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ON THE RELATION OF CARLESON’S EMBEDDING
AND THE MAXIMAL THEOREM IN THE

CONTEXT OF BANACH SPACE
GEOMETRY

TUOMAS HYTÖNEN and MIKKO KEMPPAINEN

Abstract
Hytönen, McIntosh and Portal (J. Funct. Anal., 2008) proved two vector-valued generalizations
of the classical Carleson embedding theorem, both of them requiring the boundedness of a new
vector-valued maximal operator, and the other one also the type p property of the underlying
Banach space as an assumption. We show that these conditions are also necessary for the respect-
ive embedding theorems, thereby obtaining new equivalences between analytic and geometric
properties of Banach spaces.

1. Introduction

Let Ej denote the averaging operator with respect to the dyadic cubes of side-
length 2−j in Rn. The classical Carleson embedding theorem, in its dyadic ver-
sion, characterizes the sequences (θj )j∈Z of functions θj ∈ L2

loc(R
n) for which

the map f �→ (Ejf · θj )j∈Z embeds L2(Rn) boundedly into L2(Z × Rn) =
L2(Rn; �2). The usual proofs show that this embedding theorem is a corollary
of the (dyadic) maximal inequality in L2(Rn). The present article shows, in
a more general context and among other things, that the two theorems are
actually equivalent in a precise sense to be described. But first we give some
background to motivate our considerations.

In the treatment of an infinite-dimensional version of the famous Kato
square root problem (related to the functional calculus of elliptic divergence
form operators), Hytönen, McIntosh and Portal [5] encountered the need of
a Carleson embedding for functions f ∈ Lp(Rn; E) (the Bochner Lp space
with values in the Banach space E). The relevant variant for the mentioned
application involved replacing the classical sequence space �2 appearing in
the scalar version by the space Rad(E) of almost unconditionally summable
sequences in E, which, of course, is no surprise to experts in vector-valued
Harmonic Analysis. Thus there was a need to obtain reasonable conditions
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for the boundedness of the embedding f �→ (Ejf · θj )j∈Z from Lp(Rn; E) to
Lp(Rn; Rad(E)). Note that, already for E = C, this led to apparently new con-
siderations involving embeddings of the type Lp(Rn) → Lp(Rn; �2), which are
different from (and more difficult than) the straightforward Lp generalizations
of the classical embedding to Lp(Rn) → Lp(Rn; �p).

In order to carry out an argument somewhat reminiscent of the classical
proof, the authors of [5] introduced a new maximal operator MR for vector-
valued functions. They then deduced two versions of the vector-valued Car-
leson embedding theorem under the condition that the maximal inequality
‖MRf ‖Lp(Rn) ≤ C‖f ‖Lp(Rn;E) holds for f ∈ Lp(Rn; E). This condition is sat-
isfied by many classical Banach spaces E such as all reflexive Lq spaces (and
even their noncommutative counterparts), but not for instance by E = �1. Thus
this maximal inequality defines a nontrivial Banach space property, which was
termed RMF (for Rademacher maximal function) in [5] and further studied by
Kemppainen [8].

Concerning the two versions of the vector-valued embedding, recall that
Carleson’s classical theorem gives an exact characterization of the admissible
sequences (θj )j∈Z in terms of the so-called Carleson condition. There is an
analogous condition Carp for every p ∈ (1, ∞), which is easily seen to be
necessary for the embedding of Lp(Rn; E). Its sufficiency was established in
[5] under the assumption that E has the RMF property and so-called type
p, a well-established notion from the Geometry of Banach Spaces. Without
the type p assumption, the embedding was only obtained under a stronger
Carleson condition Carp+ε with ε > 0.

While both the RMF and the type p assumptions where somewhat ad hoc
at the time of writing [5], being basically the assumptions needed to make
the particular method of proof work, it is the purpose of this paper to show
that both these conditions are actually necessary for the respective embedding
theorems. On the one hand, this gives further justification for the relevance of
RMF as a new class of Banach spaces. On the other hand, the necessity of type
is already interesting for the scalar-valued case E = C, as no Banach space
can have type p > 2. This limits the optimal embedding theorem with Carp

(rather than Carp+ε) to the spaces Lp(Rn) with p ∈ (1, 2]. For quite a while,
the first-named author believed that one should be able to take ε = 0 for all
p ∈ (1, ∞), until Michael Lacey provided him with a counterexample when
p = 4 (personal communication, September 2009). It was soon clear that this
could be extended to all p > 2, and this eventually led to the abstract result in
the context of Banach spaces as formulated in this paper.

