 1

j !

) 1
j ∥∥B�Tj

∥∥ 1
j

�′ ≤ 1

Aλ(k)
< +∞

and so

lim sup
j→∞

(
1

j !

) 1
j ∥∥B�Tj

∥∥ 1
j

�′ = 0,

since

lim sup
j→∞

(
j

k′e

) 1
k′

= +∞.

By Proposition 4.2, we have ‖B�Tj‖ ≤ ‖B�Tj‖�′ . Then the radius of
convergence of (15) is +∞ and Proposition 2.5′ ensures that
FT ∈ Expk′

�′,0,(λ(k)A)−1(E
′).

Now we consider H ∈ Expk′
�′,0,(λ(k)A)−1(E

′). Hence for each ρ ∈ (0, A),
there is C(ρ) > 0 such that(

j

k′e

) j

k′ 1

j !

∥∥d̂jH(0)
∥∥

�′ ≤ C(ρ)
1

(ρλ(k))j

for all j ∈ N. By definition of Borel transform there is Tj ∈ [P�(jE)]′ such
that B�Tj = d̂jH(0), ‖Tj‖ = ‖d̂jH(0)‖�′ . Then

(16)
1

j !
‖Tj‖ ≤ C(ρ)

1

ρj

1

(λ(k))j

(
k′e
j

) j

k′
.

For f ∈ Expk
�,A(E) we define

TH (f ) =
∞∑

j=0

1

j !
Tj

(
d̂j f (0)

)
.
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Hence, using (16), we have

(17)

1

j !
‖Tj‖

∥∥d̂j f (0)
∥∥

�

≤ C(ρ)
1

ρj

1

(λ(k))j

(
k′e
j

) j

k′ ∥∥d̂j f (0)
∥∥

�

= C(ρ)
1

ρj

(
1

k

) j

k
(

1

k′

) j

k′ (k′e
j

) j

k′ ∥∥d̂j f (0)
∥∥

�

= C(ρ)
1

ρj

(
1

k

) j

k
(

e

j

)j− j

k ∥∥d̂j f (0)
∥∥

�

= C(ρ)
1

ρj

(
j

ke

) j

k
(

e

j

)j∥∥d̂j f (0)
∥∥

�
.

Since limj→∞ e
j
(j !)

1
j = 1, for each ε > 0, there is D(ε) > 0 such that

(
e

j

)j

≤ D(ε)(1 + ε)j
1

j !
,

for all j ∈ N. Hence, it follows from (17) that

1

j !
‖Tj‖

∥∥d̂j f (0)
∥∥

�
≤ C(ρ)D(ε)

(
1 + ε

ρ

)j(
j

ke

) j

k
∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

.

By definition of TH we have

|TH (f )| ≤ C(ρ)D(ε)

∞∑
j=0

(
ρ

1 + ε

)−j(
j

ke

) j

k
∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

= C(ρ)D(ε)‖f ‖�,k,
ρ

1+ε
,

for all f ∈ Expk
�,A(E), ε > 0 and ρ ∈ (0, A). Therefore TH ∈ [Expk

�,A(E)]′
and it is easy to see that FTH = H.

It is clear that F is linear. For the injectivity, let T ∈ [Expk
�,A(E)]′ such

that FT = 0. Then, for each ϕ ∈ E′, 0 = FT (ϕ) = T (eϕ). By Proposi-
tion 2.16(a.1) we have T (f ) = 0, for all f ∈ Expk

�,A(E), and so T = 0.
Now, we prove the case k = 1. Proceeding as done before and using the

same notations that we used in case k ∈ (1, +∞) we conclude that

FT (ϕ) = T (eϕ) =
∞∑

j=0

1

j !
T (ϕj ) =

∞∑
j=0

1

j !
B�Tj (ϕ)
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for all ϕ ∈ E′ such that ‖ϕ‖ < A and

lim sup
j→∞

∥∥∥∥ 1

j !
B�Tj

∥∥∥∥
1
j

�′
≤ 1

A
.

By Proposition 4.2, we have

lim sup
j→∞

∥∥∥∥ 1

j !
B�Tj

∥∥∥∥
1
j

≤ 1

A

and it follows from definition of H�′b(BA(0)) that FT ∈ H�′b(BA(0)) =
Exp∞

�′,0, 1
A

(E′) (here BA(0) is the open ball in E′). Hence F is well-defined.

