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BOUNDED APPROXIMATION PROPERTIES
IN TERMS OF C[0, 1]

ÅSVALD LIMA, VEGARD LIMA and EVE OJA∗

Abstract
Let X be a Banach space and let I be the Banach operator ideal of integral operators. We prove
that X has the λ-bounded approximation property (λ-BAP) if and only if for every operator
T ∈ I (X, C[0, 1]∗) there exists a net (Sα) of finite-rank operators on X such that Sα → IX

pointwise and
lim sup

α
‖TSα‖I ≤ λ‖T ‖I .

We also prove that replacing I by the ideal N of nuclear operators yields a condition which is
equivalent to the weak λ-BAP.

1. Introduction

Let X and Y be Banach spaces. We denote by L (X, Y ) the Banach space of
all bounded linear operators from X to Y , and we write L (X) for L (X, X).
The subspace of L (X) of finite-rank operators is denoted by F (X). Let IX

denote the identity operator on X.
Recall that a Banach space X is said to have the approximation property

(AP) if there exists a net (Sα) ⊂ F (X) such that Sα → IX uniformly on
compact subsets of X. If (Sα) can be chosen with supα ‖Sα‖ ≤ λ for some
λ ≥ 1, then X is said to have the λ-bounded approximation property (λ-BAP).

Let A = (A , ‖ ‖A ) be a Banach operator ideal. Recently, an approximation
property which is bounded for A was introduced and studied in [11] as follows.
We say that X has the λ-bounded approximation property for A (λ-BAP for
A ) if for every Banach space Y and every operator T ∈ A (X, Y ) there exists
a net (Sα) ⊂ F (X) such that Sα → IX uniformly on compact subsets of X

and
lim sup

α

‖TSα‖A ≤ λ‖T ‖A .

The λ-BAP for A extends the notion of the weak λ-BAP which is, by
definition, the λ-BAP for the ideal W of weakly compact operators. The weak
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BAP was introduced in [12] and studied in [11], [12], [13], [17], [18], [19],
[20]. It is immediate that the λ-BAP implies the λ-BAP for every Banach
operator ideal A (since ‖TSα‖A ≤ ‖T ‖A ‖Sα‖), and it is equivalent to the
λ-BAP for the ideal L of all bounded linear operators.

By [17] (see [20] for a simpler proof), the weak λ-BAP and the λ-BAP are
equivalent for a Banach space X whenever X∗ or X∗∗ has the Radon–Nikodým
property. It remains open whether the weak λ-BAP is strictly weaker than the
λ-BAP. If they were equivalent, then, by [12], the answer to the long-standing
famous open problem (Problem 3.8 in [1]), whether the AP of a dual Banach
space implies the 1-BAP, would be “yes”. For a recent survey on bounded
approximation properties, see [21].

In [11], it was proved that the BAP is precisely the BAP for the ideal I of
integral operators, and the weak BAP is precisely the BAP for the ideal N of
nuclear operators. In [11], it was also proved that in these cases the requirement
“for every Banach space Y ” can be relaxed by taking Y = �∗∞ for the BAP and
Y = c∗

0 for the weak BAP. More precisely, the following holds.

Theorem 1.1 (see [11, Theorem 2.1 and Proposition 4.2]). Let X be a
Banach space, and let 1 ≤ λ < ∞. The following statements are equivalent.

(a) X has the λ-BAP.

(b) For every Banach space Y and every operator T ∈ I (X, Y ) there exists
a net (Sα) ⊂ F (X) such that Sα → IX uniformly on compact subsets
of X and

lim sup
α

‖TSα‖I ≤ λ‖T ‖I .

(c) For every T ∈ I (X, �∗∞) there exists a net (Sα) ⊂ F (X) such that
Sα → IX pointwise and

lim sup
α

‖TSα‖I ≤ λ‖T ‖I .

Theorem 1.2 (see [11, Theorem 3.1 and Proposition 4.1]). Let X be a
Banach space, and let 1 ≤ λ < ∞. The following statements are equivalent.

(a) X has the weak λ-BAP.

(b) For every Banach space Y and every operator T ∈ N (X, Y ) there exists
a net (Sα) ⊂ F (X) such that Sα → IX uniformly on compact subsets
of X and

lim sup
α

‖TSα‖N ≤ λ‖T ‖N .
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(c) For every T ∈ N (X, c∗
0) there exists a net (Sα) ⊂ F (X) such that

Sα → IX pointwise and

lim sup
α

‖TSα‖N ≤ λ‖T ‖N .