The RMF property also played a role in an earlier version of the character-
ization of the boundedness of vector-valued singular integral operators with
respect to nonhomogeneous measures by Hytönen [6], although this assump-
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tion was eventually eliminated from the final version of that paper. A variant of
the vector-valued Carleson embedding theorem is still used there, but the point
is that the RMF assumption can be dispensed with provided that the functions
θj satisfy the additional condition that θj = Ejθj . Without such additional
structure, however, the RMF is equivalent to the Carleson embedding, as we
show here.

In companion with the results of Kemppainen [8], we now know various
analytic conditions equivalent to the vector-valued maximal inequality. It is still
an open question, however, to describe it in terms some established notions
from the Geometry of Banach Spaces. In particular, it would be interesting to
know if the important UMD property is sufficient for RMF.

2. Preliminaries

All Banach spaces can be either real or complex unless otherwise stated and
so we speak of scalars without specifying whether they are real or complex.
The scalar field, either R or C, is generically denoted by K.

We write a <∼ b when there exists a constant C such that a ≤ Cb, with C

independent of the indicated variables in expressions a and b. By a � b we
mean b <∼ a <∼ b. Isomorphism of Banach spaces is denoted by 	. Sets of
vectors indexed by a subset of a larger index set are always thought to have
zero extension to the whole index set.

Let (εj )
∞
j=1 be a sequence of Rademacher variables, more precisely, a se-

quence of independent random variables attaining values −1 and 1 with an
equal probability P(εj = −1) = P(εj = 1) = 1/2. We write E for the corres-
ponding expectation.

The following technique of randomization will be used at times in order to
handle randomized norms. If (εj )

N
j=1 and (ε′

j )
N
j=1 are independent sequences

of Rademacher variables, then for any vectors x1, . . . , xN in a Banach space,
the sequences (εjxj )

N
j=1 and (ε′

j εj xj )
N
j=1 are identically distributed. In practise

this is often applied in the following way: if {1, . . . , N} is decomposed into
disjoint sets J1, . . . , JM , then

E

∥∥∥∥
N∑

j=1

εjxj

∥∥∥∥
p

= EE′
∥∥∥∥

M∑
k=1

ε′
k

∑
j∈Jk

εj xj

∥∥∥∥
p

,

where E′ denotes the expectation for ε′
j ’s and 1 ≤ p < ∞.

The following two standard results will be used frequently (see Kahane [7]
for proofs):

Theorem 1 (Kahane’s Contraction Principle). Let 1 ≤ p < ∞ and suppose



272 t. hytönen and m. kemppainen

that x1, . . . , xN are vectors in a Banach space. Then

E

∥∥∥∥
N∑

j=1

εjλjxj

∥∥∥∥
p

≤ (
2 max

1≤j≤N
|λj |

)p
E

∥∥∥∥
N∑

j=1

εjxj

∥∥∥∥
p

for any scalars λ1, . . . , λN . If the scalars λj are real, the constant 2 may be
omitted.

Theorem 2 (Khintchine-Kahane Inequality). For any 1 ≤ p, q < ∞, there
exists a constant Kp,q such that

(
E

∥∥∥∥
N∑

j=1

εjxj

∥∥∥∥
p)1/p

≤ Kp,q

(
E

∥∥∥∥
N∑

j=1

εjxj

∥∥∥∥
q)1/q

,

whenever x1, . . . , xN are vectors in a Banach space.

We recall the following fact concerning randomized series (see, e.g., Diestel,
Jarchow and Tonge [3], Theorem 12.3): for a sequence (xj )

∞
j=1 of vectors in

a Banach space E, the series
∑∞

j=1 εjxj converges almost surely if and only
if it converges in Lp for one (or equivalently, for each) p ∈ [1, ∞). Such
sequences are called almost unconditionally summable. The space of all these
sequences in E is denoted by Rad(E) and when equipped with any of the
equivalent norms

∥∥(xj )
∞
j=1

∥∥
Radp(E)

=
(

E

∥∥∥∥
∞∑

j=1

εjxj

∥∥∥∥
p)1/p

, 1 ≤ p < ∞,

it becomes a Banach space.

Remark 3.
(1) Although the sequences (xj )

∞
j=1 in Rad(E) are not in general uncon-

ditionally summable, the sequences (εjxj )
∞
j=1 of random variables are

unconditionally summable in the Lp-norm for any p ∈ [1, ∞). Thus the
space Rad(E) remains the same for different orderings of the index set.

