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CONDITION NUMBER AND ECCENTRICITY
OF A CLOSED CONVEX CONE

RENÉ HENRION and ALBERTO SEEGER

Abstract
We discuss some extremality issues concerning the circumradius, the inradius, and the condition
number of a closed convex cone in Rn. The condition number refers to the ratio between the
circumradius and the inradius. We also study the eccentricity of a closed convex cone, which is a
coefficient that measures to which extent the circumcenter differs from the incenter.

1. Introduction

This paper is the last part of a triptych initiated in [7] and continued in [8]. It
deals with two concepts related to the geometric nature of a convex cone: the
circumradius and the inradius. A few words on notation are in order before
we recall these concepts. In the sequel the symbol �n indicates the set of
nontrivial closed convex cones in the Euclidean space Rn. That a convex cone
is nontrivial means that it is different from the singleton {0} and different from
the whole space Rn. For avoiding trivialities we assume that the dimension
n is at least three. Some special subsets of �n play a prominent role in the
discussion, namely

�sol
n = {K ∈ �n : K is solid},

�ptd
n = {K ∈ �n : K is pointed},

�reg
n = {K ∈ �n : K is regular}.

Recall that a closed convex cone is solid if its topological interior is nonempty,
and it is pointed if it contains no line. Regularity is understood as the combin-
ation of solidity and pointedness.

The inradius of K ∈ �n is defined as the coefficient

(1) ρ(K) = sup
x∈K∩Sn

dist[x, ∂K],

where Sn is the unit sphere of Rn, ∂K is the boundary of K , and dist[ · , �]
stands for the distance function to a set�. Various interpretations of ρ(K) and
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calculus rules for computing this coefficient have been proposed in [3], [4],
[5], [7], [8], [10] and other places. We recall that (1) is a matter of finding the
radius and center of a largest ball contained in K:

(2)

maximize r

‖x‖ = 1

r ∈ [0, 1]

x + rBn ⊂ K,

where Bn denotes the closed unit ball of Rn. The coefficient ρ(K) is equal to the
optimal value of the maximization problem (2). The function ρ : �n → [0, 1]
is continuous if �n is equipped with the gap metric

δ(K1,K2) = max
{

max
x∈K1∩Sn

dist[x,K2], max
x∈K2∩Sn

dist[x,K1]
}
,

or with any other equivalent metric for that matter (cf. [10, Proposition 6.3]).
We mention in passing that convergence with respect to the metric δ is equival-
ent to convergence in the Painlevé-Kuratowski sense (cf. [14, Proposition 4.4]).
This fact will be used on several occasions. IfK ∈ �n is solid, then the solution
set

�inc(K) = {x ∈ K ∩ Sn : dist[x, ∂K] = ρ(K)}
to the variational problem (1) is a singleton. The unique element of this set is
denoted by πinc(K) and called the incenter of K . Theorem 2.9 of [7] asserts
that πinc : �sol

n → Rn is a continuous map.
The circumradius of K ∈ �n, denoted by μ(K), is defined as the optimal

value of the minimization problem

(3)

minimize r

‖x‖ = 1

r ∈ [0, 1]

K ⊂ M(x, r).

HereM(x, r) stands for the closed convex cone generated by the ball x+ rBn,
that is,

M(x, r) = cl
[⋃
α≥0

α(x + rBn)
]
.

The closure operation “cl” is superfluous when r �= 1. If K ∈ �n is pointed,
then

�circ(K) = {x ∈ Rn : (x, r) solves (3)}
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is a singleton. The unique element of this set is denoted by πcirc(K) and called
the circumcenter ofK . By combining Proposition 4.8 and Theorem 5.2 in [7],
one sees that μ : �n → [0, 1] and πcirc : �ptd

n → Rn are continuous functions.
This is all what the reader needs to know for having a good understanding

of our work. The organization of the paper is as follows. Section 2 discusses
some extremality issues concerning inradii and circumradii. Inspired by the
definition of the condition number of a nonsingular matrix, we refer to the ratio

c(K) = μ(K)

ρ(K)

as the condition number of a solid cone K ∈ �n. The analysis of this concept
is the object of Section 3. A regular coneK ∈ �n is non-eccentric ifπinc(K) =
πcirc(K), otherwise it is said to be eccentric. The eccentricity is a coefficient
that measures the gap between the incenter and the circumcenter:

(4) e(K) = ‖πinc(K)− πcirc(K)‖.
This coefficient is studied in detail in Section 4.

2. Extremality issues for inradii and circumradii

2.1. Preliminary results

Inradii and circumradii are dual objects. Indeed, for all K ∈ �n one has

μ(K) =
√

1 − [ρ(K+)]2,(5)

ρ(K) =
√

1 − [μ(K+)]2,

where K+ stands for the dual cone of K , i.e.,

K+ = {y ∈ Rn : 〈y, x〉 ≥ 0 for all x ∈ K}.
Furthermore,

�inc(K) = �circ(K
+),(6)

�circ(K) = �inc(K
+).(7)

These duality relationships have been established in [7, Theorem 5.2]. Of
course, the inequality

(8) ρ(K) ≤ μ(K)
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holds for any K ∈ �n. The next lemma is easy and consistent with intuition.
We mention it only for the sake of subsequent use. Recall that a revolution
cone is a set of the form


(y, θ) := {
x ∈ Rn : 〈y, x〉 ≥ ‖x‖ cos θ

}
,

where y is a unit vector of Rn. The parameter θ ∈ [0, π/2] is referred to as the
half-aperture angle of the cone.