The classical spaces c0 and �∞ are, indeed, very different from each other.
A natural question would be: can the spaces c0 and �∞ be replaced by one
classical Banach space, preferably separable, which would characterize both
the BAP and the weak BAP? Our main aim of this paper is to show that the
space C[0, 1] of continuous functions fits for the both BAPs. Our main results
are as follows (conditions (b) below are to be compared with conditions (c) of
Theorems 1.1 and 1.2).

Theorem 1.3. Let X be a Banach space, and let 1 ≤ λ < ∞. The following
statements are equivalent.

(a) X has the λ-BAP.

(b) For every T ∈ I (X, C[0, 1]∗) there exists a net (Sα) ⊂ F (X) such that
Sα → IX pointwise and

lim sup
α

‖TSα‖I ≤ λ‖T ‖I .

Theorem 1.4. Let X be a Banach space, and let 1 ≤ λ < ∞. The following
statements are equivalent.

(a) X has the weak λ-BAP.

(b) For every T ∈ N (X, C[0, 1]∗) there exists a net (Sα) ⊂ F (X) such
that Sα → IX pointwise and

lim sup
α

‖TSα‖N ≤ λ‖T ‖N .

Theorem 1.4 and the separable case of Theorem 1.3 will be proved in Sec-
tion 2 relying on the fact that the Banach operator ideal I is injective with
respect to norm-preserving extension operators (see Proposition 2.1). The non-
separable case of Theorem 1.3 will be deduced from the separable case in
Section 3 relying on the main result of Section 3 (Theorem 3.2) stating that a
property of X, similar to conditions (c) of Theorems 1.1 and 1.2 and to condi-
tions (b) of Theorems 1.3 and 1.4, is inherited by ideals in Banach spaces.

Our notation is standard. A Banach space X will be regarded as a subspace
of its bidual X∗∗ under the canonical embedding jX : X → X∗∗. The closure
of a set A ⊂ X is denoted A. The tensor product X ⊗ Y with a tensor norm
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α is denoted by X ⊗α Y and its completion by X ⊗̂α Y . We shall use only
the classical projective tensor norm π = ‖ ‖π and the injective tensor norm
ε. Since F (X, Y ) = X∗ ⊗ Y , we shall write ‖T ‖π for T ∈ F (X, Y ) (‖ ‖π is
called the finite nuclear norm in [22]). Let us recall that, for Banach operator
ideals A and B, the inclusion A ⊂ B means that A (X, Y ) ⊂ B(X, Y )

and ‖T ‖A ≥ ‖T ‖B for all Banach spaces X and Y and for all operators
T ∈ A (X, Y ).

We refer to the books by Diestel and Uhl [3] and Ryan [23] for the clas-
sical approximation properties, tensor products, and for the common Banach
operator ideals such as N and I ; see also [2] by Diestel, Jarchow, and Tonge
and Pietsch’s book [22] for operator ideals. We use “Banach operator ideal”
for “normed operator ideal” in [22], or for “Banach ideal” in [2] and [23] (note
that, in the Banach spaces context, the term “ideal” has its own meaning (see
Section 2)).

2. Proofs of Theorem 1.4 and the separable case of Theorem 1.3

Recall that a Banach operator ideal A is injective if ‖JT ‖A = ‖T ‖A whenever
T ∈ A (X, Y ) and J ∈ L (Y, Z) is an into isometry. It is well known that
the Banach operator ideal I of integral operators is not injective (see, e.g.,
[22, 8.4.10]). Our first result shows that I is injective with respect to norm-
preserving extension operators, a fact which will be used in the proofs of
Theorems 1.4 and 2.6 below.

LetY be a closed subspace of a Banach spaceZ. An operator� ∈ L (Y ∗,Z∗)
is called an extension operator if (�y∗)(y) = y∗(y) for all y∗ ∈ Y ∗ and all
y ∈ Y . If Y admits an extension operator � ∈ L (Y ∗, Z∗), which is norm-
preserving (i.e., ‖�‖ = 1), then Y is called an ideal in Z. This is equivalent
to the annihilator Y⊥ of Y being the kernel of a norm one projection in Z∗.

