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TYPE SEQUENCES OF ONE-DIMENSIONAL LOCAL
ANALYTICALLY IRREDUCIBLE RINGS

VALENTINA BARUCCI and IOANA CRISTINA ŞERBAN

Abstract
We extend the notion of type sequence to rings that are not necessarily residually rational. Using
this invariant we characterize different types of rings as almost Gorenstein rings and rings of
maximal length.

1. Introduction

Let (R, �) be a one-dimensional local Cohen-Macaulay ring and let R be the
integral closure of R in its field of quotients. If we assume that R is analytically
irreducible, i.e., that R is a DVR (with a valuation v) and a finitely generated
R-module, then the values of the elements of R form a numerical semigroup
v(R) = {v(a) | a ∈ R, a �= 0} = {s0 = 0, s1, . . . , sr−1, sr , →}, where
s0 < s1 < · · · < sr and any integer x, x ≥ sr is in v(R) and the conductor
C = (R : R) is not zero.

If we further assume that R is residually rational, i.e., that k, the residue
field of R, is isomorphic to the residue field of R, then r = �R(R/C) and a
sequence of r natural numbers (t1, . . . , tr ) is naturally associated to R, ti =
�R(�−1

i /�−1
i−1), where �i = {x ∈ R | v(x) ≥ si}. This sequence of natural

numbers associated to the ring was for the first time considered by Matsuoka in
[8]. As in [1] we call the sequence (t1, . . . , tr ) the type sequence of R, t.s.(R)

for short. In particular the length t1 = �R(�−1/R) is the Cohen Macaulay
type of R and it turns out that

∑r
i=1 ti = �R(R/R). A typical example of an

analytically irreducible and residually rational ring is the ring of an algebraic
curve singlularity with one branch.

It is well known that, for each one-dimensional local Cohen Macaulay ring
with finite integral closure, the length �R(R/R) is bounded below and above
in the following way:

�R(R/C) + t − 1 ≤ �R(R/R) ≤ �R(R/C)t

where again C = (R : R) and t is the CM type of R.
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The first inequality depends on the existence of a canonical ideal (cf. [2,
Lemma 19 (e)]) and the second is proved in [3, Theorem 1]. If the ring R is
Gorenstein, i.e., of CM type 1, then the two inequalities become equalities
and �R(R/C) = �R(R/R). The rings which realize the minimal length for
�R(R/R), i.e., such that �R(R/C) + t − 1 = �R(R/R) have been introduced
in [2] with the name of almost Gorenstein and recently revealed an interest
in a geometric context (cf. [7]). On the other hand the rings which realize the
maximal length for �R(R/R) were characterized in [3] and also studied in [6].

In the analytically irreducible and residually rational case, there is a strict
relation between the type sequence of R and the length �R(R/R). It is not
surprising that the almost Gorenstein rings are characterized by a type se-
quence of the form (t, 1, 1, . . . , 1) and those which realize the maximal length
are characterized by a type sequence of the form (t, t, . . . , t), cf. [1] and [5,
Theorem 1.7].

This paper deals with the analytically irreducible non-residually rational
case. We have still a numerical semigroup v(R) of values, but k, the residue
field of R, is not isomorphic to K , the residue field of R. The almost Gorenstein
rings are characterized by a type sequence of the form (t, n1, . . . , nr+l) and
the rings of maximal length by a type sequence of the form (t, tn1, . . . , tnr+l),
where ni are the dimensions of certain k-vector subspaces of K defined below.

As usual, if � and � are fractional ideals of R, then � : � := {x ∈ Q(R) |
x� ⊆ �}, where Q(R) is the field of quotients of R, �−1 = R : � and � is
divisorial if R : (R : �)) = �.

