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ON CERTAIN MARTINGALE INEQUALITIES
FOR MAXIMAL FUNCTIONS AND

MEAN OSCILLATIONS

MASATO KIKUCHI and YASUHIRO KINOSHITA∗

Abstract
LetX be a Banach function space over a nonatomic probability space. For a uniformly integrable
martingale f = (fn) with respect to a filtration F = (Fn), let Mf = supn |fn| and θFf =
supn E[|f∞ − fn−1| | Fn]. We give a necessary and sufficient condition on X for the inequality
‖θFf ‖X ≤ C‖Mf ‖X to hold.

Introduction

Let (�,�, P ) be a nonatomic probability space and let F be the collection
of all filtrations, where by a filtration we mean a sequence F = (Fn)n∈Z+ of
sub-σ -algebras of� such that Fn ⊂ Fn+1 for all n ∈ Z+. Given F = (Fn) ∈
F, let Mu(F ) denote the collection of all (real-valued) uniformly integrable
martingales with respect to F and P . For each f = (fn) ∈ Mu(F ), let f∞
denote the almost sure limit of f , and let f−1 ≡ 0. Following [5], we define

θFf = sup
0≤n<∞

E[|f∞ − fn−1| | Fn].

(Some authors use the notation f � for our θFf .) Various inequalities for θFf

have been established. For example, Lépingle [6] proved that if �: [0,∞) →
[0,∞) is a continuous increasing function such that �(0) = 0 and
supt>0

(
�(at)/�(t)

)
< ∞ for some a > 1, then there is a constant c such that

for every f = (fn) ∈ Mu(F ) with f0 = 0 a.s.,

E[�(Mf )] ≤ cE[�(θFf )],

where Mf denotes the maximal function of f , i.e.,

Mf = sup
0≤n<∞

|fn|.
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Furthermore, Long [7] established some extensions of Lépingle’s result by
using rearrangement inequalities. For some other results, see [4], [5], [8], and
so on.

Let X be a Banach function space over � (see Definition 1). Recall that
X is called a rearrangement-invariant function space (r.i. space) if the norm
of each x ∈ X is determined by its distribution (see Definition 2). The main
theorem of [5] says that the following conditions on X are equivalent:

(i) There exist constants c = c(X) and C = C(X) such that if F ∈ F and
f ∈ Mu(F ), then

(1) c‖f∞‖X ≤ ‖θFf ‖X ≤ C‖f∞‖X.
(ii) X can be equivalently renormed so as to be an r.i. space such that 0 <

αX ≤ βX < 1.

Here αX and βX denote the lower and upper Boyd indices of X, respectively.
Moreover, one can deduce from [5, Proposition 3] that ifX is an r.i. space and

αX > 0, then there is a constant C = C(X) such that for every f ∈ Mu(F ),

‖Mf ‖X ≤ C‖θFf ‖X.
Thus if X can be equivalently renormed so as to be an r.i. space such that 0 <
αX ≤ βX < 1, then (1) holds with f∞ replaced by Mf . It is therefore natural
to ask whether the converse is true, i.e., to ask whether X can be equivalently
renormed so as to be an r.i. space such that 0 < αX ≤ βX < 1 when (1) holds
with f∞ replaced byMf . The affirmative answer (see Corollary 2) will follow
from the main results of the present paper.

1. Preliminaries

Throughout the paper, we assume that the probability space (�,�, P ) is non-
atomic, i.e., there is no P -atom in �.

We denote by I the interval (0, 1] and consider I as a probability space
equipped with Lebesgue measure ds.

Given two Banach spaces X1 and X2, we write X1 ↪→ X2 to mean that X1

is continuously embedded in X2.

Definition 1. A Banach function spaceX over a probability space is a real
Banach space of (equivalence classes of) random variables (in other words,
measurable functions) which satisfies the following conditions:

(B1) L∞ ↪→ X ↪→ L1.

(B2) If |y| ≤ |x| a.s. and x ∈ X, then y ∈ X and ‖y‖X ≤ ‖x‖X.
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(B3) If 0 ≤ xn ↑ x a.s., xn ∈ X for all n, and supn ‖xn‖X < ∞, then x ∈ X
and ‖x‖X = supn ‖xn‖X.

We adopt the convention that ‖x‖X = ∞ for every random variable x which
does not belong to X.

Given two random variables x and y, we write x �d y to mean that they
have the same distribution.