(2) For any Hilbert space H , there holds Rad(H) = �2(H), which is easy
to check using the Rad2 norm and the orthogonality of the signs εj .

(3) Kahane’s Contraction Principle will often be applied in order to bound
a finite sum by an infinite sum in the randomized norms.

In order to deduce the membership in Rad(E) of an infinite sequence from
uniform estimates on its subsequences, we will need the following classical
result of Kwapień [9]:
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Proposition 4. If a Banach space E does not contain an isomorphic copy
of c0 as a subspace, then for all sequences (xj )

∞
j=1 in E there holds

sup
N∈Z+

∥∥(xj )
N
j=1

∥∥
Rad(E)

< ∞ ⇒ (xj )
∞
j=1 ∈ Rad(E).

The concept of type of a Banach space is intended to measure how far the
randomized norms are from square sums of norms. As we will prove, it also
governs the form of Carleson’s embedding theorem which one can obtain in a
given Banach space.

Definition 5. A Banach space is said to have type p ∈ [1, 2] if there exists
a constant C such that

(
E

∥∥∥∥
N∑

j=1

εjxj

∥∥∥∥
2)1/2

≤ C

( N∑
j=1

‖xj‖p

)1/p

for any vectors x1, . . . , xN , regardless of N .

Remark 6.
(1) Every Banach space has type 1; hence we say that a Banach space has

nontrivial type if it has type p for some p > 1.

(2) It follows from standard inequalities of �p-norms that if a space has type
p then it also has type p̃ when 1 ≤ p̃ ≤ p.

(3) One can show that Lp-spaces have type min{p, 2} when 1 ≤ p < ∞.
Sequence spaces �1 and c0, on the other hand, are typical examples of
spaces with only trivial type.

(4) Hilbert spaces have type 2 with constant C = 1 and equality of the
randomized and quadratic norms.

In many questions of vector-valued Harmonic Analysis the uniform bound
of a family of operators has to be replaced by its R-bound, first formally
defined by Berkson and Gillespie [1]. The usefulness of this notion became
widely recognized after its role in the seminal work of Weis [11], and it also lies
behind the definition of the Rademacher maximal function, which we discuss
in the following section.

Definition 7. A family T ⊂ L (F, E) of linear operators from a Banach
space F to a Banach space E is said to be R-bounded if there exists a constant
C such that for any T1, . . . , TN ∈ T and any x1, . . . , xN ∈ F , regardless of
N , we have

E

∥∥∥∥
N∑

j=1

εjTjxj

∥∥∥∥
p

≤ CpE

∥∥∥∥
N∑

j=1

εjxj

∥∥∥∥
p

,
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for some p ∈ [1, ∞). The smallest such constant is denoted by Rp(T ). We
denote R2 by R for short later on.

Basic properties of R-bounds can be found for instance in Clément et al.
[2]. We wish only to remark that by the Khintchine-Kahane inequality, the
R-boundedness of a family does not depend on p, and the constants Rp(T )

are comparable. R-bounds are (usually strictly) stronger than uniform norm
bounds. They coincide with uniform bounds if E and F are Hilbert spaces.

3. The Rademacher maximal function

Suppose from now on that F and E are Banach spaces and that X ⊂ L (F, E)

is a Banach space whose norm dominates the operator norm. Moreover, we
require that X contains all the elementary tensors

f ∗ ⊗ e : y ∈ F �→ f ∗(y)e ∈ E, e ∈ E, f ∗ ∈ F

and that ‖f ∗ ⊗ e‖X = ‖f ∗‖F ∗‖e‖E . Fixing f ∗ ∈ F ∗ or e ∈ E of unit norm,
this implies in particular that X contains an isometric copy of both E and F ∗.

Let (�, F , μ) be a σ -finite measure space and denote the corresponding
Lebesgue-Bochner space of F -measurable X -valued functions by Lp(F ; X )

(or Lp(X )), 1 ≤ p ≤ ∞. The space of strongly measurable functions f for
which 1Af is integrable for every set A ∈ F with finite measure, is denoted
by L1

fin(F ; X ).
If G is a sub-σ -algebra of F such that (�, G, μ) is σ -finite, there ex-

ists for every function f ∈ L1
fin(F ; X ) a conditional expectation E(f |G) ∈

L1
fin(G; X ) with respect to G which is the (almost everywhere) unique strongly

G-measurable function satisfying

∫
A

E(f |G) dμ =
∫

A

f dμ

for every A ∈ G with finite measure. The operator E(·|G) is a contractive
projection from Lp(F ; X ) onto Lp(G; X ) for any p ∈ [1, ∞]. This follows
immediately, if the vector-valued conditional expectation is constructed as
the tensor extension of the scalar-valued conditional expectation, which is a
positive operator (see Stein [10] for the scalar-valued case).