2. The result

In all this paper R is a one-dimensional local analytically irreducible not ne-
cessarily residually rational ring. So the integral closure R is a DVR and R has
an associated semigroup of values:

(1) v(R) = {s0 = 0, s1, . . . , sr−1, sr = c, →},
Denote by X the generator of the maximal ideal of R and define the conductor
of the ring as the natural number N such that R : R = XNR. Note that N ≥ c,
thus we can set N = sr+l = sr + l = c + l for some l ∈ N. In the residually
rational case we have N = c. Thus in order to extend the definition of the type
sequence to the non-residually rational case, some care is needed. As we shall
see, in the general case the “right” definition will consist of a sequence of r + l

numbers.
Let us see the details. Consider the ideals of R defined as

(2) �i = {x ∈ R | v(x) ≥ si}, i ∈ {0, . . . , r + l}.



type sequences of one-dimensional rings 37

It is evident that �0 = R, �1 = � and �r+l = R : R. Moreover, we have the
following chain of inclusions:

(3) �r+l ⊂ · · · ⊂ �0 = �−1
0 = R ⊆ �−1

1 ⊆ · · · ⊆ �−1
r+l ,

Note that whereas on the left side we have strict inclusions, on the right side,
a priori, some of the inclusions could be equalities.

The following facts about the ideals �i are well known, but we recall them
for the convenience of the reader:

Proposition 2.1. For every i ∈ {0, . . . , r + l}, the ideals defined above
have the following properties.

1. �−1
r+l = R;

2. �i is divisorial.

3. If i > 0 then �−1
i �= �−1

i−1 and hence �R(�−1
i /�−1

i−1) ≥ 1.

Proof. 1. As �r+l = XNR, we have

�−1
r+l = R : XNR = X−N(R : R)

= X−NXNR = R.(4)

2. As R = R : �−1
r+l , we have that R is divisorial as a fractional ideal of R. It

follows that XhR is divisorial for every h ∈ N. This shows that �i is divisorial,
since

(5) �i = R ∩ Xsi R.

3. If i > 0, then both �i and �i−1 are divisorial. Thus, if R : �i−1 = R : �i ,
then �i−1 = R : (R : �i−1) = R : (R : �i ) = �i , which is contradiciton.

Now we are ready to give our definition of type sequence of the ring R. For
every i ∈ {1, 2, . . . , r + l} let

(6) ti(R) := �R(�−1
i /�−1

i−1).

We call the sequence of numbers (t1(R), t2(R), . . . , tr+l(R)) the type sequence
of R, and we denote it by t.s.(R).

As in the residually rational case we have that

(7) t1(R) = �R(�−1/R) =: t (R)

which is the Cohen-Macaulay type of R.
Note that for every 1 ≤ i ≤ r + l, ��i−1 ⊆ �i and so �i−1/�i , is a k-

vector space; let us denote it by VR(si−1)). Since the inclusion �i ⊂ �i−1 is
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strict, VR(si−1) �= 0 and hence the number ni−1 := dimk VR(si−1) is a positive
integer. These vector spaces were considered also in [4] and can be defined
not only for the ring R but also for any fractional ideal of R. Let F be such an
ideal and i ∈ N. Then

(8) F (i) := {x ∈ F | v(x) ≥ i}
is a fractional ideal of R and we have F(i) ⊆ F(j) for every i ≥ j . The
R-modules F(i)/F (i + 1) are also vector spaces over k, and we denote them
by VF (i).

As we have outlined in the introduction, these vector spaces are very im-
portant for studying lengths for the analytically ireducible rings which are not
residually rational. If E ⊆ F are fractional ideals of R, then, in the residually
rational case, �R(F/E) = #{v(F ) \ v(E)}, cf. [8, Proposition 1]. In the non-
residually rational case we use the dimensions of the previous defined vector
spaces as it was proved in [9].

Proposition 2.2 ([9, Proposition 11]). Let E and F be two fractional ideals
of R such that E ⊆ F ⊆ R. Then there exists an s ∈ N such that

(9) �R(F/E) =
s−1∑
r=0

[dimk(VF (r)) − dimk(VE(r))].

We recall also another result which in this form appears in [9] and in fact
it is an adapted version of [4, Proposition 3.5]. Observe that if V and W

are two k-vector subspaces of K , where k ⊆ K is a field extension, then
(V : W) := {x ∈ K | xW ⊆ V } is also a k-vector subspace of K .