Definition 2. A rearrangement-invariant function space (r.i. space) X
over a probability space is a Banach function space which satisfies the following
condition:

(RI) If x �d y and x ∈ X, then y ∈ X and ‖y‖X = ‖x‖X.

For example, Lebesgue spaces, Orlicz spaces, and Lorentz spaces are r.i.
spaces. On the other hand, Lebesgue spaces with suitable weights are Banach
function spaces which are not r.i. spaces.

Let x be a random variable on �. The nonincreasing rearrangement of x,
which is denoted by x∗, is a unique nonincreasing right-continuous function
on I = (0, 1] whose distribution (with respect to Lebesgue measure) is the
same as that of |x|. Note that x∗ can be written as

x∗(t) = inf{λ > 0
∣∣P(|x| > λ) ≤ t}, t ∈ I,

with the convention that inf ∅ = ∞. The nonincreasing rearrangement φ∗ of
a measurable function φ on I is defined in the same way.

Let X be an r.i. space over �. Then there is a unique r.i. space X̂ over I
such that:

• x ∈ X if and only if x∗ ∈ X̂.

• ‖x‖X = ‖x∗‖X̂ for every x ∈ X.

We call X̂ the Luxemburg representation of X. For example, the Luxemburg
representation of Lp(�) is Lp(I). See [1, pp. 62–64] or [9, (12.2), p. 121] for
a proof.

Let L0(I ) denote the space of all measurable functions on I , and let Z1

and Z2 be two Banach function spaces over I . We denote by B(Z1, Z2) the
collection of all linear operators T such that:

• The domain of T contains Z1 and the range of T is contained in L0(I ).

• The restriction of T to Z1 is a bounded operator from Z1 into Z2.

For each T ∈ B(Z1, Z2), we denote by ‖T ‖B(Z1,Z2) the operator norm of the
restriction of T to Z1. In the case where Z = Z1 = Z2, we write B(Z) for
B(Z,Z).
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We now recall the definition of Boyd indices. For each s > 0, define an
operator Ds :L0(I ) → L0(I ) by

(Dsφ)(t) =
{
φ(st) if st ∈ I ,

0 otherwise.

If Z is an r.i. space over I , then Ds ∈ B(Z) for every s > 0, and the lower
and upper Boyd indices of Z are defined by

αZ = sup
0<s<1

log ‖D1/s‖B(Z)
log s

and βZ = inf
1<s<∞

log ‖D1/s‖B(Z)
log s

,

respectively. If X is an r.i. space over �, then the Boyd indices of X are
defined by αX = αX̂ and βX = βX̂. For example, αLp = βLp = 1/p for every
p ∈ [1,∞]. It is well known that 0 ≤ αX ≤ βX ≤ 1 for every r.i. space X.
See e.g. [1, pp. 146–150] for details.

In order to prove our results, we will need to discuss the boundedness of
the averaging operator P and its (formal) adjoint Q. Recall that P is defined
for φ ∈ L0(I ) by

(Pφ)(t) = 1

t

∫ t

0
φ(s) ds, t ∈ I,

and Q is defined for φ ∈ L0(I ) by

(Qφ)(t) =
∫ 1

t

φ(s)

s
ds, t ∈ I,

provided that the respective integrals are defined and finite for all t ∈ I .
Suppose thatX is an r.i. space over�. Then βX < 1 if and only if P ∈ B(X̂),
and αX > 0 if and only if Q ∈ B(X̂) (see [1, Theorem 5.15, p. 150]; cf. [10]).

2. Statement of results

The main theorem of this paper is

Theorem 1. Let X be a Banach function space over �. Then the following
are equivalent:

(i) There exists a constant C = C(X) such that if F ∈ F and f ∈ Mu(F ),
then ‖θFf ‖X ≤ C‖Mf ‖X.

(ii) There exists a constant C = C(X) such that if F ∈ F and f ∈ Mu(F ),
then ‖θFf ‖X ≤ C sup

0≤n<∞
‖fn‖X.



on certain martingale inequalities 313

(iii) There exists a constant C = C(X) such that if F ∈ F and f ∈ Mu(F ),
then ‖θFf ‖X ≤ C‖f∞‖X.

(iv) X can be equivalently renormed so as to be an r.i. space such that
βX < 1.

The following result extends the main theorem of [5].