Suppose then that (Fj )j∈Z is a filtration, that is, an increasing sequence
of sub-σ -algebras of F such that each (�, Fj , μ) is σ -finite. For a function
f ∈ L1

fin(F ; X ), we denote the conditional expectations with respect to this
filtration by

Ejf := E(f |Fj ), j ∈ Z.
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The standard maximal function (with respect to (Fj )j∈Z) is given by

Mf (ξ) = sup
j∈Z

‖Ejf (ξ)‖, ξ ∈ �.

The operator f �→ Mf is known to be bounded from Lp(X ) to Lp whenever
1 < p ≤ ∞, regardless of X . The following variant was originally defined by
Hytönen, McIntosh and Portal [5] and later studied in more detail by Kemp-
painen [8].

Definition 8. The Rademacher maximal function of a function f ∈
L1

fin(F ; X ) is defined by

MRf (ξ) = R(Ejf (ξ) : j ∈ Z), ξ ∈ �.

Remark 9. By the properties of R-bounds we obtain the pointwise relation
Mf ≤ MRf . If F and E are Hilbert spaces, then MRf = Mf .

In [5], Hytönen, McIntosh and Portal used the identification L (K, E) 	 E

and studied the Rademacher maximal function in the Euclidean case, where
� = Rn is equipped with Lebesgue measure and the filtration that is generated
by dyadic cubes Dj = {2−j ([0, 1)n + m) : m ∈ Zn}, j ∈ Z. They showed that
the Lp-boundedness of f �→ MRf for one p ∈ (1, ∞) implies boundedness of
a linearized version of MR both from H 1 to L1 and from L∞ to BMO and hence
allows to interpolate in order to acquire boundedness between Lorentz spaces
Lp,s for all 1 < p < ∞, 1 ≤ s ≤ ∞ (see Hunt [4] for details on interpolation
between Lorentz spaces). They also provided an example of a space, namely
�1, for which the Rademacher maximal operator is not bounded.

Kemppainen [8] gave the definition in the above generality and showed
that the boundedness of MR is independent of the filtration and the underlying
measure space in the following sense: the boundedness with respect to the
filtration of dyadic intervals on [0, 1) guarantees boundedness with respect to
any filtration on any σ -finite measure space. This motivates the definition:

Definition 10. A Banach space X ⊂ L (F, E) is said to have RMF if the
Rademacher maximal operator with respect to the filtration of dyadic intervals
on [0, 1) is bounded from Lp(X ) to Lp for one (or equivalently, for each)
p ∈ (1, ∞).

Remark 11.
(1) The RMF-property is inherited by closed subspaces. In particular, from

the assumption that X ⊂ L (F, E) contain the elementary tensors e ⊗
f ∗, it follows that if X has RMF, then so do E 	 L (K, E) and F ∗ =
L (F, K).
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(2) Based on the fact that �1 does not have RMF, it was shown by Kemp-
painen [8] that if X , and hence E, has RMF, then E has some nontrivial
type p > 1. (The result was formulated for X = L (F, E), but only
used the fact that E is isomorphic to a subspace of X .) Such a space
cannot contain an isomorphic copy of c0, and hence Proposition 4 is
applicable in this situation.

(3) When speaking of the RMF-property of X , we always understand that
the indentification of X as a subspace of an operator space L (F, E) has
been fixed. If a space E has no obvious operator structure, we always
understand that the identification E 	 L (K, E) is used. The RMF-
property does depend on the chosen identification! In particular, if H

and K are infinite-dimensional Hilbert spaces, then X = L (H, K) has
RMF when viewed as L (H, K) (trivially, since then MRf ≤ Mf ),
but it does not have RMF when viewed as L (K, X ) (since this would
require that X have nontrivial type, and it does not).

4. Carleson’s embedding theorem

Recall that F and E are Banach spaces and X ⊂ L (F, E) has the properties
assumed in the beginning of the previous section. Let (Fj )j∈Z be a filtration
on a σ -finite measure space (�, F , μ).

Definition 12. A family θ = (θj )j∈Z of strongly μ-measurable F -valued
functions is called a p-Carleson family for p ∈ [1, ∞) if

(1) (θj (ξ))j≥m is in Rad(F ) for all m ∈ Z and μ-almost every ξ ∈ �,

(2) there exists a constant C such that for any integer m and all sets A ∈ Fm

we have ∫
A

E

∥∥∥∥
∑
j≥m

εj θj (ξ)

∥∥∥∥
p

dμ(ξ) ≤ Cpμ(A).