Lemma 2.3 ([9, Lemma 3]). Let k ⊆ K be an extension of fields with
n = dimk K < ∞ and let V ⊂ K be an n− 1-dimensional k-vector subspace
of K . Then for every k-vector subspace W ⊆ K we have

(10) dimk(V : W) + dimk(W) = n.

In order to prove our main theorem, we need the next result on the dimen-
sions of previous defined vector spaces related to the fractional ideals �−1

i ,
i ∈ {1, . . . , r + l}.

Lemma 2.4. Let n = dimkK , where k is the residue field of R and K is the
residue field of R. Then:

1. dimk(V�−1
i

(N − 1 − si−1)) = n;

2. dimk(V�−1
i−1

(N − 1 − si−1)) ≤ n − ni−1;
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Proof. Let us prove the first assertion. Fix an i ∈ {1, . . . , r + l}. Then for
any γ ∈ K we have that

(11) γXN−1−si−1 �i ⊆ XN−1+(si−si−1)R ⊆ XNR ⊆ R.

Therefore we have

(12) γXN−1−si−1 ∈ R : �i = �−1
i ,

for every γ ∈ K . Thus KXN−1−si−1 ⊆ R : �i . It follows that V�−1
i

(N − 1 −
si−1) � K and this is of dimension n over k.

Now we can prove the second assertion. It is easy to see that

(13) γXN−1−si−1 �i−1 ⊆ R ⇐⇒ γVR(si−1) ⊆ VR(N − 1)

which is of course further equivalent to γ ∈ VR(N − 1) : VR(si−1).
Thus we have that:

(14) γ ∈ V�−1
i−1

(N − 1 − si−1) ⇐⇒ γ ∈ (VR(N − 1) : VR(si−1))

Then we can conclude that:

(15) dimk(V�−1
i−1

(N − 1 − si−1)) = dimk(VR(N − 1) : VR(si−1)).

As VR(N − 1) is a proper subspace of K , we can find a k-vector subspace
U ⊂ K of codimension 1 such that VR(N − 1) ⊆ U and so

dimk(VR(N − 1) : VR(si−1)) ≤ dimk(U : VR(si−1))

= n − dimk(VR(si−1))

= n − ni−1,(16)

where for the first equality we have used Lemma 2.3.

We shall see now certain upper and lower bounds for ti(R), which generalize
[8, Proposition 3].

Proposition 2.5. For every i ∈ {1, . . . , r + l}:
(17) ni−1 ≤ ti(R) ≤ t (R) ni−1.

Proof. To show the upper bound we shall use [3, Lemma 1]. This affirms
that, if we have two ideals of the ring R, I1 and I2 such that I1 ⊆ I2 and I2/I1

is a simple R-module, then

(18) �R(R : I1/R : I2) ≤ t (R).
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We are using this result for our ideals �i ⊆ �i−1. The R-module �i−1/�i is
not simple, but it is in fact a k-vector space of finite dimension equal to ni−1.
Then we can apply [3, Lemma 1] ni−1 times and we conclude the proof for the
upper bound.

Now we want to show the lower bound. Using Proposition 2.2 we have that

(19) �R(�−1
i /�−1

i−1) ≥ dimk(V�−1
i

(N −1−si−1))−dimk(V�−1
i−1

(N −1−si−1)).

By Lemma 2.4, we get:

(20) ti(R) := �R(�−1
i /�−1

i−1) ≥ n − (n − ni−1) = ni−1.

Similarly to the residually rational case, we can characterize rings of min-
imal and maximal length by their type sequences.

Theorem 2.6. Let ni = dimk(�i/�i−1). Then
1. R is almost Gorenstein if and only if

(21) t.s.(R) = (t (R), n1, n2, . . . , nr+l−1).

2. R is of maximal length if and only if

(22) t.s.(R) = (t (R), t (R)n1, t (R)n2, . . . , t (R)nr+l−1).

Proof. Recall that the almost Gorenstein property means (cf. [2, Defini-
tion-Proposition 20]) that

(23) �R(R/R) = �R(R/�r+l) + t (R) − 1.