Corollary 2. LetX be a Banach function space over�. Then the following
are equivalent:

(i) There exist constants c = c(X) and C = C(X) such that if F ∈ F and
f ∈ Mu(F ), then

c‖Mf ‖X ≤ ‖θFf ‖X ≤ C‖Mf ‖X.
(ii) There exist constants c = c(X) and C = C(X) such that if F ∈ F and

f ∈ Mu(F ), then

c sup
0≤n<∞

‖fn‖X ≤ ‖θFf ‖X ≤ C sup
0≤n<∞

‖fn‖X.

(iii) There exist constants c = c(X) and C = C(X) such that if F ∈ F and
f ∈ Mu(F ), then

c‖f∞‖X ≤ ‖θFf ‖X ≤ C‖f∞‖X.
(iv) X can be equivalently renormed so as to be an r.i. space such that

0 < αX ≤ βX < 1.

In the proof of Theorem 1, we will use the following

Proposition 3. Let X and Y be two r.i. spaces over �. Then the following
are equivalent:

(i) There exists a constant C = C(X, Y ) such that if F ∈ F and f ∈
Mu(F ), then ‖θFf ‖X ≤ C‖Mf ‖Y .

(ii) There exists a constant C = C(X, Y ) such that if F ∈ F and f ∈
Mu(F ), then ‖θFf ‖X ≤ C sup

0≤n<∞
‖fn‖Y .

(iii) There exists a constant C = C(X, Y ) such that if F ∈ F and f ∈
Mu(F ), then ‖θFf ‖X ≤ C‖f∞‖Y .

(iv) P ∈ B(Ŷ , X̂).
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3. Proofs

Let us first prove Proposition 3. We will need three lemmas.

Lemma 1. Let φ ∈ L1(I ) be a nonnegative function. Then there exist non-
negative random variables z1 and z2, and families of sets {A1(t) ∈ � | 0 <
t ≤ 1/2} and {A2(t) ∈ � | 0 < t ≤ 1/2} such that:

(i) {z1 > 0} ⊂ A1(1/2) and {z2 > 0} ⊂ A2(1/2).

(ii) A1(1/2) ∩ A2(1/2) = ∅.

(iii) A1(s) ⊂ A1(t) and A2(s) ⊂ A2(t) whenever 0 < s < t ≤ 1/2.

(iv) P(A1(t)) = P(A2(t)) = t whenever 0 < t ≤ 1/2.

(v) E[z11A1(t)] = E[z21A2(t)] = t (Pφ)(2t) whenever 0 < t ≤ 1/2.

(vi) (z1 − z2)
∗ = (z1 + z2)

∗ = φ∗ on I .

Here 1A denotes the indicator function of a set A.

Proof. Since � is nonatomic, we can use [2, (5.6), p. 44] to find nonneg-
ative random variables ξ 1 and ξ 2 such that:

• {ξ 1 > 0} ∩ {ξ 2 > 0} = ∅.

• ξ ∗
1 (t) = ξ ∗

2 (t) = max{1 − 2t, 0} for every t ∈ I .

Define z1 and z2 by setting

z1 = φ(1 − ξ 1)1{ξ 1>0} and z2 = φ(1 − ξ 2)1{ξ 2>0},

and define {A1(t) ∈ � | 0 < t ≤ 1/2} and {A2(t) ∈ � | 0 < t ≤ 1/2} by
setting

A1(t) = {ξ 1 > 1 − 2t} and A2(t) = {ξ 2 > 1 − 2t}.
Then it is straightforward to check that the required conditions are satisfied.

IfZ is a Banach function space over I , we let D(Z) denote the collection of
all functions inZwhich are nonnegative, nonincreasing, and right-continuous,
and we let D ′(Z) = D(Z) \ L∞(I ).

Lemma 2. Let Z1 and Z2 be two r.i. spaces over I . Suppose Z1 �= L∞(I )
and suppose there is a constant c = c(Z1, Z2) such that for every φ ∈ D ′(Z1),

(2) ‖Pφ‖Z2 ≤ c‖φ‖Z1 .

Then P ∈ B(Z1, Z2).
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Remark. Note that if Z1 = L∞(I ), then P ∈ B(Z1, Z2) for every Banach
function space Z2 over I . This follows immediately from the fact that P ∈
B(L∞(I )) and L∞(I ) ↪→ Z2.