Proposition 2.1. Let X be a Banach space. Let Y be a closed subspace
of a Banach space Z. If there exists a norm-preserving extension operator
� ∈ L (Y ∗, Z∗), then ‖�T ‖I = ‖T ‖I whenever T ∈ I (X, Y ∗).

Proof. We are going to use well-known facts about tensor products (see,
e.g., [3] or [23]). Since I (X, Y ∗) = (X ⊗ε Y )∗ and I (X, Z∗) = (X ⊗ε Z)∗,
we may consider T ∈ (X ⊗ε Y )∗ and �T ∈ (X ⊗ε Z)∗. Taking into account
that X⊗ε Y is a subspace of X⊗ε Z, let us observe that �T extends T . Indeed,
for all x ∈ X and y ∈ Y ,

(�T )(x ⊗ y) = (�T x)(y) = (T x)(y) = T (x ⊗ y).

Hence, ‖�T ‖I ≥ ‖T ‖I . On the other hand, ‖�T ‖I ≤ ‖�‖‖T ‖I = ‖T ‖I .
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Recall that a Banach space is a Pλ-space, for some λ ≥ 1, if it is comple-
mented, by a projection whose norm does not exceed λ, in any Banach space
containing it (as an isometrically isomorphic subspace). The next result is due
to Fakhoury [4, Corollary 3.3]. Fakhoury’s proof relies on Lindenstrauss’s
Memoir [14] and his own results established in [4]. For a simple direct proof,
see [16, Proposition 5.3].

Proposition 2.2. Let Y be a closed subspace of a Banach space Z. If Y ∗∗
is a Pλ-space, then there exists an extension operator � ∈ L (Y ∗, Z∗) with
‖�‖ ≤ λ.

It is well known that, for every set �, the space �∞(�) is a P1-space (see,
e.g., [15, p. 105]). In particular, c∗∗

0 = �∞ is a P1-space. More generally, Y ∗∗
is a P1-space whenever Y is an L1-predual, i.e., Y ∗ is isometrically isomorphic
to a space of type L1(	, μ) (see, e.g., [26, p. 1706]).

Corollary 2.3. Let Y be an L1-predual (in particular, Y = c0). If Y is
contained in a Banach space Z (as an isometrically isomorphic subspace),
then Y is an ideal in Z.

On the other hand, the following holds.

Proposition 2.4 (see [4, Proposition 3.4]). Every ideal in an L1-predual
is an L1-predual itself.

Proof. Since [4] considers only the real case and does not provide a proof,
we include a proof for completeness. Thus, let Y be an ideal in an L1-predual
Z, and let � ∈ L (Y ∗, Z∗) be a norm-preserving extension operator. Since
Z∗∗ is a P1-space and �∗ provides a norm one projection in Z∗∗ onto Y ∗∗,
Y ∗∗ is also a P1-space (it is easily seen that 1-complemented subspaces of a
P1-space are P1-spaces). Hence, by the Grothendieck–Sakai theorem (see [5]
for the real case and [24] for the complex case), Y is an L1-predual.

Let us first prove Theorem 1.4.

Proof of Theorem 1.4. By Theorem 1.2, we only need to prove the
implication (b) ⇒ (a). For this, it suffices to show that condition (b) of The-
orem 1.4 implies condition (c) of Theorem 1.2.

Let T ∈ N (X, c∗
0). Since c0 embeds isometrically in C[0, 1], by Corol-

lary 2.3 there exists a norm-preserving extension operator� ∈ L (c∗
0,C[0,1]∗).

Since �T ∈ N (X, C[0, 1]∗), there exists (Sα) ⊂ F (X) such that Sα → IX

pointwise and

lim sup
α

‖�TSα‖N ≤ λ‖�T ‖N ≤ λ‖�‖‖T ‖N = λ‖T ‖N .
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It is well known (see, e.g., [23, p. 176]) that for a finite-rank operator, acting
to a space with the metric AP, its nuclear and integral norms coincide. Hence,
‖TSα‖N = ‖TSα‖I and ‖�TSα‖N = ‖�TSα‖I . Using Proposition 2.1, we
therefore have

‖TSα‖N = ‖TSα‖I = ‖�TSα‖I = ‖�TSα‖N .

Hence,
lim sup

α

‖TSα‖N ≤ λ‖T ‖N

as desired.

Remark 2.5. It is an easy exercise to show that c∗
0 = �1 embeds isometric-

ally in C[0, 1]∗. It seems that an arbitrary into isometry � ∈ L (c∗
0, C[0, 1]∗)

cannot be used for proving Theorem 1.4.