Equation (23) is equivalent to:

(24)

r+l∑
i=1

ti(R) =
r+l−1∑
i=0

ni + t (R) − 1

As n0 = dimk(VR(s0)) = dimk(R/�) = 1 and t1(R) = t (R), the previous
equation is equivalent to:

(25)

r+l∑
i=2

ti(R) =
r+l−1∑
i=1

ni.

Thus, the conclusion follows using Proposition 2.5 which claims that ni−1 ≤ ti ,
so the previous equality holds if and only if ti = ni−1 for every i, 2 ≤ i ≤ r+l.
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The ring R is of maximal length if and only if

(26) �R(R/R) = t (R)�R(R/�r+l).

And this is further equivalent to

(27)

r+l∑
i=1

ti(R) = t (R)

r+l−1∑
i=0

ni =
r+l−1∑
i=0

t (R)ni.

By Proposition 2.5, ti ≤ t (R)ni−1 for every i ∈ {1, . . . , r+l−1}, and we know
also that n0 = 1, so the previous equality holds if and only if ti = t (R)ni−1

for every i ∈ {1, . . . , r + l}.
As a consequence of Theorem 2.6, 1, and of the fact that a Gorenstein

(Kunz) ring is an almost Gorenstein ring of type 1 (2, respectively), we can
draw the following conclusion.

Corollary 2.7.
1. R is Gorenstein if and only if t.s.(R) = (1, n1, . . . , nr+l−1),

2. R is Kunz if and only if t.s.(R) = (2, n1, . . . , nr+l−1).

Note that the proof for Gorensteiness could also have been obtained in a
direct manner. Indeed, if R is Gorenstein, then the ring itself is a canonical
ideal, and so for every i ∈ {1, . . . , r + l},

ti(R) = �R((R : �i )/R : �i−1)

= �R((R : (R : �i−1))/(R : (R : �i ))) = �R(�i−1/��)

= dimk VR(si−1) = ni−1.(28)

3. Examples

Example 1. Consider the following subring of the ring of power series
Q

(√
2,

√
3

)
[[X]].

R = Q+X3Q
(√

2,
√

3
)+X4Q

(√
2,

√
3

)+X5Q
(√

2
)+X6Q

(√
2,

√
3

)
[[X]]

In this example, k = Q and K = Q
(√

2,
√

3
)
. According to the notation of

previous section, we have n0 = 1, n1 = 4, n2 = 4, n3 = 2. Moreover, since

�−1
1 = Q

(√
2

) + X3Q
(√

2,
√

3
)
[[X]],

�−1
2 = Q

(√
2

) + X2Q
(√

2,
√

3
)
[[X]],

�−1
3 = Q

(√
2

) + XQ
(√

2,
√

3
)
[[X]],

�−1
4 = Q

(√
2,

√
3

)
[[X]],
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we get t = t1 = 3, t2 = 4, t3 = 4, t4 = 2, so that the type sequence is
(t, n1, n2, n3) and the ring is almost Gorenstein.

Example 2. A ring of maximal length.

R = R + X3iR + X6R + X9C[[X]]

Here k = R, K = C, n0 = n1 = n2 = 1 and since

�−1
1 = R + X3iR + X6C[[X]],

�−1
2 = R + X3C[[X]],

�−1
3 = C[[X]],

we get t = t1 = 5, t2 = 5, t3 = 5, so that the type sequence is (t, tn1, tn2) and
the ring is of maximal length.

The examples above are generalized semigroup rings, GSR for short, i.e.,
rings of the form

k + XV1 + · · · + XN−1VN−1 + XNK[[X]]

where Vi are k-vector subspaces of K . To every one-dimensional analytically
irreducible ring R can be associated a GSR R̃, as in [9]. More precisely R̃ is
the subring of K[[X]] defined, with the notation of the previous section, as

R̃ :=
∑
i≥0

VR(i)Xi

That is in fact the generalization of the way of associating to R, in the residually
rational case, the semigroup ring k[[S]], where S = v(R). Observe however
that the type sequence of R and its associated GSR is not always the same. For
example, if R = k[[X4, X6 + X7, X10]], with characteristic of k unequal to
2, then the associated GSR is k[[X4, X6, X11, X13]], which has type sequence
(3, 1, 1, 1). On the other hand the type sequence of R is (2, 2, 1, 1), in fact �−1

1
contains no element with value 2, but �−1

2 contains X2 − X3. However we can
prove that:

Proposition 3.1. The ring R is almost Gorenstein if and only if the associ-
ated GSR R̃ is almost Gorenstein and type(R) = type(R̃).

