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SEQUENCES OF {0, 1}-POLYNOMIALS WITH
EXPONENTS IN ARITHMETIC

PROGRESSION

CARRIE E. FINCH

Abstract
This paper finds the first irreducible polynomial in the sequence f1(x), f2(x), . . ., where fk(x) =
1 + ∑k

i=0 xn+id , based on the values of n and d. In particular, when d and n are distinct, the
author proves that if p is the smallest odd prime not dividing d − n, then fp−2(x) is irreducible,
except in a few special cases. The author also completely characterizes the appearance of the first
irreducible polynomial, if any, when d = n.

1. Introduction

Fix natural numbers d and n and consider a sequence of {0, 1}-polynomials
formed in the following manner:

1 + xn + xn+d , 1 + xn + xn+d + xn+2d , 1 + xn + xn+d + xn+2d + xn+3d ,

and so on. The question we explore in this paper is when the first irreducible
polynomial appears in this sequence. The occurrence of the first irreducible
polynomial depends on the values of n and d; in particular, the prime factors
of d − n dictate the appearance of the first irreducible polynomial. When d

and n have the same value, we show (in Section 2) that when n is a power
of 2 or contains more than two distinct prime factors there are no irreducible
polynomials in the sequence, but when n is a power of an odd prime there
is precisely one irreducible polynomial in the sequence, occurring when the
polynomial has p terms.

When n and d are distinct, the smallest prime not appearing in the factoriz-
ation of d − n dictates the appearance of the first irreducible polynomial. This
is formalized in the main result of Section 3, shown below.

Theorem 2. Let n and d be arbitrary distinct positive integers. Let g =
gcd(d, n), and set a = n/g, b = (n + d)/g and c = (n + 2d)/g. Let p be the
smallest odd prime not dividing (n − d)/g. Then the least positive integer k

Received 4 May 2010, in final form 3 November 2010.



76 carrie e. finch

such that 1 + xn + xn+d + xn+2d + · · · + xn+kd is irreducible is k = p − 2,
except in the case that p > 3 and exactly one or exactly three of a, b and c are
odd. In this exceptional case, k = 2.

In the remainder of the paper, we use �n(x) to denote the nth cyclotomic
polynomial, whose roots will be denoted ζ

j
n = e2πij/n, where (n, j) = 1. The

noncyclotomic part of a polynomial f (x) refers to the product of the factors of
f (x) which are not cyclotomic polynomials. The reciprocal of a polynomial
g(x) is given by xdeg g(x)g(1/x), and is denoted by g̃(x). A polynomial is
reciprocal if g̃(x) = ±g(x). The reciprocal part of f (x) is the product of all
irreducible reciprocal factors of f (x) taken with positive leading coefficient,
and the nonreciprocal part of f (x) is the product of the remaining factors
when the reciprocal part has been removed.

2. Exponents congruent to 0 (mod d)

We first consider the case when the common difference of the exponents is
equal to the smallest positive exponent, i.e., d = n. That is, we investigate the
sequence

1 + xn + x2n, 1 + xn + x2n + x3n, 1 + xn + x2n + x3n + x4n,

and so on.

Lemma 1. Let n = pr with p an odd prime and r a positive integer. Then
f (x) = 1 + xn + x2n + · · · + xkn is irreducible exactly when k = p − 1.

Proof. Notice that

(1) 1 + xpr + x2pr + · · · + xkpr = x(k+1)pr − 1

xpr − 1
=

∏
d|(k+1)pr �d(x)
∏

d|pr �d(x)
.