The separable case of Theorem 1.3 is immediate from Theorem 2.6 below
and Theorem 1.1.

Theorem 2.6. Let X be a separable Banach space, and let 1 ≤ λ < ∞.
If for every T ∈ I (X, C[0, 1]∗) there exists a net (Sα) ⊂ F (X) such that
Sα → IX uniformly on compact subsets of X (respectively, pointwise) and

lim sup
α

‖TSα‖I ≤ λ‖T ‖I ,

then for every T ∈ I (X, �∗∞) there exists a net (Sα) ⊂ F (X) with the same
properties.

Proof. Let T ∈ I (X, �∗∞). Since ran T is separable, by a result of Sims and
Yost [25] (see [6, p. 138]), we can find a separable ideal Y in �∞ which admits
a norm-preserving extension operator � ∈ L (Y ∗, �∗∞) satisfying ran T ⊂
ran �. By Proposition 2.4, Y is an L1-predual.

Let j : Y → �∞ denote the identity embedding. Observe that

T = �j ∗T .

Indeed, let x ∈ X. Since ran T ⊂ ran �, there is y∗ ∈ Y ∗ such that T x = �y∗.
Hence, �j ∗T x = �j ∗�y∗ = �IY ∗y∗ = �y∗ = T x.

Since Y is separable, it embeds isometrically in C[0, 1]. By Corollary 2.3,
there exists a norm-preserving extension operator 
 ∈ L (Y ∗, C[0, 1]∗). Since

j ∗T ∈ I (X, C[0, 1]∗), there exists a net (Sα) ⊂ F (X) such that Sα → IX

and
lim sup

α

‖
j ∗TSα‖I ≤ λ‖
j ∗T ‖I ≤ λ‖T ‖I .
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On the other hand, using Proposition 2.1 twice, we have

‖TSα‖I = ‖�j ∗TSα‖I = ‖j ∗TSα‖I = ‖
j ∗TSα‖I .

From this, the desired inequality is immediate.

Remark 2.7. In the above proof of Theorem 2.6, we applied Proposition
2.4 to show that an ideal Y in �∞ is an L1-predual. An alternative proof of
this fact, relying on intersection properties of balls, can be done as follows. By
results of Lindenstrauss [14] (the real case) and Hustad [8] (the complex case)
(see [9, Theorem 4.1] and [10, Theorem 5.8]), Y is an L1-predual if and only
if Y is an almost E(n)-space for all n ∈ N. Recall (see [8] and [10, p. 9]) that
a Banach space Y is an almost E(n) space if for each family of n closed balls
B(y1, r1), . . . , B(yn, rn) in Y the following implication holds:

n⋂
i=1

B(y∗(yi), ri) 
= ∅ ∀y∗ ∈ Y ∗, ‖y∗‖ ≤ 1

⇒
n⋂

i=1

B(yi, ri + ε) 
= ∅ ∀ε > 0.

Let e∗
k ∈ �∗∞ be the coordinate functionals, and let y∗

k ∈ Y ∗ be their restrictions
to Y . If the above assumption holds, then there exist numbers ak such that
|e∗

k (yi)−ak| = |y∗
k (yi)−ak| ≤ ri for all i = 1, . . . , n. Hence, x := (ak) ∈ �∞

and ‖yi −x‖ ≤ ri in �∞ for all i = 1, . . . , n. But then ‖yi −�∗x‖ = ‖�∗(yi −
x)‖ ≤ ri in Y ∗∗ for all i = 1, . . . , n. This implies, by the principle of local
reflexivity, that for every ε > 0 there exists yε ∈ Y such that ‖yi −yε‖ ≤ ri +ε

for all i = 1, . . . , n, as desired.

3. Proof of the non-separable case of Theorem 1.3

The proof of the non-separable case of Theorem 1.3 relies on the following
reformulation of the BAP in terms of separable ideals.

Theorem 3.1 (see [11, Proposition 4.3 and Theorem 2.2]). Let X be a
Banach space, and let 1 ≤ λ < ∞. The following statements are equivalent.

(a) X has the λ-BAP.

(b) Every separable ideal Z in X has the λ-BAP.