Now we consider H ∈ Exp∞
�′,0, 1

A

(E′). Hence

(18) lim sup
j→∞

∥∥∥∥ d̂jH(0)

j !

∥∥∥∥
1
j

�′
≤ 1

A
.

By definition of Borel transform there is Tj ∈ [P�(jE)]′ such that B�Tj =
d̂jH(0) and ‖Tj‖ = ∥∥d̂jH(0)

∥∥
�′ . For f ∈ Exp1

�,A(E), we define

TH (f ) =
∞∑

j=0

1

j !
Tj

(
d̂j f (0)

)
.

Then∣∣∣∣ 1

j !
Tj (d̂

jf (0))

∣∣∣∣ ≤ 1

j !
‖Tj‖

∥∥d̂j f (0)
∥∥

�
= 1

j !

∥∥d̂jH(0)
∥∥

�′
∥∥d̂j f (0)

∥∥
�
.

By (18), for each ρ ∈ (0, A), there is C(ρ) > 0 such that

1

j !

∥∥d̂jH(0)
∥∥

�′ ≤ C(ρ)
1

ρj
,

for all j ∈ N0. Hence

|TH (f )| ≤
∞∑

j=0

C(ρ)
1

ρj

∥∥d̂j f (0)
∥∥

�
= C(ρ)‖f ‖�,ρ,

for each ρ ∈ (0, A) and f ∈ Exp1
�,A(E). Therefore TH ∈ [Exp1

�,A(E)]′ and it
is easy to see that FTH = H . The linearity is clear and the injectivity follows
using Proposition 2.16(b).
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Now, we prove the case k = +∞. Proceeding as before and using the same
notations, we have that for T ∈ [Exp∞

�,A(E)]′ = [H�(B 1
A
(0))]′,

(19) FT (ϕ) = T (eϕ) =
∞∑

j=0

1

j !
T (ϕj ) =

∞∑
j=0

1

j !
B�Tj (ϕ)

for all ϕ ∈ E′ and
lim sup

j→∞

∥∥B�Tj

∥∥ 1
j

�′ <
1

A
.

Since lim supj→∞
(

1
j !

) 1
j = 0, we have

lim sup
j→∞

(
1

j !

) 1
j ∥∥B�Tj

∥∥ 1
j

�′ = 0.

Thus, Proposition 4.2 implies that the radius of convergence of (19) is +∞
and Proposition 2.5′ ensures that FT ∈ Exp1

�′,0, 1
A

(E′).
Now, let H ∈ Exp1

�′,0, 1
A

(E′). It follows from Proposition 2.5′ that

(20) lim sup
j→∞

∥∥d̂jH(0)
∥∥ 1

j

�′ ≤ 1

A
.

By definition of Borel transform, there is Tj ∈ [P�(jE)]′ such that B�Tj =
d̂jH(0) and ‖Tj‖ = ∥∥d̂jH(0)

∥∥
�′ . If we define

TH (f ) =
∞∑

j=0

1

j !
Tj

(
d̂j f (0)

)
,

for all f ∈ Exp∞
�,A(E), then∣∣∣∣ 1

j !
Tj (d̂

jf (0))

∣∣∣∣ ≤ 1

j !
‖Tj‖

∥∥d̂j f (0)
∥∥

�
= 1

j !

∥∥d̂jH(0)
∥∥

�′
∥∥d̂j f (0)

∥∥
�
.

By (20), for each ρ ∈ (0, A), there is C(ρ) > 0 such that∥∥d̂jH(0)
∥∥

�′ ≤ C(ρ)
1

ρj
,

for all j ∈ N0. Thus

|TH (f )| ≤
∞∑

j=0

∣∣∣∣ 1

j !
Tj

(
d̂j f (0)

)∣∣∣∣ ≤
∞∑

j=0

C(ρ)
1

j !ρj

∥∥d̂j f (0)
∥∥

�

= C(ρ)‖f ‖�,∞,ρ
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for each ρ ∈ (0, A) and each f ∈ Exp∞
�,A(E). Then TH ∈ [Exp∞

�,A(E)]′
and it is easy to see that FTH = H . It is clear that F is linear and by
Proposition 2.16(a.1) F is injective.