The smallest such constant is called the p-Carleson constant ‖θ‖Carp of θ .

Observe that ‖θ‖Carp ≤ ‖θ‖Carq whenever p ≤ q. This definition was
introduced by Hytönen, McIntosh and Portal [5] in the case of scalar-valued
functions and the dyadic filtration of Rn. The above generalization appears
in [6], where it was used in the context of singular integrals with respect to
nonhomogeneous measures.

Let 1 < p < ∞ and 1 ≤ s < ∞. The norm of the Lorentz space Lp,s(X )

on (�, μ) is given by

‖f ‖Lp,s (X ) =
(∫ ∞

0

(
λμ

({ξ ∈ � : ‖f (ξ)‖ > λ})1/p

)s dλ

λ

)1/s

.

Recall that ‖f ‖Lp,s2 ≤ ‖f ‖Lp,s1 for s1 ≤ s2 and ‖f ‖Lp,p � ‖f ‖Lp .
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The following main lemma contains the heart of the deduction of Carleson’s
embedding theorem from the maximal inequality. It is based on the same
stopping time technique as its original special case in Hytönen, McIntosh and
Portal [5].

Lemma 13. Let 1 < p < ∞, suppose that E has type r ∈ [1, 2] and write
s = min{p, r}. For any p-Carleson family θ = (θj )j∈Z we have

(∫
�

sup
N∈Z

E

∥∥∥∥
∑
j≥N

εjEjf (ξ)θj (ξ)

∥∥∥∥
p

dμ(ξ)

)1/p

<∼ ‖θ‖Carp‖MRf ‖Lp,s ,

whenever f ∈ Lp,s(X ) is such that the right side is finite. If E does not contain
an isomorphic copy of c0, then the series on the left converges as N → −∞
for a.e. ξ , and we also have

(∫
�

E

∥∥∥∥
∑
j∈Z

εjEjf (ξ)θj (ξ)

∥∥∥∥
p

dμ(ξ)

)1/p

<∼ ‖θ‖Carp‖MRf ‖Lp,s .

Proof. By the contraction principle, the supremum supN∈Z may be replaced
by limN→−∞, and then by Fatou’s lemma it suffices to prove a similar statement
with the supremum outside the integral. So we may consider N ∈ Z fixed, and
then prove the assertion with a bound independent of N .

Let f ∈ Lp,s(X ). We may assume with no loss of generality that MRf <

∞ μ-almost everywhere so that (Ejf (ξ)θj (ξ))j≥N is in Rad(E) for μ-almost
every ξ ∈ �. In order to break the sum into suitable pieces we define the
stopping times

τk(ξ) = min
{
j ≥ N : R(Eif (ξ) : i ≤ j) > 2k

}
, k ∈ Z, ξ ∈ �.

Since MRf is finite μ-almost everywhere, we have for μ-almost every ξ ∈ �

that τk(ξ) = ∞ when k is big enough. On the other hand, τk(ξ) may for some
ξ ∈ � tend to some τ−∞(ξ) > N as k → −∞, but then

sup
j<τ−∞(ξ)

R(Eif (ξ) : i ≤ j) ≤ 2k

for all k ∈ Z, which is possible only if Ejf (ξ) = 0 whenever j < τ−∞(ξ).
The set of indices j ≥ τ−∞(ξ) can now be written as a union of finitely

many disjoint sets

Jk(ξ) = {j ∈ Z : τk(ξ) ≤ j < τk+1(ξ)}
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at each point ξ ∈ �. Using randomization and type s = min{p, r} of E we
get

E

∥∥∥∥
∑
j≥N

εjEjf (ξ)θj (ξ)

∥∥∥∥
p

= EE′
∥∥∥∥
∑
k∈Z

ε′
k

∑
j∈Jk(ξ)

εjEjf (ξ)θj (ξ)

∥∥∥∥
p

<∼
(∑

k∈Z

E

∥∥∥∥
∑

j∈Jk(ξ)

εjEjf (ξ)θj (ξ)

∥∥∥∥
s)p/s

,

where

E

∥∥∥∥
∑

j∈Jk(ξ)

εjEjf (ξ)θj (ξ)

∥∥∥∥
s

≤ 2(k+1)sE

∥∥∥∥
∑

j∈Jk(ξ)

εj θj (ξ)

∥∥∥∥
s

by the definition of the stopping times τk . Since s ≤ p, we may use the triangle
inequality in Lp/s to get