Lemma 2.1. For K ∈ �n the following conditions are equivalent:

(a) ρ(K) = μ(K).

(b) K is a ball-generated cone.

(c) K is a revolution cone.

Proof. That (b) ⇔ (c) is mentioned in [6, Section 3.1]. By the way, the
equivalence between ball-generated cones and revolution cones holds even in
Hilbert spaces. In fact, by combining Lemmas 4.12 and 5.1 in [7] one gets


(y, θ) = M(y, sin θ),

M(x, r) = 
(x, arcsin r).

For proving (b) ⇒ (a) one just needs to observe that

(9) ρ(M(x, r)) = μ(M(x, r)) = r

for all (x, r) ∈ Sn × [0, 1]. The proof of (a) ⇒ (b) is more subtle. Let r̄ :=
ρ(K) = μ(K). We suppose that r̄ > 0, otherwise K is a ray, i.e., a cone
generated by a ball of radius 0. Let x̄ := πinc(K) and w̄ ∈ �circ(K). In such a
case

(10) x̄ + r̄Bn ⊂ K ⊂ M(w̄, r̄).

Since ρ(M(w̄, r̄)) = r̄ , the unit vector x̄ must be the incenter of M(w̄, r̄). In
other words,

x̄ = πinc (M(w̄, r̄)) = w̄.

Hence, the chain of inclusions in (10) yields M(x̄, r̄) = K = M(w̄, r̄).

Remark 2.2. It is well known that the dual of a revolution cone is a revolu-
tion cone. Hence, the dual of a ball-generated cone is a ball-generated cone.
More precisely,

[M(x, r)]+ = M
(
x,
√

1 − r2
)
.

For the reader’s convenience we recall below a technical result (cf. [8,
Lemma 2.25]) that characterizes the incenter of a solid polyhedral cone. Such
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result will be used on a few occasions. The notation “pos” stands for positive
(or convex conic) hull.

Lemma 2.3. Let K ∈ �n be a solid polyhedral cone represented by

K = {
x ∈ Rn : 〈f1, x〉 ≥ 0, . . . , 〈fm, x〉 ≥ 0

}
,

where {fi}mi=1 is a finite collection of unit vectors in Rn. Then x̄ = πinc(K) if
and only if

x̄ ∈ K ∩ Sn,(11)

x̄ ∈ pos {fi : i ∈ I (x̄)} ,(12)

where I (x̄) is the set of indices j ∈ {1, . . . , m} such that

(13) 〈fj , x̄〉 = min
1≤i≤m〈fi, x̄〉.

Furthermore, if x̄ is the incenter of K , then the minimum in (13) is equal to
ρ(K).

As first use of Lemma 2.3 we derive an explicit formula for computing the
incenter of a special type of polyhedral cone. Recall that a simplicial cone in
Rn is a polyhedral cone generated by a basis of Rn. In other words, K ∈ �n is
simplicial if and only if

(14) K = {Gλ : λ ∈ Rn+}
withG standing for a nonsingular matrix of order n. A simplicial cone in Rn is
regular and has exactly n facets. General information on simplicial cones and
facial analysis can be found in [1].

Theorem 2.4. Suppose that K ∈ �n is generated by the columns of a
nonsingular matrix G = [g1, . . . , gn]. Let fj denote the j -th column of F =
(G−1)T . Consider the following statements:

(a) 〈gi, gj 〉 ≥ 0 for all i, j ∈ {1, . . . , n}.
(b)

∑n
j=1〈gi, gj 〉‖fj‖ ≥ 0 for all i ∈ {1, . . . , n}.

(c) The incenter of K is equidistant to each facet of K .

(d) The incenter of K is equal to the vector

(15) x̄ :=
∑n

i=1 ‖fi‖ gi∥∥∑n
i=1 ‖fi‖ gi

∥∥ .
(e) ρ (K) = ∥∥∑n

i=1 ‖fi‖gi
∥∥−1

.

Then one has (a) ⇒ (b) ⇔ (c) ⇔ (d) ⇒ (e).
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Proof. Before starting with the proof itself, observe that

(16) 〈fj , gi〉 = δij for all i, j ∈ {1, . . . , n} ,
where δij refers to the Kronecker delta. Hence, the simplicial cone (14) can be
rewritten as

K = {
x ∈ Rn : 〈f̂1, x〉 ≥ 0, . . . , 〈f̂n, x〉 ≥ 0

}
with f̂j = ‖fj‖−1fj . For convenience we split the proof in several parts:

(a) ⇒ (b). This implication is obvious.
(b) ⇔ (d). The vector x̄ given by (15) clearly belongs to K ∩ Sn. Thanks to

(16) one has

(17) 〈f̂j , x̄〉 = κ :=
∥∥∥∥ n∑
i=1

‖fi‖gi
∥∥∥∥−1

for all j ∈ {1, . . . , n}. Hence,

I (x̄) := {
j ∈ {1, . . . , n} : 〈f̂j , x̄〉 = min

1≤i≤n〈f̂i , x̄〉
}

is equal to the whole index set {1, . . . , n}. By Lemma 2.3 one has

x̄ = πinc(K) ⇔ x̄ ∈ pos
{
f̂1, . . . , f̂n

}
⇔ 〈g1, x̄〉 ≥ 0, . . . , 〈gn, x̄〉 ≥ 0

⇔
n∑
j=1

〈gi, gj 〉‖fj‖ ≥ 0 for all i ∈ {1, . . . , n}.