The next result is the main theorem of this section. Its assumption A ⊂ W

can be equivalently expressed as follows: if T ∈ A (X, Y ), then ran T ∗∗ ⊂ Y .
This assumption holds for many operator ideals. For us, it is important that
I ⊂ W .
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Theorem 3.2. Let X and Y be Banach spaces, let A be a Banach operator
ideal such that A ⊂ W , and let 1 ≤ λ < ∞. Assume that X has the weak
BAP. If X has the property that for every T ∈ A (Y, X∗) there exists a net
(Sα) ⊂ F (X) such that Sα → IX pointwise and

lim sup
α

‖S∗
αT ‖A ≤ λ‖T ‖A ,

then every ideal Z in X has the same property.

Proof. Let T ∈ A (Y, Z∗). We consider the set of all ν = (ε, K, L), where
ε > 0, and K ⊂ Z and L ⊂ Z∗ are finite sets. We need to prove that for every
ν = (ε, K, L) there exists Uν ∈ F (Z) such that

|z∗(Uνz − z)| < ε ∀z ∈ K, ∀z∗ ∈ L,

and
‖U ∗

ν T ‖A ≤ λ‖T ‖A + ε.

Indeed, this would imply that Uν → IZ in the weak operator topology and

lim sup
ν

‖U ∗
ν T ‖A ≤ λ‖T ‖A .

Hence, passing to a net of convex combinations far out in (Uν), we could
assume that Uν → IZ in the strong operator topology, as desired.

Let us fix ν = (ε, K, L). Let � ∈ L (Z∗, X∗) be a norm-preserving exten-
sion operator. Then �T ∈ A (Y, X∗), and there exists S = Sα ∈ F (X) such
that

‖Sz − z‖ <
ε

2 max{‖z∗‖ : z∗ ∈ L} ∀z ∈ K,

and
‖S∗�T ‖A ≤ λ‖�T ‖A + ε

2
≤ λ‖T ‖A + ε

2
.

Since X has the weak BAP, there exists an extension operator 
 ∈ X ⊗ X∗w∗

⊂ L (X∗, X∗∗∗) = (X∗ ⊗̂π X∗∗)∗ (see [13, Propositions 2.1, 2.3, and 2.5]
and [20, Corollary 3.18]). Then 
� ∈ L (Z∗, X∗∗∗) = (Z∗⊗̂πX∗∗)∗. We

show that 
� ∈ Z ⊗ X∗w∗
. Let u = ∑∞

n=1 z∗
n ⊗ x∗∗

n ∈ Z∗⊗̂πX∗∗, with∑∞
n=1 ‖z∗

n‖‖x∗∗
n ‖ < ∞, and assume that

〈u, z ⊗ x∗〉 =
∞∑

n=1

z∗
n(z)x

∗∗
n (x∗) = 0 ∀z ∈ Z, ∀x∗ ∈ X∗.
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This means that
∑∞

n=1 x∗∗
n (x∗)z∗

n = 0 in Z∗ for all x∗ ∈ X∗, and therefore

∞∑
n=1

x∗∗
n (x∗)�z∗

n = 0 ∀x∗ ∈ X∗

in X∗. Hence, denoting v = ∑∞
n=1 �z∗

n ⊗ x∗∗
n ∈ X∗⊗̂πX∗∗, we have

〈u, 
�〉 =
∞∑

n=1

(
�z∗
n)(x

∗∗
n ) = 〈v, 
〉 = 0,

because

〈v, x ⊗ x∗〉 =
∞∑

n=1

(�z∗
n)(x)x∗∗

n (x∗)

=
( ∞∑

n=1

x∗∗
n (x∗)�z∗

n

)
(x) = 0 ∀x ∈ X, ∀x∗ ∈ X∗.

Since 
� ∈ Z ⊗ X∗w∗
, there exists a net (Vβ) ⊂ F (X, Z) such that

V ∗
β → 
� weak* in L (Z∗, X∗∗∗) = (Z∗⊗̂πX∗∗)∗. We shall show that the

desired operator Uν can be found in the form Uν = VSiZ , where iZ : Z → X

denotes the identity embedding and V is a convex combination of operators
Vβ .