So the left side of (1) contains exactly τ((k+1)pr)−τ(pr) irreducible factors,
where τ(m) denotes the number of divisors of m. For k = pe − 1, we have

τ((k + 1)pr) − τ(pr) = τ(pe+r ) − τ(pr) = e,

and hence at least two irreducible factors for e > 1. For all other values of k,
write k + 1 = pek′, where k′ > 1, (k′, p) = 1 and e ≥ 0. Then we have

τ((k + 1)pr) − τ(pr) = τ(k′)τ (pr+e) − τ(pr) ≥ 2τ(pr+e) − τ(pr)

= 2(r + e + 1) − (r + 1) = r + 2e + 1 ≥ 2

The result follows.
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In the following lemma, we show that if n has at least two distinct prime
factors, then the sequence 1 + xn + x2n, 1 + xn + x2n + x3n, etc. contains only
reducible polynomials.

Lemma 2. Let n be a positive integer with at least two distinct prime divisors.
Then the polynomial f (x) = 1 + xn + x2n + · · · + xkn is reducible for all
natural numbers k.

Proof. As (xn − 1)f (x) = x(k+1)n − 1, it follows that �(k+1)n(x) is a
factor of f (x) since the only factors of xn − 1 are the cyclotomic polynomials
�m(x) where m is a divisor of n. As the degree of �(k+1)n(x) is ϕ((k + 1)n)

and the degree of f (x) is kn, it suffices to show that ϕ((k + 1)n) < kn.
Let p and q be distinct prime factors of n. Observe that k + 1 cannot divide
both p and q; suppose k + 1 does not divide p. Then the n + 1 numbers
k +1, 2(k +1), 3(k +1), . . . , n(k +1) and p are distinct positive integers that
are each ≤ (k + 1)n and not relatively prime to (k + 1)n. It follows then that
ϕ((k + 1)n) ≤ (k + 1)n − (n + 1) < kn, completing the proof.

Finally, in the following lemma we consider the sequence of polynomials
when n is a power of 2.

Lemma 3. Let n = 2e, where e is a positive integer, and let k > 1 be an
integer. Then the polynomial f (x) = 1 + xn + x2n + · · · + xkn is reducible.

Proof. Write n = 2e. Then we have

f (x) = x(k+1)n − 1

xn − 1
= (x(k+1)2e−1 − 1)(x(k+1)2e−1 + 1)

(x2e−1 − 1)(x2e−1 + 1)
,

so that f (x) has at least two irreducible factors.

A corollary of the previous lemma is that the sequence 1+x2 +x4, 1+x2 +
x4 + x6, etc. has only reducible polynomials. We gather together the results of
the lemmata of this section and the observation that 1 +x +x2 is a cyclotomic
polynomial into the following theorem.

Theorem 1. If n is a positive integer, then either

(2) 1 + xn + x2n + · · · + xkn

is reducible for every positive integer k, or n is a power of an odd prime. If
n = 1, then (2) is irreducible for k = 2. If n = pe, where p is an odd prime and
e is a positive integer, then the only k for which (2) is irreducible is k = p − 1.
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3. Exponents congruent to n (mod d)

Next we consider the case where the common difference is distinct from the
smallest positive exponent, i.e., d �= n. The theorem below shows that the
prime factorization of d −n plays a critical role in determining the appearance
of the first irreducible polynomial in the sequence. We assume now that d > n.
The case d < n needs only trivial modifications.

Theorem 2. Let d and n be arbitrary distinct positive integers. Let g =
gcd(d, n), and set a = n/g, b = (n + d)/g and c = (n + 2d)/g. Let p be the
smallest odd prime not dividing (n − d)/g. Then the least positive integer k

such that 1 + xn + xn+d + xn+2d + · · · + xn+kd is irreducible is k = p − 2,
except in the case that p > 3 and exactly one or exactly three of a, b and c are
odd. In this case, k = 2.

In the proof of Theorem 2, we employ the following lemma due to Ljunggren
[3], Mills [4] and Tverberg [6].