(d) ⇒ (e). It follows from (17) and the last part of Lemma 2.3.
(d) ⇒ (c). The facets of K are Fj = K ∩ f̂ ⊥

j with

f̂ ⊥
j = {x ∈ Rn : 〈f̂j , x〉 = 0}.

By assumption the vector x̄ given by (15) is the incenter of K . The condition
(17) shows that x̄ is equidistant to each hyperplane f̂ ⊥

j , the common distance

being ρ(K). Let ξj denote the orthogonal projection of x̄ into f̂ ⊥
j . Hence,

ξj = x̄ − 〈f̂j , x̄〉f̂j = x̄ − ρ(K)f̂j

and ‖ξj − x̄‖ = ρ(K). It follows that ξj ∈ Fj and

dist[x̄,Fj ] = dist[x̄, f̂ ⊥
j ] = ρ(K).

This proves the condition (c).
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(c) ⇒ (d). One has ū := πinc(K) = ∑n
i=1 λigi , where each λi is positive.

Note that

ρ(K) = dist[ū, ∂K] = min
1≤j≤n

〈fj , ū〉
‖fj‖ = min

1≤j≤n
λj

‖fj‖ ,

where the last equality is due to (16). Hence,

(18) ρ(K)‖fj‖ ≤ λj

for all j ∈ {1, . . . , n}. But,

ρ(K) = dist[ū,Fj ] ≥ dist[ū, f̂ ⊥
j ] = 〈fj , ū〉

‖fj‖ = λj

‖fj‖ ,

where the first equality is due to the assumption (c). So, (18) is in fact an
equality, and therefore

ū = ρ(K)

n∑
i=1

‖fi‖gi.

A due normalization shows that ū is equal to the vector given by (15).

The condition (a) says that the angle between any pair of generators of
K does not exceed π/2. This requirement is stronger than (b). To see this,
consider the simplicial cone K generated by the columns of

G =
[ 1 −1 −1

0 1 −2
0 0 1

]
.

The condition (a) is clearly violated. However

F = (G−1)T =
[ 1 0 0

1 1 0
3 2 1

]
, ‖f1‖ = √

11, ‖f2‖ = √
5, ‖f3‖ = 1,

and a direct computation shows that (b) holds. Thus, one can use (15) for
computing the incenter of K .

Kelly et al. [15] propose a different concept of “center” for a simplicial cone
K , namely, any point in the interior ofK which is equidistant from each facetal
hyperplane. This property is satisfied by the vector x̄ given by (15). However,
such x̄ may not be the incenter of K . To see this, consider the simplicial cone
K generated by the columns of

G =
[ 1 −1 −1

0 1 1
0 0 1

]
.
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One has

F = (G−1)T =
[ 1 0 0

1 1 0
0 −1 1

]
, ‖f1‖ = √

2, ‖f2‖ = √
2, ‖f3‖ = 1,

and the condition (b) is violated. As a consequence, πinc(K) and x̄ do not
coincide.

Theorem 2.4 can be dualized in order to obtain a formula for computing the
circumcenter of a simplicial cone.

Corollary 2.5. Let K ∈ �n be the simplicial cone generated by the
columns of the nonsingular matrix G = [g1, . . . , gn]. Let fj denote the j -th
column of F = (G−1)T . Then the following conditions are equivalent:

(a)
∑n
j=1〈fi, fj 〉

∥∥gj∥∥ ≥ 0 for all i ∈ {1, . . . , n}.
(b) The circumcenter of K is equal to the vector

ȳ :=
∑n

i=1 ‖gi‖ fi∥∥∑n
i=1 ‖gi‖ fi

∥∥ .
Proof. We apply Theorem 2.4 to K+ and use the duality formula (7).

2.2. Comparing the inradii of K and K+

The theory of solidity and pointedness indices for convex cones has been
developed in recent years in [10], [11], [12], [13]. Within the context of such
theory one can interpret the inradii of K and K+ as follows:

ρ(K) = solidity index of K,

ρ(K+) = pointedness index of K.

The first question addressed in this section is to find a closed convex cone that
is as solid and pointed as possible:

(19) maximizeF(K) := (
ρ(K), ρ(K+)

)
with respect to K ∈ �n.

Beware that solidity and pointedness are antagonic notions. What we mean by
this is that both coefficients ρ(K) and ρ(K+) cannot be large (i.e., near 1) at
the same time.

Proposition 2.6 characterizes the Pareto solutions to the above bicriteria
optimization problem. By definition, K ∈ �n is a Pareto solution to (19) if
there is no Q ∈ �n such that

ρ(K) ≤ ρ(Q) and ρ(K+) ≤ ρ(Q+)

with at least one inequality being strict.
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Proposition 2.6. K ∈ �n is a Pareto solution to (19) if and only if K is a
ball-generated cone.