Theorem 4.6. If (P�(jE))∞j=0 is a π1-holomorphy type from E to C, then
the mapping

F : [Expk
�,0,A(E)]′ −→ Expk′

�′,(λ(k)A)−1(E
′),

given by FT (ϕ) = T (eϕ), for all T ∈ [Expk
�,0,A(E)]′ and ϕ ∈ E′, establishes

an algebraic isomorphism between these spaces, for all k ∈ (1, +∞] and
A ∈ [0, +∞).

Proof. The proof follows in a similar way as done in Theorem 4.5.

As we saw in Proposition 2.15, eϕ ∈ Exp1
�,0,A(E), if ϕ ∈ E′ and ‖ϕ‖ ≤ A.

Hence, if T ∈ [Exp1
�,0,A(E)]′, the natural definition for its Fourier-Borel

transform FT would be FT (ϕ) = T (eϕ), for all ϕ ∈ E′ with ‖ϕ‖ ≤ A.
However it can be proved that we can define FT for all ϕ ∈ E′ in a “bigger”
set, in such way that it agrees with the previous definition for ϕ ∈ E′ with
‖ϕ‖ ≤ A. This is ensured by Proposition 4.8.

Definition 4.7. Let (P�(jE))∞j=0 be a π1-holomorphy type from E to C.
For k = 1 and A ∈ [0, +∞), we define the Fourier-Borel transform FT of
T ∈ [Exp1

�,0,A(E)]′ by

FT (ϕ) =
∞∑

j=0

1

j !
B�Tj (ϕ),

for all ϕ ∈ E′ such that the series converges absolutely. Here Tj = T |P�(j E),
B�Tj ∈ P�′(jE′) is given by B�Tj (ϕ) = Tj (ϕ

j ), for all ϕ ∈ E′, and ‖Tj‖ =
‖B�Tj‖�′ by definition of Borel transform.

Proposition 4.8. If (P�(jE))∞j=0 is a π1-holomorphy type from E to C,

A ∈ [0, +∞) and T ∈ [Exp1
�,0,A(E)]′, then there is ρ > A such that FT ∈

H ∞
�′ (Bρ(0)), where Bρ(0) is the open ball in E′.

Proof. If T ∈ [Exp1
�,0,A(E)]′, there are δ > A and C(δ) > 0 such that

|T (f )| ≤ C(δ)‖f ‖�,δ = C(δ)

∞∑
j=0

δ−j
∥∥d̂j f (0)

∥∥
�
,

for all f ∈ Exp1
�,0,A(E). Hence

|T (P )| ≤ C(δ)δ−j j !‖P ‖�
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for all P ∈ P�(jE). Thus

‖B�Tj‖�′ = ‖Tj‖ ≤ C(δ)j !δ−j ,

for all j ∈ N0 and

lim sup
j→∞

∥∥∥∥B�Tj

j !

∥∥∥∥
1
j

�′
≤ 1

δ
.

Let ρ ∈ (A, δ), then

lim sup
j→∞

∥∥∥∥B�Tj

j !

∥∥∥∥
1
j

�′
<

1

ρ
,

and so FT ∈ H (Bρ(0)). Furthermore,

∞∑
j=0

ρj

∥∥∥∥ 1

j !
B�Tj

∥∥∥∥
�′

< +∞,

then FT ∈ H ∞
�′ (Bρ(0)).

Now we are able to prove the algebraic isomorphism of the Fourier-Borel
transform for the remaining case.

Theorem 4.9. If (P�(jE))∞j=0 is a π1-holomorphy type from E to C, then
the mapping

F : T ∈ [Exp1
�,0,A(E)]′ −→ FT ∈ Exp∞

�′, 1
A

(E′),

establishes an algebraic isomorphism between these two spaces, for A ∈
[0, +∞). Here we are identifying the class [FT ] with its representative FT .