Lemma 4. Suppose g(x) = xa ± xb ± 1 or g(x) = xa ± xb ± xc ± 1
with a > b > c > 0. Then the noncyclotomic part of g(x) is irreducible or
identically 1 unless g(x) has one of the following four forms:

• x8r + x7r + xr − 1 = (x2r + 1)(x3r + x2r − 1)(x3r − xr + 1)

• x8r − x7r − xr − 1 = (x2r + 1)(x3r − x2r + 1)(x3r − xr + 1)

• x8r + x4r + x2r − 1 = (x2r + 1)(x3r + x2r − 1)(x3r − x2r + 1)

• x8r − x6r − x4r − 1 = (x2r + 1)(x3r − xr − 1)(x3r − xr + 1)

We also use the following lemma, which follows from Theorem 5 of [5],
due to Selmer.

Lemma 5. Let g(x) = 1±xa ±xb with 0 < a < b. Let d = gcd(a, b). Any
cyclotomic factor of g(x) has the form 1+xd+x2d , and occurs if a/d+b/d ≡ 0
(mod 3).

We will also employ the following lemma due to Jones and the author [2].

Lemma 6. Let g(x) = 1 + xa + xb + xc, where 0 < a < b < c are
integers. Let gcd(a, b, c) = 2km, where m is odd. Set a′ = a/2k , b′ = b/2k

and c′ = c/2k . Then g(x) is reducible if and only if exactly one of a′, b′, and
c′ is even.

Finally, we will use the following lemma due to Filaseta [1].

Lemma 7. If g(x) is an irreducible {0, 1}-polynomial with g(x) nonrecip-
rocal and g(0) = 1, then g(xk) is irreducible for any positive integer k.
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Proof of Theorem 2. Consider the polynomial f (x) = 1 + xn + xn+d +
xn+2d + · · · + xn+kd . Let g = gcd(d, n), and set a = n/g, b = (n + d)/g

and c = (n + 2d)/g. Let p be the smallest odd prime not dividing (n −
d)/g. If p = 3, then consider the polynomial 1 + xn + xn+d . By Lemma 4,
the noncyclotomic part of f (x) is irreducible, and by Lemma 5, f (x) has a
cyclotomic factor if a + b ≡ 0 (mod 3), which is impossible. Thus, if p = 3,
then k = 1.

Assume now that p > 3. If exactly one or three of a, b and c are odd, then
by Lemma 6, 1 + xn + xn+d + xn+2d is irreducible. Moreover, this is the first
irreducible polynomial in the sequence since �3(x) is a factor of 1+xn +xn+d

since 3 divides (n − d)/g.
Finally, assume that p > 3 and exactly two of a, b and c are odd. Notice that

again �3(x) is a factor of 1 +xn +xn+d . By Lemma 6, 1 +xn +xn+d +xn+2d

is also reducible. Suppose now that 3 ≤ k < p − 2. Notice that

(3) (xd − 1)f (x) = x(k+1)d+n − 1 + xn(xd−n − 1)

We show that f (x) is reducible by finding a factor of the right side of (3)
that does not divide xd −1. Let � denote the product of the primes less than p.
Let n′ = n/g and d ′ = d/g. Notice that since a = n′ and c = n′ + 2d ′, a ≡ c

(mod 2), so that b = n′ + d ′ must be even. Since (n′, d ′) = 1, n′ and d ′ are
both necessarily odd. Thus n′ − d ′ is also even; that is (d − n)/g is divisible
by 2. Combining this with the hypothesis, this implies d = n + g��, where
p � � and � > 0. Then (k + 1)d + n = n(k + 2) + �(gk� + g�).

Since k + 2 < p, there is a largest prime q < p dividing k + 2, and hence,
(k + 1)d + n. If q does not divide n, then q divides d − n = g�� but q � d.
Thus xq − 1 divides each of x(k+1)d+n − 1 and xd−n − 1 (and hence the right
side of (3)), but xq − 1 does not divide xd − 1.