Proof. As a consequence of (5) and (8) one gets

(20) [ρ(K)]2 + [
ρ(K+)

]2 ≤ 1

for all K ∈ �n. In fact, Corollary 8.4 in [10] asserts something stronger: the
image set

F(�n) := {(
ρ(K), ρ(K+)

)
: K ∈ �n

}
of the problem (19) is equal to

� = {
(r, t) ∈ R2

+ : r2 + t2 ≤ 1
}
.

Hence, K ∈ �n is a Pareto solution to (19) if and only if the pair
(
ρ(K),

ρ(K+)
)

lies in the upper right portion of �, that is to say,

[ρ(K)]2 + [
ρ(K+)

]2 = 1.

Lemma 2.1 and the duality formula (5) do the rest of the job.

Besides the inequality (20), is there any other interesting relationship bet-
ween the inradii ofK andK+? The next result applies only to simplicial cones.
ThatK ∈ �n is orthogonal simply means thatK a polyhedral cone generated
by an orthogonal basis of Rn. Every orthogonal cone is simplicial, but not
conversely.

Theorem 2.7. If K ∈ �n is simplicial, then

(21) ρ(K)ρ(K+) ≤ 1/n.

The above inequality becomes an equality if and only ifK ∈ �n is orthogonal.

Proof. Let K ∈ �n be generated by the columns of a nonsingular matrix
G = [g1, . . . , gn] and let fj denote the j -th column of F = (G−1)T . There
are vectors λ, β in Rn+ such that

ū := πinc(K) = Gλ =
n∑
i=1

λigi,

v̄ := πinc(K
+) = Fβ =

n∑
i=1

βjfj .
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It follows that

ρ(K) = dist[ū, ∂K] = min
1≤j≤n

〈fj , ū〉
‖fj‖ = min

1≤j≤n
λj

‖fj‖ ,

ρ(K+) = dist[v̄, ∂K+] = min
1≤i≤n

〈gi, v̄〉
‖gi‖ = min

1≤i≤n
βi

‖gi‖ .

Hence, for all j ∈ {1, . . . , n} one gets

ρ(K)‖fj‖ ≤ λj ,

ρ(K+)‖gj‖ ≤ βj ,

and therefore

(22) ρ(K)ρ(K+)
( n∑
j=1

‖fj‖‖gj‖
)

≤
n∑
j=1

λjβj .

Thanks to (16) and the Cauchy-Schwarz inequality, one has ‖fj‖‖gj‖ ≥ 1.
Hence,

(23) n ≤
n∑
j=1

‖fj‖‖gj‖.

For completing the proof of (21) it remains to observe that

(24)
n∑
i=1

λjβj = 〈G−1ū, F−1v̄〉 = 〈ū, (G−1)T F−1v̄〉 = 〈ū, v̄〉

is less than or equal to 1. If K ∈ �n is orthogonal, then ρ(K) = ρ(K+) =√
1/n, and ρ(K)ρ(K+) = 1/n. Conversely, let K = pos{g1, . . . , gn} be a

simplicial cone such that (21) holds as an equality. In such a case

n∑
j=1

‖fj‖‖gj‖ = n,

and therefore ‖fj‖‖gj‖ = 1 for all j ∈ {1, . . . , n}. This and (16) imply that,
up to normalization, the sets {gj }nj=1 and {fj }nj=1 coincide. Hence,〈

gj

‖gj‖ ,
gi

‖gi‖
〉

=
〈
fj

‖fj‖ ,
gi

‖gi‖
〉

= 〈fj , gi〉
‖fj‖‖gi‖ = 0

for all i �= j , that is to say, K is orthogonal.
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Remark 2.8. The product rule (21) does not apply beyond a simplicial
context. For instance, the Lorentz (or ice-cream) cone

�n = {
x ∈ Rn :

[
x2

1 + · · · + x2
n−1

]1/2 ≤ xn
}

satisfies ρ(�n) = ρ(�+
n ) = sin(π/4) = √

1/2. So, ρ(�n)ρ(�
+
n ) = 1/2 is

greater than 1/n.

We now derive a second product rule for inradii. It is less sharp than (21), but
applies to arbitrary convex cones. One says thatK ∈ �n is Lorentzian if there
exists an orthogonal matrix U of order n such thatK = U(�n). Equivalently,
a Lorentzian cone is a revolution cone with π/4 as half-aperture angle.

Proposition 2.9. For any K ∈ �n one has

(25) ρ(K)ρ(K+) ≤ 1/2.

The above inequality is an equality if and only if K ∈ �n is Lorentzian.

Proof. The proof of Proposition 2.6 shows that

(26) ρ(K)ρ(K+) ≤ max
(r,t)∈�

rt = 1/2.

Note that (25) becomes an equality if K is Lorentzian. Indeed, in such a case
one has

(27) ρ(K) = ρ(K+) = √
1/2.

Conversely, let K ∈ �n be such that (25) is an equality. Then the pair
(ρ(K), ρ(K+)) solves the maximization problem in (26). This is equivalent
to saying that (27) holds. By combining (5) and Lemma 2.1 one deduces that
K is generated by a ball. More precisely,

(28) K = M
(
x̄,
√

1/2
)

with x̄ = πinc(K). But, according to [6], the set (28) is equal to a revolution
cone with x̄ as revolution axis and arcsin(

√
1/2 ) = π/4 as half-aperture angle.