(∫
�

E

∥∥∥∥
∑
j≥N

εjEjf (ξ)θj (ξ)

∥∥∥∥
p

dμ(ξ)

)s/p

<∼
(∫

�

(∑
k∈Z

2(k+1)sE

∥∥∥∥
∑

j∈Jk(ξ)

εj θj (ξ)

∥∥∥∥
s)p/s

dμ(ξ)

)s/p

≤
∑
k∈Z

2(k+1)s

(∫
�

(
E

∥∥∥∥
∑

j∈Jk(ξ)

εj θj (ξ)

∥∥∥∥
s)p/s

dμ(ξ)

)s/p

,

where (
E

∥∥∥∥
∑

j∈Jk(ξ)

εj θj (ξ)

∥∥∥∥
s)p/s

� E

∥∥∥∥
∑

j∈Jk(ξ)

εj θj (ξ)

∥∥∥∥
p

by the Khintchine-Kahane inequality.
We write Am = {ξ ∈ � : τk(ξ) = m} for a fixed k to split the space as

� = ⋃
m≥N Am, where the value m = ∞ is a priori included in the union.

Note that Am ∈ Fm for each integer m ≥ N , and for m = ∞ the sum over
j ≥ m is empty. Hence

∫
�

E

∥∥∥∥
∑

j∈Jk(ξ)

εj θj (ξ)

∥∥∥∥
p

dμ(ξ) ≤
∑
m≥N

∫
Am

E

∥∥∥∥
∑
j≥m

εj θj (ξ)

∥∥∥∥
p

dμ(ξ),

where the summation can be restricted to finite values of m, as usual. Using
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the p-Carleson condition for sets Am we obtain

∑
m≥N

∫
Am

E

∥∥∥∥
∑
j≥m

εj θj (ξ)

∥∥∥∥
p

dμ(ξ) ≤ ‖θ‖p

Carp

∑
m≥N

μ(Am)

= ‖θ‖p

Carpμ
({ξ ∈ � : τk(ξ) < ∞}).

Observe that τk(ξ) < ∞ exactly when R(Eif (ξ) : i ≤ j) > 2k for some
integer j , i.e. when MRf (ξ) > 2k . In conclusion,

(∫
�

E

∥∥∥∥
∑
j≥N

εjEjf (ξ)θj (ξ)

∥∥∥∥
p

dμ(ξ)

)s/p

≤
∑
k∈Z

2(k+1)s

(∫
�

E

∥∥∥∥
∑

j∈Jk(ξ)

εj θj (ξ)

∥∥∥∥
p

dμ(ξ)

)s/p

≤ ‖θ‖s
Carp

∑
k∈Z

2(k+1)sμ
({ξ ∈ � : MRf (ξ) > 2k})s/p

� ‖θ‖s
Carp‖MRf ‖s

Lp,s .

This completes the proof of the case involving the truncated sums over j ≥ N .
Let us then assume, in addition, that E does not contain a copy of c0. By

the first part of the proof, we already know that

sup
N∈Z

E

∥∥∥∥
∑
j≥N

εjEjf (ξ)θj (ξ)

∥∥∥∥
p

< ∞ for a.e. ξ ∈ �

By Proposition 4, this implies that (Ejf (ξ)θj (ξ))j∈Z belongs to Rad(E) for
all the ξ , and we may hence pass to the limit N → −∞ to obtain the second
assertion.

Let 1 ≤ p, q < ∞ and suppose that θ = (θj )j∈Z is a q-Carleson family of
F -valued functions. For every f ∈ L1

fin(X ) we define

�f (ξ) = (
Ejf (ξ)θj (ξ)

)
j∈Z

, ξ ∈ �.

We ask if the linear operator � is bounded from Lp(X ) to Lp(Rad(E)) and
further if the (q, p)-Carleson map (with respect to the given filtration on the
given σ -finite measure space)

Carq → L
(
Lp(X ), Lp(Rad(E))

)
: θ �→ �

is well-defined and bounded.
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Now we come to the first main theorem.

Theorem 14. Suppose that X ⊂ L (F, E) is a Banach space and let
1 < p < q < ∞. The following conditions are equivalent:

(1) The (q, p)-Carleson map with respect to any filtration on any σ -finite
measure space is well-defined and bounded.

(2) The (q, p)-Carleson map with respect to the filtration of dyadic intervals
on [0, 1) is well-defined and bounded.

(3) X has RMF.

