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MATRICES OF UNITARY MOMENTS

KEN DYKEMA and KATE JUSCHENKO∗

Abstract
We investigate certain matrices composed of mixed, second-order moments of unitaries. The
unitaries are taken from C∗-algebras with moments taken with respect to traces, or, alternatively,
from matrix algebras with the usual trace. These sets are of interest in light of a theorem of
E. Kirchberg about Connes’ embedding problem.

1. Introduction

One fundamental question about operator algebras is Connes’embedding prob-
lem, which in its original formulation asks whether every II1-factor M embeds
in the ultrapower Rω of the hyperfinite II1-factor R. This is well known to be
equivalent to the question of whether all elements of II1-factors possess matri-
cial microstates, (which were introduced by Voiculescu [16] for free entropy),
namely, whether such elements are approximable in ∗-moments by matrices.
Connes’embedding problem is known to be equivalent to a number of different
problems, in large part due to a remarkable paper [6] of Kirchberg. (See also
the survey [10], and the papers [11], [12], [13], [1], [14], [3], [7], [15], [5] for
results with bearing on Connes’ embedding problem.)

In Proposition 4.6 of [6], Kirchberg proved that, in order to show that a
finite von Neumann algebra M with faithful tracial state τ embeds in Rω, it
would be enough to show that for all n, all unitary elements U1, . . . , Un in M

and all ε > 0, there is k ∈ N and there are k × k unitary matrices V1, . . . , Vn
such that |τ(U ∗

i Uj ) − trk(V ∗
i Vj )| < ε for all i, j ∈ {1, . . . , n}, where trk

is the normalized trace on Mk(C). (He also required |τ(Ui) − trk(Vi)| < ε,
but this formally stronger condition is easily satisfied by taking the n + 1
unitaries U1, . . . , Un, Un+1 = I in M finding k× k unitaries Ṽ1, . . . , Ṽn+1, so
that |τ(U ∗

i Uj )− trk(Ṽ ∗
i Ṽj )| < ε, and letting Vi = Ṽ ∗

n+1Ṽi .) It is, therefore, of
interest to consider the set of possible second-order mixed moments of unitaries
in such (M, τ ) or, equivalently, of unitaries in C∗-algebras with respect to

∗ Ken Dykema’s research supported in part by NSF grant DMS-0600814, Kate Juschenko’s
research supported in part by NSF grant DMS-0503688.

Received 10 September 2010.



226 ken dykema and kate juschenko

tracial states. (See also [12], where some similar sets were considered by
F. Rădulescu.)

Definition 1.1. Let Gn be the set of all n× n matrices X of the form

(1) X = (τ (U ∗
i Uj ))1≤i,j≤n

as (U1, . . . , Un) runs over all n-tuples of unitaries in all C∗-algebras A pos-
sessing a faithful tracial state τ .

Remark 1.2. The set-theoretic difficulties in the phrasing of Definition 1.1
can be evaded by insisting that A be represented on a given separable Hilbert
space. Alternatively, let � = C〈U1, . . . , Un〉 denote the universal, unital, com-
plex ∗-algebra generated by unitary elements U1, . . . , Un. A linear functional
φ on � is positive if φ(a∗a) ≥ 0 for all a ∈ �. By the usual Gelfand-Naimark-
Segal construction, any such positive functional φ gives rise to a Hilbert space
L2(�, φ) and a ∗-representation πφ : � → B(L2(�, φ)). Thus, the set Gn
equals the set of all matrices X as in (1) as τ runs over all positive, tracial,
unital, linear functionals τ on �.

Definition 1.3. Let Fn be the closure of the set{
(trk(V

∗
i Vj ))1≤i,j≤n | k ∈ N, V1, . . . , Vn ∈ Uk

}
,

where Uk is the group of k × k unitary matrices.

A correlation matrix is a complex, positive semidefinite matrix having all
diagonal entries equal to 1. Let�n be the set of all n× n correlation matrices.
Clearly, we have

Fn ⊆ Gn ⊆ �n.

Kirchberg’s result is that Connes’ embedding problem is equivalent to the
problem of whether Fn = Gn holds for all n.

Proposition 1.4. For each n,

(i) Fn and Gn are invariant under conjugation with n×n diagonal unitary
matrices and permutation matrices,

(ii) Fn and Gn are compact, convex subsets of �n,

(iii) Fn and Gn are closed under taking Schur products of matrices.

Proof. Part (i) is clear. Note that �n is a norm-bounded subset of Mn(C).
That Fn is closed is evident. That Gn is closed follows from the description
in Remark 1.2 and the fact that a pointwise limit of positive traces on � is
a positive trace. This proves compactness. Convexity of Fn follows from by
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observing that if V is a k × k unitary and V ′ is a k′ × k′ unitary, then for
arbitrary �, �′ ∈ N,

V ⊕ · · · ⊕ V︸ ︷︷ ︸
� times

⊕V ′ ⊕ · · · ⊕ V ′︸ ︷︷ ︸
�′ times

can be realized as a block-diagonal (k� + k′�′) × (k� + k′�′) matrix whose
normalized trace is

k�

k�+ k′�′ trk(V )+ k′�′

k�+ k′�′ trk′(V ′).