So, up to orthogonal transformation, K is equal to �n.
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2.3. Inradii and maximal angles

The next theorem establishes a curious relationship between the circumradius
μ(K) and the maximal angle

θmax(K) = max
u,v∈K∩Sn

arccos〈u, v〉

of K ∈ �n. It also establishes a link between the inradius ρ(K) and the
maximal angle of the dual cone K+.

Theorem 2.10. For all K ∈ �n one has

[μ(K)]2 ≤
(

1 − 1

n

)(
1 − cos [θmax(K)]

)
,(29)

[ρ(K)]2 ≥ 1

n
+
(

1 − 1

n

)
cos[θmax(K

+)].(30)

Proof. In view of the duality formula (5), it is enough to prove the relation
(30). Suppose that K ∈ �n is solid, otherwise θmax(K

+) = π and (30) holds
trivially. For convenience we distinguish between two cases.

I. The polyhedral case. LetK be expressible as intersection of finitely many
closed half-spaces, that is,

(31) K = {
x ∈ Rn : 〈f1, x〉 ≥ 0, . . . , 〈fm, x〉 ≥ 0

}
.

Without loss of generality one assumes that

(32) {fi}mi=1 is a positively independent collection of unit vectors of Rn.

Note that the integerm could be much larger than n. According to Lemma 2.3,
the incenter x̄ = πinc(K) of the solid polyhedral cone (31) satisfies the condi-
tion (12) and

(33) 〈fj , x̄〉 = ρ(K)

for all j ∈ I (x̄). The conic version of Caratheodory’s theorem applied to (12)
yields the representation

(34) x̄ =
∑
i∈I

λifi,

where each scalar λi is positive and I is a subset of I (x̄) such that {fi}i∈I is
linearly independent. The general formulation and proof of the conic version of
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Caratheodory’s theorem can be found in numerous references, see for instance
Theorem 3.2 in [18, Chapter 1]. From (34) one gets

(35) 〈fj , x̄〉 =
∑
i∈I

λi〈fi, fj 〉

for all j ∈ I , as well as

〈x̄, x̄〉 =
∑
i∈I

λi〈fi, x̄〉 = ρ(K)
∑
i∈I

λi .

Since x̄ has unit length, it follows that

(36)
∑
i∈I

λi = 1/ρ(K).

Thanks to (33) and (35), for all j ∈ I one has

(37) ρ(K) = λj +
∑
i∈I\{j}

λi〈fi, fj 〉.

Since the fi are unit vectors in K+, one has

γ := cos[θmax(K
+)] ≤ 〈fi, fj 〉.

Hence, ∑
i∈I\{j}

λi〈fi, fj 〉 ≥ γ
∑
i∈I\{j}

λi = γ

(∑
i∈I

λi − λj

)
for all j ∈ I . This, together with (36) and (37), produces the inequality

ρ(K) ≥ λj + γ

(
1

ρ(K)
− λj

)
for all j ∈ I . By passing to the sum and using (36) again, one obtains

card(I )

(
ρ(K)− γ

ρ(K)

)
≥ 1 − γ

ρ(K)
.

But the cardinality of I cannot exceed n. Hence, the above line leads to

[ρ(K)]2 − γ ≥ 1 − γ

n
,

which is just another way of writing (30).
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II. The nonpolyhedral case. Suppose thatK is not polyhedral. Theorem 4.4
in [17] asserts that any closed convex cone in an Euclidean space can be
written as Painlevé-Kuratowski limit of a sequence of polyhedral cones. As a
consequence of this approximation result, there exists a sequence {Kν}ν∈N of
polyhedral cones Kν ∈ �n such that

lim
ν→∞ δ(Kν,K) = 0.

But the celebrated Walkup-Wets Isometry Theorem (cf. [19, Theorem 1]) says
that the duality operation Q �→ Q+ is an isometry on (�n, δ), i.e.,

δ(Q+
1 ,Q

+
2 ) = δ(Q1,Q2) for all Q1,Q2 ∈ �n.

Hence, one also has
lim
ν→∞ δ(K

+
ν ,K

+) = 0.

As shown in Part I, for each ν ∈ N one can write

(38) [ρ(Kν)]
2 ≥ 1

n
+
(

1 − 1

n

)
cos[θmax(K

+
ν )].

Thanks to the continuity of ρ : �n → [0, 1] and θmax : �n :→ [0, π ], one has

lim
ν→∞ ρ(Kν) = ρ(K), lim

ν→∞ θmax(K
+
ν ) = θmax(K

+).

It suffices then to pass to the limit in (38) as ν → ∞.

There are a number of interesting consequences that can be derived from
Theorem 2.10. Recall that K ∈ �n is said to be⎧⎨⎩

supradual if K ⊃ K+,
infradual if K ⊂ K+,
selfdual if K = K+.

Clearly, infraduality implies pointedness and supraduality implies solidity. A
quantitative version of these statements reads as follows.

Corollary 2.11. One has:

(a) If K ∈ �n is infradual, then μ(K) ≤ √
1 − (1/n).

(b) If K ∈ �n is supradual, then ρ(K) ≥ √
1/n.