Note that (3) ⇒ (2) was shown in [5]. We will extend this argument to show
the implication (3) ⇒ (1); a similar claim was formulated without proof in [6].
This extension relies implicitly on the result of Kemppainen [8] that the RMF
property with respect to the dyadic filtration already implies the corresponding
property for arbitrary filtrations and measure spaces. The implication (2) ⇒ (3)
is completely new.

Proof. (1) ⇒ (2): Clear
(2) ⇒ (3): Take any positive integer N and let f ∈ Lp([0, 1); X ). There

exists for every ξ ∈ [0, 1) elements x(k) = (x
(k)
j )Nj=0, k ∈ Z+, of Rad(F ) such

that

E

∥∥∥∥
N∑

j=0

εjx
(k)
j

∥∥∥∥
p

≤ 1

and

E

∥∥∥∥
N∑

j=0

εjEjf (ξ)x
(k)
j

∥∥∥∥
p

→ Rp

(
Ejf (ξ) : 0 ≤ j ≤ N

)p

as k tends to infinity. Since each Ejf is constant on intervals of DN , we only
need to choose 2N different (x(k))∞k=1’s, one for each interval. Thus we may
define θ

(k)
j (ξ) = x

(k)
j , where x(k) corresponds to the interval containing ξ . It

is immediate that each θ
(k)
j (ξ) is strongly measurable and that each θ(k) =

(θ
(k)
j )Nj=0 is a q-Carleson family with ‖θ(k)‖Carq ≤ 1. Thus

∫ 1

0
Rp

(
Ejf (ξ) : 0 ≤ j ≤ N

)p
dξ

≤ lim inf
k→∞

∫ 1

0
E

∥∥∥∥
N∑

j=0

εjEjf (ξ)θ
(k)
j (ξ)

∥∥∥∥
p

dξ <∼ ‖f ‖p

Lp([0,1);X )
,

and consequently MR is bounded (remember that Rp and R2-bounds are com-
parable).
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(3) ⇒ (1): Suppose that X has RMF and let θ be a q-Carleson family with
respect to any filtration on any σ -finite measure space. The RMF property
implies in particular that E cannot contain a copy of c0, and hence Lemma 13 is
applicable in its stronger form. Combining it with the fact that the Rademacher
maximal operator maps Lq,1(X ) boundedly to Lq,1 and E has type 1 (trivially),
Lemma 13 shows that �f is well-defined for f ∈ Lq,1(X ) and

‖�f ‖Lq(Rad(E))
<∼ ‖θ‖Carq ‖MRf ‖Lq,1 <∼ ‖θ‖Carq ‖f ‖Lq,1(X ).

On the other hand, if 0 < ε < p − 1, then θ is also a (p − ε)-Carleson family
and a similar application of Lemma 13 gives

‖�f ‖Lp−ε(Rad(E))
<∼ ‖θ‖Carp−ε‖MRf ‖Lp−ε,1 <∼ ‖θ‖Carq ‖f ‖Lp−ε,1(X ).

Hence � is bounded both from Lq,1(X ) to Lq(Rad(E)) and from Lp−ε,1(X )

to Lp−ε(Rad(E)), which means that we may interpolate to get boundedness
from Lp(X ) to Lp(Rad(E)). The (q, p)-Carleson map is thus well-defined
and bounded.

Theorem 15. Suppose that X ⊂ L (F, E) is a Banach space and let
1 < p < ∞. The following conditions are equivalent:

(1) The (p, p)-Carleson map with respect to any filtration on any σ -finite
measure space is well-defined and bounded.

(2) The (p, p)-Carleson map with respect to the filtration of dyadic intervals
on [0, 1) is well-defined and bounded.

(3) X has RMF and E has type p.

Again, (3) ⇒ (2) was shown in [5], and we extend this to (3) ⇒ (1). The
proof of (2) ⇒ (3) was inspired by the counterexample by Michael Lacey,
which demonstrated that the (4, 4)-Carleson map with respect to the dyadic
intervals is unbounded even for X = E = F = R.

Proof. (1) ⇒ (2): Clear.
(2) ⇒ (3): The proof that X has RMF is identical to the corresponding

argument in the proof of Theorem 14. For the claim on type p of E, recall
that the space E 	 L (K, E) itself has RMF under the assumptions, so we
may take F = K. Thus we assume that for any (scalar) p-Carleson family
θ = (θj )

∞
j=0 we have

(∫ 1

0
E

∥∥∥∥
∞∑

j=0

εj θj (ξ)Ejf (ξ)

∥∥∥∥
p

dξ

)1/p

<∼ ‖θ‖Carp‖f ‖Lp(E)

whenever f is in Lp(E).
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Suppose we are given x1, . . . , xN in E. We aim to construct a function
f ∈ Lp(E) and a p-Carleson family θ for which

∫ 1

0
E

∥∥∥∥
∞∑

j=0

εj θj (ξ)Ejf (ξ)

∥∥∥∥
p

dξ = E

∥∥∥∥
N∑

j=1

εjxj

∥∥∥∥
p

and

‖f ‖p

Lp(E)
<∼

N∑
j=1

‖xj‖p.