Proof. Let ω be a canonical ideal of R, R ⊆ ω ⊆ R (cf. [2] for the
definition and the existence). Then, by [9, Theorem 17], ω̃ = ∑

i≥0 Vω(i)Xi

is a canonical ideal of R̃. Moreover, by [9, equation (24) and Lemma 16], we
have:

(29) �R(ω/R) = �R̃(ω̃/R̃) ≥ type(R̃) − 1 ≥ type(R) − 1
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By [2, Definition-Proposition 20] we get that R is almost Gorenstein if and
only if �R(ω/R) ≥ type(R) − 1. Thus R is almost Gorenstein if and only
if both inequalities of (29) are equalities, that is if and only if R̃ is almost
Gorenstein and type(R) = type(R̃).

We shall give now an example of computing the type sequence of a ring
which is not a GSR and the length �R(R/R) is not minimal neither maximal.

Example 3. Let R = R[[iX3 + X4, X5, iX10 + X11, X16]]. For this ring
k = R and K = C. Observe that R is not a GSR, but we can compute its
associated GSR. First let us try to compute the type sequence of R. After some
computations we can write R as:

R = R + (iX3 + X4)R + X5R + (−X6 + 2iX7 + X8)R

+ (iX8 + X9)R + (−iX9 + 3iX11 + X12)R + X10R

+ (iX10 + X11)R + (−X11 + 2iX12)R + (X12 − 2X14)R

+ X13R + (iX13 + X14)R + iX14R + X15C[[X]].

Thus for the ring R we have: the conductor of the ring N = 15 and n0 = 1,
n1 = 1, n2 = 1, n3 = 1, n4 = 1, n5 = 1, n6 = 2, n7 = 1, n8 = 1,
n9 = 2, n10 = 1. We compute now the inverses of the ideals which appear in
the definition of the type sequence.

�−1 = R + (iX3 + X4)R + X5R + (−X6 + 2iX7 + X8)R

+ (X7 − 2X9)R + (iX8 + X9)R + (−iX9 + 3iX11 + X12)R

+ X10R + (iX10 + X11)R + X11R + X12C[[X]].

�−1
2 = R + (iX3 + X4)R + X5R + (−X6 + 2iX7 + X8)R

+ (X7 − 2X9)R + (iX8 + X9)R + X9iR + X10C[[X]].

�−1
3 = R + (iX3 + X4)R + X5R + (−X6 + 2iX7 + X8)R + X7R

+ (iX7 + X8)R + X8iR + X9C[[X]].

�−1
4 = R + (iX3 + X4)R + X5R + X6R + X7C[[X]].

�−1
5 = R + (iX3 + X4)R + X5R + X6C[[X]].

�−1
6 = R + (iX3 + X4)R + X5C[[X]].

�−1
7 = R + (iX2 − X3)R + X3iR + X4C[[X]]

�−1
8 = R + X2iR + X3C[[X]].
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�−1
9 = R + X2C[[X]].

�−1
10 = R + XC[[X]].

�−1
11 = C[[X]] = R.

Then: t1 = �R(�−1/R) = 3, t2 = 1, t3 = 2, t4 = 1, t5 = 1, t6 = 1, t7 = 3,
t8 = 1, t9 = 1, t10 = 2, t11 = 1.

The associated GSR of R is R̃ = R[[iX3, X5, iX10, iX17]]. After compu-
tations we have that the type sequence of R̃ is (t1 = 3, t2 = 1, t3 = 2, t4 =
1, t5 = 1, t6 = 1, t7 = 3, t8 = 1, t9 = 1, t10 = 2, t11 = 1). We observe that in
this case the type sequence of R is equal to the type sequence of its associated
GSR.
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