Proof. K ∈ �n is infradual if and only if θmax(K) ≤ π/2. Part (a) is then
a consequence of (29). Similarly, that K ∈ �n is supradual is equivalent to
saying that θmax(K

+) ≤ π/2. Hence, part (b) is a consequence of (30).
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The lower bound in Corollary 2.11(b) is optimal. Indeed,

(39) min
K∈�n

K supradual

ρ(K) = √
1/n

with attainment of the minimum ifK ∈ �n is orthogonal. Similarly, the upper
bound in Corollary 2.11(a) is optimal because

(40) max
K∈�n

K infradual

μ(K) = √
1 − (1/n)

with attainment of the maximum at any K ∈ �n that is orthogonal.

Remark 2.12. Every orthogonal cone is selfdual. Beware that an arbitrary
selfdual cone may not achieve the minimum in (39) or the maximum in (40).
To see this, consider the cone K generated by the vectors[ 1

1
1

]
,

[ 0
1
1

]
,

[−1
0
1

]
,

[ 0
−1

1

]
,

[ 1
−1

1

]
.

This cone is proposed by Barker and Foran [2] as example of self-dual polyhed-
ral cone that is not simplicial. On the other hand, it is shown in [8, Example 2.3]
that ρ(K) >

√
1/3, which means that K does not achieve the minimum in

(39).

For the sake of completeness we mention another result in the same vein as
Corollary 2.11.

Corollary 2.13. Let K ∈ �n.
(a) If K is infradual, then ρ(K) ≤ √

1/2.

(b) If K is simplicial and infradual, then ρ(K) ≤ √
1/n.

(c) If K is supradual, then μ(K) ≥ √
1/2.

(d) If K is simplicial and supradual, then μ(K) ≥ √
1 − (1/n).

Proof. Part (a) is a consequence of (5) and (8). Part (b) follows from
Theorem 2.7. Parts (c) and (d) are obtained by applying (a) and (b) to the dual
cone K+.

3. Condition number of a convex cone

As mentioned before, the condition number of a solid coneK ∈ �n is defined
as the ratio c(K) = μ(K)/ρ(K). By mimicking the parlance of numerical
linear algebra, one says that K is well-conditioned if c(K) is near to 1 and
ill-conditioned if c(K) is much larger than 1.
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Example 3.1. Consider the elliptic cone

EA = {
(z, t) ∈ Rn−1 × R :

√〈z,Az〉 ≤ t
}

associated to a positive definite symmetric matrix A of order n − 1. Proposi-
tion 6.4 in [10] asserts that

ρ(EA) = [1 + λmax(A)]
−1/2 ,

μ(EA) = [1 + λmin(A)]
−1/2 ,

where λmax(A) and λmin(A) denote, respectively, the largest and smallest ei-
genvalue of A. Hence,

c(EA) =
√

1 + λmax(A)

1 + λmin(A)
.

Note that c(EA) = 1 if and only if A is a positive multiple of the identity
matrix.

Example 3.2. As a generalization of the above example, consider the
epigraph

epiφ = {(z, t) ∈ Rn−1 × R : φ(z) ≤ t}
of a norm φ on Rn−1. Such set is clearly a regular cone in Rn. Lemmas 3.1 and
4.1 in [16] assert, respectively, that

ρ(epiφ) = [
1 + β2

φ

]−1/2
,

μ(epiφ) = αφ
[
1 + α2

φ

]−1/2
,

where
αφ := min‖z‖=1

φ(z) and βφ := max‖z‖=1
φ(z).

Hence,

c(epiφ) =
√

1 + β2
φ

1 + α2
φ

.

Note that c(epiφ) = 1 if and only if φ is constant on the unit sphere Sn−1.

What does it mean actually that c(K) is near to 1? The next theorem provides
an answer to this question. We establish first a topological lemma concerning
the collection

�ball
n = {M(x, r) : (x, r) ∈ Sn × [0, 1]}

of ball-generated cones in Rn.
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Lemma 3.3. �ball
n is a closed set in the metric space (�n, δ).

Proof. The lemma is surely known, so we give only a sketch of the proof.
Let {Kν}ν∈N be a sequence in �ball

n such that limν→∞ δ(Kν,K) = 0. For each
ν ∈ N one has Kν = M(xν, rν) with (xν, rν) ∈ Sn × [0, 1]. By taking a
subsequence if necessary, one may suppose that

lim
ν→∞(xν, rν) = (x̂, r̂) ∈ Sn × [0, 1].

A routinary work shows that

lim sup
ν→∞

M(xν, rν) ⊂ M(x̂, r̂) ⊂ lim inf
ν→∞

M(xν, rν),

where the upper and lower limits are understood in the Painlevé-Kuratowski
sense. One proves in this way that K = M(x̂, r̂). Hence, K ∈ �ball

n .

In view of Lemma 2.1, a solid cone K ∈ �n satisfies c(K) = 1 if and only
ifK ∈ �ball

n . An asymptotic version of this statement is formulated in the next
theorem. The notation

(41) dist
[
K,�ball

n

]
:= min

M∈�ball
n

δ(K,M)

indicates the distance from K ∈ �n to the closed set �ball
n . Since the metric

space (�n, δ) is compact (cf. [9, Proposition 2.1]), the subset �ball
n is compact

as well. This explains why the minimum in (41) is attained.