Further, an upper bound for ‖θ‖Carp must not depend on N (nor on the vec-
tors x1, . . . , xN ), from which it will follow by our assumption on boundedness
of the (p, p)-Carleson map, that E has type p.

To obtain vectors y1, . . . , yN ∈ E (which we choose later) as dyadic aver-
ages of a function f we define f (ξ) = 0 for ξ ∈ [0, 2−N) and

f (ξ) = 2yj − yj+1 for ξ ∈ [2−j , 2−j+1), j = 1, . . . , N,

where yN+1 = 0. Now, for ξ ∈ [0, 2−j+1) with j = 1, . . . , N we have

Ej−1f (ξ) = 2j−1
N∑

k=j

2−k(2yk − yk+1)

= 2j−1

( N∑
k=j

2−k+1yk −
N+1∑

k=j+1

2−k+1yk

)
= yj ,

while Ejf (ξ) = 0 for ξ ∈ [0, 2−j ) with j ≥ N .
A suitable choice of θ guarantees that the averages Ejf need to be con-

sidered only on the intervals of the form [0, 2−j ). Indeed, we define

θj = 2(N−j−1)/p1[0,2−N ), j = 0, 1, . . . , N − 1,

so that whenever 0 ≤ m ≤ N − 1, we have

∫ 2−m

0
E

∣∣∣∣
N−1∑
j=m

εj θj (ξ)

∣∣∣∣
p

dξ

=
∫ 2−m

0
E

∣∣∣∣
N−1∑
j=m

εj 2(N−j−1)/p1[0,2−N )(ξ)

∣∣∣∣
p

dξ = 2−NE

∣∣∣∣
N−1∑
j=m

εj 2(N−j−1)/p

∣∣∣∣
p

<∼ 2−N

(N−1∑
j=m

22(N−j−1)/p

)p/2

=
(N−1∑

j=m

2−2(j+1)/p

)p/2

<∼ 2−m,
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where Khintchine’s inequality (the scalar version of Khintchine-Kahane in-
equality) was used in the third step. Thus ‖θ‖Carp <∼ 1 independently of N .

The choice yj = 2j/pxj now gives

∫ 1

0
E

∥∥∥∥
∞∑

j=0

εj θj (ξ)Ejf (ξ)

∥∥∥∥
p

dξ =
∫ 1

0
E

∥∥∥∥
N∑

j=1

εj 2(N−j)/p1[0,2−N )(ξ)2j/pxj

∥∥∥∥
p

dξ

= 2−NE

∥∥∥∥
N∑

j=1

εj 2N/pxj

∥∥∥∥
p

= E

∥∥∥∥
N∑

j=1

εjxj

∥∥∥∥
p

,

and all that remains is to calculate the norm of f :

‖f ‖Lp(E) =
( N∑

j=1

2−j‖2yj − yj+1‖p

)1/p

<∼
( N∑

j=1

2−j‖yj‖p

)1/p

=
( N∑

j=1

‖xj‖p

)1/p

.

We have shown that

(
E

∥∥∥∥
N∑

j=1

εjxj

∥∥∥∥
p)1/p

<∼
( N∑

j=1

‖xj‖p

)1/p

,

which by Khintchine-Kahane inequality guarantees that E has type p.
(3) ⇒ (1): Suppose that X has RMF, E has type p and let θ be a p-Carleson

family with respect to any filtration on any σ -finite measure space. Since the
Rademacher maximal operator maps Lp(X ) boundedly to Lp and E has type
p (and hence E does not contain c0), we can apply Lemma 13 to obtain

‖�f ‖Lp(Rad(E))
<∼ ‖θ‖Carp‖MRf ‖Lp <∼ ‖θ‖Carp‖f ‖Lp(X ).

The (p, p)-Carleson map is thus well-defined and bounded.

Remark 16. Note that p cannot be greater than 2 in Theorem 15. It is
shown in Kemppainen [8] that every space with RMF has non-trivial type and
so the conditions in Theorem 15 always hold for some p > 1.
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