Set H = ran(i∗ZS∗). Then dim H < ∞. Let iH : H → Z∗ be the identity
embedding. Denote by Ŝ the operator i∗ZS∗ considered as an operator to H .
Then

iH Ŝ = i∗ZS∗,

and the operators ŜV ∗
β T and Ŝ∗∗
�T belong to F (Y, H) = Y ∗ ⊗ H . Since

(Y ∗⊗̂πH)∗ = L (Y ∗, H ∗) = F (Y ∗, H ∗) = Y ∗∗ ⊗ H ∗ and we have (using
that ran T ∗∗ ⊂ Z∗) that for all y∗∗ ∈ Y ∗∗ and h∗ ∈ H ∗

〈y∗∗ ⊗ h∗, ŜV ∗
β T 〉 = h∗(Ŝ∗∗V ∗∗∗

β T ∗∗y∗∗) = h∗(ŜV ∗
β T ∗∗y∗∗)

= (Ŝ∗h∗)(V ∗
β T ∗∗y∗∗) →

β
〈T ∗∗y∗∗ ⊗ Ŝ∗h∗, 
�〉 = 〈y∗∗ ⊗ h∗, Ŝ∗∗
�T 〉,

the net (ŜV ∗
β T )β converges to Ŝ∗∗
�T weakly in Y ∗⊗̂πH . Passing to a net

of convex combinations far out in (Vβ), we may assume that our net (Vβ) also
satisfies

‖ŜV ∗
β T − Ŝ∗∗
�T ‖π →

β
0,
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hence also
‖iH ŜV ∗

β T − iH Ŝ∗∗
�T ‖A →
β

0.

Consequently,

‖(VβSiZ)∗T ‖A = ‖iH ŜV ∗
β T ‖A →

β
‖iH Ŝ∗∗
�T ‖A .

A straightforward calculation shows that iH Ŝ∗∗ = i∗ZS∗j ∗
X. Since j ∗

X
 = IX∗ ,

‖iH Ŝ∗∗
�T ‖A = ‖i∗ZS∗j ∗
X
�T ‖A = ‖i∗ZS∗�T ‖A

≤ ‖S∗�T ‖A ≤ λ‖T ‖A + ε

2
.

Hence, there is some β0 such that for β ≥ β0, one has

‖(VβSiZ)∗T ‖A ≤ λ‖T ‖A + ε.

Finally, let us consider the operators ŜV ∗
β , Ŝ∗∗
� ∈ F (Z∗, H). Since for

all z∗ ∈ Z∗ and h∗ ∈ H ∗

h∗(ŜV ∗
β z∗) = (Ŝ∗h∗)(V ∗

β z∗) →
β

〈z∗ ⊗ Ŝ∗h∗, 
�〉 = h∗(Ŝ∗∗
�z∗),

ŜV ∗
β →β Ŝ∗∗
� in the weak operator topology. Passing to a net of convex

combinations far out in (ŜV ∗
β ), we may assume that ŜV ∗

β z∗ →β Ŝ∗∗
�z∗

for all z∗ ∈ Z∗. Hence also iH ŜV ∗
β z∗ →β iH Ŝ∗∗
�z∗ for all z∗ ∈ Z∗. This

means, by calculations made above, that

(VβSiZ)∗z∗ →
β

i∗ZS∗�z∗ ∀z∗ ∈ Z∗.

Let β1 be such that for β ≥ β1, one has

|z∗(VβSiZz) − (�∗Sz)(z∗)| <
ε

2
∀z ∈ K, ∀z∗ ∈ L.

Since

‖�∗Sz − �∗z‖ ≤ ‖Sz − z‖ <
ε

2 max{‖z∗‖ : z∗ ∈ L} ∀z ∈ K,

and (�∗z)(z∗) = (�z∗)(z) = z∗(z),

|(�∗Sz)(z∗) − z∗(z)| <
ε

2
∀z ∈ K, ∀z∗ ∈ L.
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Consequently, for β ≥ β1, one has

|z∗(VβSiZz − z)| < ε ∀z ∈ K, ∀z∗ ∈ L.

Setting Uν = VβSiZ for some β ≥ β0, β ≥ β1, completes the proof.

To apply Theorem 3.2 in our context, we shall need the following result.
For a Banach operator ideal A , let us denote by A ∗ the dual operator ideal
of A . Its components are A ∗(X, Y ) = {T ∈ L (X, Y ) : T ∗ ∈ A (Y ∗, X∗)}
with ‖T ‖A ∗ = ‖T ∗‖A . (The notation A ∗ means adjoint ideal in [2] and [22],
where the dual operator ideal is denoted by A d and A dual, respectively.)