On the other hand, if q divides n, then qe divides g for some positive integer
e. Thus qe+1 divides (k + 1)d + n = n(k + 2) + �(gk� + g�) since q divides
both k+2 and � and qe divides both n and g. Also, qe+1 divides d −n = g��.
However, since d = n + g��, qe is the highest power of q dividing d. Thus,
�qe+1(x) divides the right side of (3), but does not divide xd − 1. Thus, the
polynomials in the sequence with fewer than p terms are reducible.

We now turn our attention to showing that f (x) is irreducible when it has
p terms. We do this in several steps: first we show that any reciprocal factor is
one of several cyclotomic factors; we then show that none of these cyclotomic
factors polynomials divides f (x); finally, we show that the nonreciprocal part
of f (x) (which is all of f (x)) is irreducible.

Since d and n are distinct, f (x) is nonreciprocal. If (d, n) = g, then we
can write f (x) = f1(x

g). Thus it suffices by Lemma 7 to show that the
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nonreciprocal polynomial f1(x) is irreducible. Hence, for the rest of the proof,
we assume that d is relatively prime to n.

Suppose r(x) is an irreducible reciprocal factor of f (x). Then r(x) also
divides f̃ (x) = 1 + xd + x2d + · · · + x(p−2)d + x(p−2)d+n. Since r(x) divides
both f (x) and f̃ (x), r(x) also divides any combination of them. In particular,
r(x) divides xnf̃ (x) − f (x) = x2n+(p−2)d − 1, which shows that r(x) is a
cyclotomic polynomial. Moreover, r(x) also divides

(xd − 1)(f̃ (x) − f (x)) = xn(xd−n − 1)(x(p−2)d − 1).

Since r(x) does not divide x2, r(x) must divide xd−n − 1 or x(p−2)d − 1.
If r(x) divides both x2n+(p−2)d −1 and x(p−2)d −1, then r(x) divides xt −1,

where t divides both 2n+(p−2)d and (p−2)d. Thus, t also divides 2n. Since
r(x) is irreducible, we can replace r(x) by �q(x), where q = 1, 2, or an odd
prime. It is obvious that q cannot be 1 or 2, as this implies x = 1 or x = −1
is a root of r(x), and hence of f (x). However, f (1) = p and f (−1) = 1 or
p. Hence q is an odd prime. As q divides both n and 2n + (p − 2)d but not
d, it divides p − 2. Let ζ be any zero of �q(x) and let p − 2 = hq. Then, as
ζ n = 1, f (ζ ) equals

1+1+ ζ d +· · ·+ ζ hqd = 2+ (ζ d +· · ·+ ζ qd)(1+ ζ qd +· · ·+ ζ (h−1)qd) = 2.

Hence �q(x) does not divide f (x), so r(x) does not exist.
The other possibility is that r(x) divides both x2n+(p−2)d − 1 and xd−n − 1.

This implies r(x) divides xt −1, where t divides both 2n+(p−2)d and d −n.
Again, we may replace r(x) by �q(x), where q is an odd prime dividing t .
So q also divides 2n + (p − 2)d + 2(d − n) = pd . Then q = p or q divides
d. If q = p, then p divides d − n, a contradiction. On the other hand, if q

divides d, then q divides both d and d − n, and hence also n. Again we reach
a contradiction.

So f (x) has no reciprocal factors. To complete the proof, we use Lemma 4
applied to (xd−1)f (x) = x(p−1)d+n+xd−xn−1 to see that the noncyclotomic
part of f (x) is irreducible.

We conclude by highlighting two corollaries of Theorem 2.

Corollary 1. For d > n, there is always an irreducible polynomial in the
sequence 1 + xn + xn+d , 1 + xn + xn+d + xn+2d , etc.

Corollary 2. Let d > 2. The first irreducible polynomial in the sequence
1 + x2 + x2+d , 1 + x2 + x2+d + x2+2d , etc. has

• 4 terms when d ≡ 5, 8 or 11 (mod 12)
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• p terms when d ≡ 2 (mod 12), where p is the smallest prime not divid-
ing d − 2.
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