Proof of Lemma 2. By [5, Lemma 3], it suffices to show that (2) holds
for every φ ∈ D(Z1) ∩ L∞(I ) = D(L∞(I )). Let ψ ∈ D ′(Z1) and ε > 0.
Applying (2) to φ + εψ and letting ε → 0+, we see that (2) holds for this φ,
as required.

Lemma 3. If F ∈ F and f ∈ Mu(F ), then (Mf )∗ ≤ Pf ∗∞ on I .

Proof. This is an almost direct corollary of Doob’s maximal inequality ([8,
p. 34]). See the proof of [3, Proposition 3] or of [4, Theorem 4.1] for details.

We are now ready to prove Proposition 3.

Proof of Proposition 3. (iv) ⇒ (iii) Suppose P ∈ B(Ŷ , X̂). Let F =
(Fn) ∈ F, let f = (fn) ∈ Mu(F ), and let f̃ = (f̃n) denote the martingale
defined by f̃n = E[|f∞| | Fn]. It is then clear that θFf ≤ 2Mf̃ . Since f̃∞ =
|f∞| a.s., it follows from Lemma 3 that (θFf )

∗ ≤ 2P f̃ ∗∞ = 2Pf ∗∞ on I .
Hence

‖θFf ‖X = ‖(θFf )
∗‖X̂ ≤ 2‖Pf ∗

∞‖X̂
≤ 2‖P‖B(Ŷ ,X̂)‖f ∗

∞‖Ŷ = 2‖P‖B(Ŷ ,X̂)‖f∞‖Y .
This shows that (iv) implies (iii).

(iii) ⇒ (ii) If f = (fn) is a uniformly integrable martingale, then by (B3)
with X replaced by Y ,

‖f∞‖Y = ‖ lim
n→∞ |fn|‖Y ≤ lim

n→∞
‖fn‖Y ≤ sup

0≤n<∞
‖fn‖Y .

From this fact it is clear that (iii) implies (ii).
(ii) ⇒ (i) Obvious from (B2) with X replaced by Y .
(i) ⇒ (iv) Assume that (i) holds. As remarked above, if Ŷ = L∞(I ), then

P ∈ B(Ŷ , X̂). Thus we may assume Ŷ �= L∞(I ). By Lemma 2, it suffices
to show that there is a constant c = c(X, Y ) such that ‖Pφ‖X̂ ≤ c‖φ‖Ŷ for
every φ ∈ D ′(Ŷ ).

Suppose φ ∈ D ′(Ŷ ). Then Pφ is strictly decreasing and continuous.
Moreover (Pφ)(t) → ∞ as t → 0+. Hence there is a strictly decreasing
sequence {tn}n∈Z+ of numbers in (0, 1/2] such that t0 = 1/2 and

(3) (Pφ)(2tn+1) = 2(Pφ)(2tn) for every n ∈ Z+.

It is clear that tn → 0 as n → ∞. Let z1, z2, {A1(t) ∈ � | 0 < t ≤ 1/2},
and {A2(t) ∈ � | 0 < t ≤ 1/2} be as in Lemma 1, and let z = z1 − z2.
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Then z∗ = φ on I . Write �n = A1(tn) ∪ A2(tn) for each n ∈ Z+. Define
F = (Fn) ∈ F by

Fn = σ {� \�n | � ∈ �}, n ∈ Z+,

and define f = (fn) ∈ Mu(F ) by

fn = E[ z | Fn ] = z1�\�n, n ∈ Z+.

If n ≥ 1, then

E[|f∞ − fn−1| | Fn]

= 1�n
P (�n)

E[|z|1�n ] + |z|1�n−1\�n

≥ 1�n
2tn

(E[z11A1(tn)] + E[z21A2(tn)]) = (Pφ)(2tn)1�n a.s.,

and if n = 0, then

E[|f∞ − fn−1| | Fn] = E[|z| | F0] = ‖z‖L1 = (Pφ)(2t0)1�0 a.s.

Therefore

θFf ≥ sup
0≤n<∞

(Pφ)(2tn)1�n

=
∞∑
n=0

(Pφ)(2tn)1�n\�n+1 = 1

2

∞∑
n=0

(Pφ)(2tn+1)1�n\�n+1 a.s.,

where the last equality follows from (3). Hence, for every t ∈ I ,

(θFf )
∗(t) ≥

(
1

2

∞∑
n=0

(Pφ)(2tn+1)1�n\�n+1

)∗
(t)

= 1

2

∞∑
n=0

(Pφ)(2tn+1)1[2tn+1,2tn)(t) ≥ 1

2
(Pφ)(t).