Proposition 3.3. Let X and Y be Banach spaces, let A be a Banach
operator ideal such that A ⊂ A ∗∗, and let 1 ≤ λ < ∞. Let τ be a topology
on L (X). The following statements are equivalent.

(a) For every T ∈ A (Y, X∗) there exists a net (Sα) ⊂ F (X) such that
Sα → IX in τ and

lim sup
α

‖S∗
αT ‖A ≤ λ‖T ‖A .

(b) For every T ∈ A ∗(X, Y ∗) there exists a net (Sα) ⊂ F (X) such that
Sα → IX in τ and

lim sup
α

‖TSα‖A ∗ ≤ λ‖T ‖A ∗ .

Proof. Below, we shall use the following observation. If X and Y are
Banach spaces and T ∈ L (X, Y ∗), then

T = j ∗
Y T ∗∗jX.

Indeed, T = IY ∗T = j ∗
Y jY ∗T = j ∗

Y T ∗∗jX.
(a) ⇒ (b). Consider T ∈ A ∗(X,Y ∗). Then T ∗ ∈ A (Y ∗∗,X∗) and ‖T ‖A ∗ =

‖T ∗‖A . Since T ∗jY ∈ A (Y, X∗), there is (Sα) ⊂ F (X) such that Sα → IX

in τ and

lim sup
α

‖S∗
αT ∗jY ‖A ≤ λ‖T ∗jY ‖A ≤ λ‖T ∗‖A = λ‖T ‖A ∗ .

On the other hand,

‖TSα‖A ∗ = ‖j ∗
Y T ∗∗S∗∗

α jX‖A ∗ ≤ ‖j ∗
Y T ∗∗S∗∗

α ‖A ∗

= ‖S∗
αT ∗jY ‖A ∗∗ ≤ ‖S∗

αT ∗jY ‖A .

From this, the desired inequality is immediate.
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(b) ⇒ (a). Consider T ∈ A (Y, X∗). Since A ⊂ A ∗∗, we have T ∈
A ∗∗(Y, X∗) and therefore T ∗ ∈ A ∗(X∗∗, Y ∗). Since T ∗jX ∈ A ∗(X, Y ∗),
there is (Sα) ⊂ F (X) such that Sα → IX in τ and

lim sup
α

‖T ∗jXSα‖A ∗ ≤ λ‖T ∗jX‖A ∗ ≤ λ‖T ∗‖A ∗ = λ‖T ‖A ∗∗ ≤ λ‖T ‖A .

On the other hand,

‖S∗
αT ‖A = ‖S∗

αj ∗
XT ∗∗jY ‖A ≤ ‖S∗

αj ∗
XT ∗∗‖A = ‖T ∗jXSα‖A ∗ .

From this, the desired inequality is immediate.

Since I = I ∗ = I ∗∗, we have an immediate corollary, which we spell out
for an easy reference.

Corollary 3.4. Let X and Y be Banach spaces, and let 1 ≤ λ < ∞. Let
τ be a topology on L (X). The following statements are equivalent.

(a) For every T ∈ I (Y, X∗) there exists a net (Sα) ⊂ F (X) such that
Sα → IX in τ and

lim sup
α

‖S∗
αT ‖I ≤ λ‖T ‖I .

(b) For every T ∈ I (X, Y ∗) there exists a net (Sα) ⊂ F (X) such that
Sα → IX in τ and

lim sup
α

‖TSα‖I ≤ λ‖T ‖I .

Proof of Theorem 1.3. By Theorem 1.1, we only need to prove the
implication (b) ⇒ (a).

First of all, let us observe that X has the weak λ-BAP. Indeed, (b) of The-
orem 1.3 implies (b) of Theorem 1.4, because N ⊂ I and, as in the proof of
Theorem 1.4, ‖TSα‖N = ‖TSα‖I whenever TSα ∈ F (X, C[0, 1]∗). Accord-
ing to Theorem 1.4, X has the weak λ-BAP.

By Corollary 3.4, (b) ⇒ (a), and Theorem 3.2, every separable ideal Z has
the property that for every T ∈ I (C[0, 1], Z∗) there exists a net (Sα) ⊂
F (Z) such that Sα → IZ pointwise and lim supα ‖S∗

αT ‖I ≤ λ‖T ‖I . By
Corollary 3.4, (a) ⇒ (b), and the separable version of Theorem 1.3, we get
that every separable ideal Z in X has the λ-BAP. This means, according to
Theorem 3.1, that X has the λ-BAP.
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