Proof. By definition of Exp∞
�′, 1

A

(E′) and Proposition 4.8 it is clear that

FT belongs to Exp∞
�′, 1

A

(E′), for all T ∈ [Exp1
�,0,A(E)]′. Now, let T ∈

[Exp1
�,0,A(E)]′ be such that FT = 0. By Proposition 4.8, there is ρ > A such

that FT (ϕ) = 0, for all ϕ ∈ E′ with ‖ϕ‖ < ρ. Hence B�Tj (ϕ) = 0, for all
ϕ ∈ Bρ(0) ⊆ E′ and j ∈ N0. Consequently, B�Tj = 0, ‖Tj‖ = ‖B�Tj‖�′ =
0 and T |P�(j E) = 0, for all j ∈ N0. Hence, it follows from Proposition 2.13
that T (f ) = 0, for all f ∈ Exp1

�,0,A(E). Therefore T = 0 and consequently,
F is injective. The linearity of F is clear. Now, let H ∈ Exp∞

�′, 1
A

(E′), then

there is ρ > A such that H ∈ H ∞
�′ (Bρ(0)), Thus

lim sup
j→∞

∥∥∥∥ d̂jH(0)

j !

∥∥∥∥
1
j

�′
≤ 1

ρ
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and, for all ε > 0, there is C(ε) > 0 such that

1

j !

∥∥d̂jH(0)
∥∥

�′ ≤ C(ε)

(
1 + ε

ρ

)j

,

for all j ∈ N0. By definition of Borel transform, there is Tj ∈ [P�(jE)]′ such
that B�Tj = d̂jH(0) and ‖Tj‖ = ∥∥d̂jH(0)

∥∥
�′ . For f ∈ Exp1

�,0,A(E), we
define

TH (f ) =
∞∑

j=0

1

j !
Tj

(
d̂j f (0)

)
.

Hence

|TH (f )| ≤
∞∑

j=0

1

j !

∣∣Tj

(
d̂j f (0)

)∣∣ ≤
∞∑

j=0

1

j !

∥∥d̂jH(0)
∥∥

�′
∥∥d̂j f (0)

∥∥
�

≤ C(ε)

∞∑
j=0

(
1 + ε

ρ

)j∥∥d̂j f (0)
∥∥

�
= C(ε)‖f ‖�,

ρ

1+ε

for all f ∈ Exp1
�,0,A(E) and ε > 0, such that ρ

1+ε
> A. Therefore, TH ∈

[Exp1
�,0,A(E)]′ and FTH = H .

Now we are able to prove that, in some cases, the Fourier-Borel transforms
are topological isomophisms.

Theorem 4.10. If (P�(jE))∞j=0 is a π1-holomorphy type from E to C,
then the Fourier-Borel transform F is a topological isomorphism between
the spaces [Expk

�,A(E)]′β and Expk′
�′,0,(λ(k)A)−1(E

′), for all k ∈ [1, +∞] and
A ∈ (0, +∞].

Here β denotes the strong topology on the dual.

Proof. By the Open Mapping Theorem it is enough to show that F −1

is continuous, because [Expk
�,A(E)]′β and Expk′

�′,0,(λ(k)A)−1(E
′) are Fréchet

spaces. Note that [Expk
�,A(E)]′β is a Fréchet space, because it is the strong

dual of a DF -space (see Grothendieck [5, p. 166, Corollary 4]).
We will prove that F −1 is continuous showing that for each continuous

seminorm q in [Expk
�,A(E)]′β , there are C > 0 and a continuous seminorm p

in Expk′
�′,0,(λ(k)A)−1(E

′) such that q(F−1(H)) = q(TH ) ≤ Cp(H), for all H ∈
Expk′

�′,0,(λ(k)A)−1(E
′) (here TH is the same we used several times before). We

know that the strong topology on the dual is generated by a family of seminorms
pB(S) = supf ∈B |S(f )|, where S ∈ [Expk

�,A(E)]′β and B ⊆ Expk
�,A(E) is a

bounded subset.
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Let B ∈ Expk
�,A(E) be a bounded subset, for k ∈ (1, +∞). By Proposi-

tion 3.2 there is ρ ∈ (0, A) such that

lim sup
j→∞

(
j

ke

) 1
k
(

sup
f ∈B

∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

) 1
j

≤ ρ.

Thus, for each ε > 0 there is C(ε) > 0 such that

(
j

ke

) j

k

sup
f ∈B

∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

≤ C(ε)(ρ + ε)j

for all j ∈ N0. Then,

(21)

sup
f ∈B

|F−1(H)(f )| = sup
f ∈B

|TH (f )| ≤
∞∑

j=0

∥∥d̂jH(0)
∥∥

�′ sup
f ∈B

∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

≤ C(ε)

∞∑
j=0

(ρ + ε)j
(

ke

j

) j

k

j !