Theorem 3.4. Let {Kν}ν∈N be a sequence in �n satisfying the Uniform
Solidity Condition

(42) inf
ν∈N

ρ(Kν) > 0.

Then
lim
ν→∞ c(Kν) = 1 ⇐⇒ lim

ν→∞ dist
[
Kν,�

ball
n

] = 0.

Proof. Let us start with the “if” part. Suppose that

dν := dist
[
Kν,�

ball
n

]
goes to 0 as ν → ∞. For each ν ∈ N, pick (xν, rν) ∈ Sn × [0, 1] such that
Mν = M(xν, rν) achieves the distance from Kν to �ball

n , that is,

(43) δ (Kν,Mν) = dν.
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As shown in [10, Proposition 6.3], the inradius ρ is a nonexpansive function
on (�n, δ). Hence,

(44) |ρ(Kν)− ρ(Mν)| ≤ δ (Kν,Mν) .

By combining (9), (43), and (44), one gets

(45) ρ(Kν) = ρ(Mν)+ εν = rν + εν

with {εν}ν∈N converging to 0. We now examine the term μ(Kν). The nonex-
pansiveness of ρ and the Walkup-Wets Isometry Theorem yield∣∣ρ(K+

ν )− ρ(M+
ν )
∣∣ ≤ δ

(
K+
ν ,M

+
ν

) = δ (Kν,Mν) .

But
M+
ν = [M(xν, rν)]

+ = M
(
xν,

√
1 − r2

ν

)
.

One gets in this way

ρ(K+
ν ) = ρ(M+

ν )+ γν =
√

1 − r2
ν + γν

with {γν}ν∈N converging to 0. Thanks to the duality relation (5), one arrives at

μ(Kν) = (
1 − [

ρ(K+
ν )
]2)1/2 =

(
1 −

[√
1 − r2

ν + γν

]2)1/2
.

We must show that

(46) c(Kν) =
(

1 − [√
1 − r2

ν + γν
]2)1/2

rν + εν

goes to 1 as ν → ∞. In view of (45), the Uniform Solidity Condition (42)
implies that the sequence {rν}ν∈N remains away from 0. Hence, the numer-
ator and denominator of the quotient (46) are asymptotically equal. More
precisely, both behave as rν . We now prove the “only if” part. Suppose that
limν→∞ c(Kν) = 1. We claim that the upper limit

� = lim sup
ν→∞

dist
[
Kν,�

ball
n

]
is equal to zero. Let ϕ : N → N be an increasing function such that

lim
ν→∞ dist

[
Kϕ(ν), �

ball
n

] = �.
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Since {Kϕ(ν)}ν∈N lies in the compact metric space (�n, δ), there exists yet
another increasing function ψ : N → N and an element K̃ ∈ �n such that

lim
ν→∞ δ(Qν, K̃) = 0

with Qν = Kϕ(ψ(ν)). Let rν = ρ(Qν) and sν = μ(Qν). Then

M(xν, rν) ⊂ Qν ⊂ M(wν, sν)

with xν = πinc(Qν) and wν ∈ �circ(Qν). Since ρ,μ are continuous functions
on �n, one gets

r̄ := lim
ν→∞ rν = ρ(K̃)

s̄ := lim
ν→∞ sν = μ(K̃).

The Uniform Solidity Condition (42) implies that r̄ > 0. Hence, K̃ is solid
and

1 = lim
ν→∞ c(Kν) = lim

ν→∞ c(Qν) = lim
ν→∞ sν/rν = s̄/r̄,

that is to say, s̄ = r̄ . Given that {xν}ν∈N and {wν}ν∈N are in the compact set Sn,
there is an increasing function φ : N → N such that both limits

x̄ = lim
ν→∞ xφ(ν), w̄ = lim

ν→∞wφ(ν)

exist. By continuity arguments one obtains x̄ = πinc(K̃) and w̄ ∈ �circ(K̃).
Now, passing to Painlevé-Kuratowski limits in the sandwich

M(xφ(ν), rφ(ν)) ⊂ Qφ(ν) ⊂ M(wφ(ν), sφ(ν)),

and keeping in mind that s̄ = r̄ , one arrives at

x̄ + r̄ Bn ⊂ M(x̄, r̄) ⊂ K̃ ⊂ M(w̄, r̄).

We are in the same situation as in (10), so one deduces that K̃ = M(w̄, r̄) is a
ball-generated cone. Hence,

� = lim
ν→∞ dist

[
Kϕ(ν), �

ball
n

] = lim
ν→∞ dist

[
Qν,�

ball
n

]
= lim

ν→∞ dist
[
K̃,�ball

n

] = 0.

This proves our claim and completes the proof of the theorem.
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4. Eccentricity of a regular cone

The eccentricity of a regular cone K ∈ �n is defined by the expression (4),
that is to say, it is the gap between the incenter and the circumcenter ofK . By
squaring both sides of (4) and keeping in mind that πinc(K) and πcirc(K) are
unit vectors, one gets

[e(K)]2 = ‖πinc(K)− πcirc(K)‖2 = 2 − 2a(K),

where a(K) := 〈πinc(K), πcirc(K)〉. In other words, the eccentricity

(47) e(K) = √
2(1 − a(K))

of a regular cone K has to do also with the angle formed by πinc(K) and
πcirc(K).