Since Mf = |z| a.s., we have (Mf )∗ = z∗ = φ. Using (i) we see that

‖Pφ‖X̂ ≤ 2‖(θFf )
∗‖X̂ = 2‖θFf ‖X

≤ 2C‖Mf ‖Y = 2C‖(Mf )∗‖Ŷ = 2C‖φ‖Ŷ .
This completes the proof that (i) implies (iv), and hence the proof of Proposi-
tion 3.
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In order to prove Theorem 1, we will need one more lemma.

Lemma 4 ([5, Lemma 1]). Let X be a Banach function space over � and
let X+ denote the collection of all nonnegative random variables in X. Then
the following are equivalent:

(i) There exists a constant c = c(X) such that if x, y ∈ X+, x �d y, and
{x > 0} ∩ {y > 0} = ∅, then ‖y‖X ≤ c‖x‖X.

(i) X can be equivalently renormed so as to be an r.i. space.

Proof of Theorem 1. As in the proof of Proposition 3, we see that (ii)
implies (i) and (iii) implies (ii). We need only show that (iv) implies (iii) and
(i) implies (iv).

(iv) ⇒ (iii) Assume that (iv) holds. Then P ∈ B(X̂) as mentioned at the
end of Section 1. We can therefore apply Proposition 3 to derive the inequality
in (iii).

(i) ⇒ (iv) Assume that (i) holds. We first show that X can be equivalently
renormed so as to be an r.i. space. Assume that x, y ∈ X+, x �d y, and
{x > 0} ∩ {y > 0} = ∅. For each k ∈ Z, let Ak = {2k ≤ x < 2k+1} and
Bk = {2k ≤ y < 2k+1}, and define random variables x ′ and y ′ by

x ′ =
∞∑

k=−∞
2k1Ak and y ′ =

∞∑
k=−∞

2k1Bk

Then 0 ≤ x ′ ≤ x ≤ 2x ′, 0 ≤ y ′ ≤ y ≤ 2y ′, and x ′ �d y
′. For each k ∈ Z,

choose Ak,1 and Ak,2 in � so that

Ak,1∩Ak,2 = ∅, Ak,1∪Ak,2 = Ak, and P(Ak,1) = P(Ak,2) = 1

2
P(Ak).

This is possible, since � is nonatomic. Define F = (Fn) ∈ F by

Fn =
{
σ {Ak ∪ Bk | k ∈ Z} if n = 0,

� if n ≥ 1.

Let x ′′ = ∑∞
k=−∞ 2k(1Ak,1 − 1Ak,2) and define f = (fn) ∈ Mu(F ) by

fn = E[x ′′ | Fn] =
{ 0 if n = 0,

x ′′ if n ≥ 1.

Then, by convention, E[|x ′′| | F0] ≤ θFf . On the other hand, it is straight-
forward to check that

E[|x ′′| | F0] = E[x ′ | F0] = x ′ + y ′

2
≥ y ′

2
≥ y

4
a.s.
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Hence y ≤ 4θFf a.s. Since Mf = |x ′′| = x ′ ≤ x a.s., it follows from (i) that
‖y‖X ≤ 4C‖x‖X. Thus, by Lemma 4, X can be equivalently renormed so as
to be an r.i. space.

We can now apply Proposition 3 to see that P ∈ B(X̂), or equivalently, that
βX < 1. This completes the proof that (i) implies (iv), and hence the proof of
Theorem 1.

We conclude the paper by proving Corollary 2.

Proof of Corollary 2. From the main theorem of [5], we know that (iii)
and (iv) are equivalent.

Assume that (iii) holds, or equivalently, that (iv) holds. Then Q ∈ B(X̂),
and hence by [5, Proposition 3 (i)], there is a constant C = C(X) such that for
every f ∈ Mu(F ),

sup
0≤n<∞

‖fn‖X ≤ ‖Mf ‖X ≤ C‖θFf ‖X.

This, together with (iii), shows that the inequalities in (i) and (ii) hold. Thus
(iii) implies both (i) and (ii).

Assume now that (i) or (ii) hold. Then, by Theorem 1,X can be equivalently
renormed so as to be an r.i. space such that βX < 1. Hence we can apply [5,
Proposition 3 (ii)] to conclude that Q ∈ B(X̂), or equivalently, that αX > 0.
Thus both (i) and (ii) imply (iv).
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