∥∥∥∥ d̂jH(0)

j !

∥∥∥∥
�′

.

Since (
ke

j

) j

k

= (λ(k))j
(

j

k′e

) j

k′ ej

j j

we have

(22)

∞∑
j=0

(ρ + ε)j
(

ke

j

) j

k

j !

∥∥∥∥ d̂jH(0)

j !

∥∥∥∥
�′

≤
∞∑

j=0

(λ(k))j (ρ + ε)j
j !

j j
ej

(
j

k′e

) j

k′ ∥∥∥∥ d̂jH(0)

j !

∥∥∥∥
�′

,

and since
lim

j→∞
e

j
(j !)

1
j = 1,

there is D(ε) > 0 such that

(23)
j !

j j
ej ≤ D(ε)(1 + ε)j ,

for all j ∈ N. Therefore

sup
f ∈B

|F −1(H)(f )| ≤ C(ε)D(ε)‖H‖�′,k′, 1
λ(k)(ρ+ε)(1+ε)

.
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Now, choosing ε > 0 such that (ρ + ε)(1 + ε) < A, we have 1
λ(k)(ρ+ε)(1+ε)

>
1

λ(k)A
and the continuity of F −1 follows.

Proceeding the same way we have

sup
f ∈B

|F −1(H)(f )| ≤ C(ε)‖H‖�′,∞, 1
ρ+ε

,

if k = 1 and
sup
f ∈B

|F−1(H)(f )| ≤ C(ε)‖H‖�′, 1
ρ+ε

,

if k = +∞. Then, choosing ε > 0 such that (ρ + ε) < A, we have 1
ρ+ε

> 1
A

and the continuity of F−1 follows.

It is an open problem if the Fourier-Borel transform, in the next case, is a
topological isomorphism. But it is possible to prove that F −1 is continuous,
as follows.

Theorem 4.11. If E′ has the λ-bounded approximation property, k ∈
[1, +∞] and A ∈ [0, +∞), then

F −1: Expk′
�′,(λ(k)A)−1(E

′) → [Expk
�,0,A(E)]′β,

is continuous. Again β denotes the strong topology on the dual.

Proof. Let B ∈ Expk
�,0,A(E) be a bounded subset. By Proposition 3.4 we

have

lim sup
j→∞

(
j

ke

) 1
k
(

sup
f ∈B

∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

) 1
j

≤ A.

For ρ > A there is C(ρ) > 0 such that(
j

ke

) j

k

sup
f ∈B

∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

≤ C(ρ)ρj ,

for all j ∈ N0. Thus

sup
f ∈B

|F −1(H)(f )| ≤
∞∑

j=0

∥∥d̂jH(0)
∥∥

�′ sup
f ∈B

∥∥∥∥ d̂j f (0)

j !

∥∥∥∥
�

≤ C(ρ)

∞∑
j=0

ρj

(
ke

j

) j

k

j !

∥∥∥∥ d̂jH(0)

j !

∥∥∥∥
�′

= C(ρ)

∞∑
j=0

(ρλ(k))j
(

j

k′e

) j

k′ j !

j j
ej

∥∥∥∥ d̂jH(0)

j !

∥∥∥∥
�′

.
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By (23) we have

sup
f ∈B

|F −1(H)(f )| ≤ C(ρ)

∞∑
j=0

(ρλ(k))j
(

j

k′e

) j

k′ j !

j j
ej

∥∥∥∥ d̂jH(0)

j !

∥∥∥∥
�′

≤ C(ρ)D(ε)

∞∑
j=0

(ρ(1 + ε)λ(k))j
(

j

k′e

) j

k′ ∥∥∥∥ d̂jH(0)

j !

∥∥∥∥
�′

= C(ρ)D(ε)‖H‖�′,k′, 1
λ(k)ρ(1+ε)

,

for all ε > 0 and ρ > A. Hence,

sup
f ∈B

|F −1(H)(f )| ≤ C(ρ)D(ε)‖H‖�′,k′,r ,

for all r < 1
λ(k)A

and this prove that F −1 is continuous.
The proof for k = 1 and k = +∞ follows the same pattern.
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