Figure 1. Mutually dual simplicial cones in R3. One ray corresponds to
the incenter ofK , the other ray corresponds to the circumcenter ofK (i.e.,
the incenter ofK+). In this example the angle betweenπinc(K) andπcirc(K)

is almost π/4, suggesting a rather high degree of eccentricity.

Proposition 4.1. The function e : �reg
n → R is continuous and satisfies

the following properties:

(a) e(K+) = e(K) for all K ∈ �reg
n .

(b) 0 ≤ e(K) <
√

2 for all K ∈ �reg
n .

(c) {e(K) : K ∈ �reg
n } is an interval.

Proof. Both functions πinc and πcirc are continuous on �reg
n . Part (a) is a

consequence of (6) and (7). The strict inequality in (b) follows from (47) and



condition number and eccentricity of a closed convex cone 305

the fact that a(K) > 0 for all K ∈ �
reg
n . Recall that πinc(K) belongs to the

interior of K and πcirc(K) belongs to the interior of K+. The set in (c) is an
interval because �reg

n is arc-connected (cf. [9, Proposition 7.3]).

The next theorem provides an upper bound for the eccentricity in terms of
the coefficient

�(K) = ρ(K)+ ρ(K+)
1 + ρ(K)ρ(K+)

.

Such an expression is well defined for all K ∈ �n and satisfies

(48) 0 ≤ max
{
ρ(K), ρ(K+)

} ≤ �(K) ≤ 1.

These inequalities are all strict when K is regular.

Theorem 4.2. For all K ∈ �reg
n one has

(49) e(K) <
√

2 (1 −�(K)).

Furthermore, there exists sequence {Kν}ν∈N in �reg
n such that√

2 (1 −�(Kν))− e(Kν) → 0 as ν → ∞.

Proof. We claim that the inner product of x = πinc(K) and y = πcirc(K)

is greater than �(K). We suppose that x �= y, otherwise we are done. If one
sets r = ρ(K) and s = μ(K), then one can write

x + rBn ⊂ K ⊂ M(y, s).

Hence, for all u ∈ Bn one has x + ru ∈ M(y, s) or, equivalently,

(50) t‖x + ru‖ ≤ 〈y, x + ru〉
with t = √

1 − s2 = ρ(K+). We exploit the relation (50) for the particular
choice u = −y. Since x and y are not collinear, one has

‖x − ry‖ > 1 − r〈x, y〉,
and therefore

t (1 − r〈x, y〉) < 〈x, y〉 − r.

After simplification one obtains

〈x, y〉 > r + t

1 + rt
.
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This confirms our claim and completes the proof of (49). For proving the last
part of the theorem we consider a revolution cone

Kν = {w ∈ Rn : (1/ν)‖w‖ ≤ 〈z,w〉}
whose revolution axis is a given vector z ∈ Sn. For each ν ≥ 1 one has

πinc(Kν) = πcirc(Kν) = z,

and therefore e(Kν) = 0. On the other hand, ρ(Kν) = [
1 − (1/ν)2

]1/2
and

ρ(K+
ν ) = 1/ν , so �(Kν) → 1 as ν goes to infinity.

Keeping in mind (48) one gets in particular

e(K) <
√

2 (1 − ρ(K)),(51)

e(K) <
√

2 (1 − ρ(K+))(52)

for all K ∈ �reg
n . However, these upper bounds are less sharp than (49).

Corollary 4.3. If K ∈ �reg
n is either infradual or supradual, then

(53) e(K) <
√

2
(
1 − n−1/2

)
.

Proof. If K ∈ �
reg
n is supradual, then ρ(K) ≥ √

1/n by Corollary 2.11.
The relation (53) is then a consequence of (51). If K ∈ �reg

n is infradual, then
ρ(K+) ≥ √

1/n and (53) is a consequence of (52).

The following theorem proposes an alternative to the upper bound (49), but
it concerns only the class of simplicial cones. Note that the new bound (54) is
exact for orthogonal cones, whereas (49) is not.

Theorem 4.4. If K ∈ �n is simplicial, then

(54) e(K) ≤ √
2 (1 − n ρ(K)ρ(K+)).

Proof. Consider again the proof of Theorem 2.7. By combining (22), (23),
and (24), one gets

nρ(K)ρ(K+) ≤ 〈πinc(K), πinc(K
+)〉.

But

〈πinc(K), πinc(K
+)〉 = 〈πinc(K), πcirc(K)〉 = 1 − (1/2) [e(K)]2 .

This yields the announced relation (54).
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Though we know that the eccentricity of a regular cone is smaller that
√

2,
it remains an open question to compute

En = sup{e(K) : K ∈ �reg
n }.

It is not clear whether this supremum depends on n and which one is its exact
value. For the sake of illustration we give below an example showing that

(55)

√
2 − √

2 ≤ E3 ≤ √
2.

Example 4.5. For each ν ≥ 2, let Kν be the simplicial cone generated by
the columns of

Gν =
⎡⎣ 0 ν−1 ν−1

0
√

1 − ν−2 0

1 0
√

1 − ν−2

⎤⎦ .
A long and tedious computation shows that limν→∞ e(Kν) =

√
2 − √

2, which
explains the lower bound in (55).
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