Convexity of Gn follows because a convex combination of positive traces on
� is a positive trace. This proves (ii).

Closedness of Fn under taking Schur products follows by observing that
if V and V ′ are unitaries as above, then V ⊗ V ′ is a kk′ × kk′ unitary whose
normalized trace is trk(V ) trk′(V ′). For Gn, we observe that if U and respect-
ively, U ′, are unitaries in C∗-algebras A and A′ having tracial states τ and τ ′,
then the spatial tensor product C∗-algebra A⊗ A′ has tracial state τ ⊗ τ ′ that
takes value τ(U)τ ′(U ′) on the unitary U ⊗ U ′. This proves (iii).

Since it is important to decide whether we have Fn = Gn for all n, it is
interesting to learn more about the sets Fn. A first question is whether Fn = �n

holds. In Section 2, we show that this holds for n = 3 but fails for n ≥ 4. The
proof relies on a characterization of extreme points of�n, and it uses also the
set Cn of matrices of moments of commuting unitaries. In Section 3 we prove
Mn(R) ∩�n ⊆ Fn, and some further results concerning Cn. In Section 4, we
show that Fn has nonempty interior, as a subset of �n.

2. Extreme points of �n and some consequences

The set �n of n × n correlation matrices is embedded in the affine space
consisting of the self-adjoint complex matrices having all diagonal entries
equal to 1; it is just the intersection of the set of positive, semidefinite matrices
with this space. Every element of�n is bounded in norm by n (cf Remark 2.9),
and�n is a compact, convex space. Since, in the space of self-adjoint matrices,
every positive definite matrix is the center of a ball consisting of positive
matrices, it is clear that the boundary of �n (for n ≥ 2) consists of singular
matrices.

The extreme points of �n and �n ∩Mn(R) have been studied in [2], [9],
[4] and [8]. In this section, we will use an easy characterization of the extreme
points of�n to draw some conclusions about matrices of unitary moments. The
papers cited above contain the facts about extreme points of �n found below,
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and have results going well beyond; the elementary techniques used here to
characterize extreme points are essentially the same as used by Li and Tam [8].
In fact, we learned of these and the other results on correlation matrices only
after our first version of this paper appeared. Because our presentation has
a slightly different emphasis and these ideas are used later in examples, we
provide the proofs, which are brief.

We also introduce the subset Cn of Fn, consisting of matrices of moments
of commuting unitaries. The new result in the section is Proposition 2.10, from
which we can conclude that there are no rank 2 extreme points of Gn and, thus,
G4 �= F4.

This is a convenient place to recall the following standard fact. We include
a proof for convenience.

Lemma 2.1. The set of allX ∈ �n of rank r is the set of all frame operators
X = F ∗F of frames F = (f1, . . . , fn), consisting of n unit vectors fj ∈ Cr ,
where r = rank(X). If, in addition, X ∈ Mn(R), then the frame f1, . . . , fn
can be chosen in Rr .

Proof. Every frame operator F ∗F as above clearly belongs to�n and has
rank r .

Recall that the support projection of a Hermitian matrix X is the projec-
tion onto the orthocomplement of the nullspace of X. Suppose X ∈ �n has
rank(X) = r . Let P be the support projection of X and let λ1 ≥ · · · ≥ λr > 0
be the nonzero eigenvalues ofX with corresponding orthonormal eigenvectors
g1, . . . , gr ∈ Cn. Let V : Cr → P(Cn) be the isometry defined by ei �→ gi ,
where e1, . . . , er are the standard basis vectors of Cr . So P = VV ∗. Then
X = F ∗F , where F is the r × n matrix

F = V ∗X1/2 = diag(λ1, . . . , λr)
1/2V ∗.

If f1, . . . , fn ∈ Cr are the columns of F , then ‖fi‖ = Xii = 1 and the linear
span of f1 . . . , fn is Cr . Thus, f1, . . . , fn comprise a frame.

If X is real, then the vectors g1, . . . , gr can be chosen in Rn. Then V and
X1/2 are real matrices and f1, . . . , fn are in Rr .

Lemma 2.2. LetX ∈ Mn(C) be a positive semidefinite matrix and let P be
the support projection ofX. Then a Hermitian n×nmatrix Y has the property
that there is ε > 0 such thatX+ tY is positive semidefinite for all t ∈ (−ε, ε)
if and only if Y = PYP .

Proof. If X = 0 then this is trivially true, so suppose X �= 0. After
conjugating with a unitary, we may without loss of generality assume P =
diag(1, . . . , 1, 0, . . . , 0) with rank(X) = rank(P ) = r . Then PXP , thought
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of as an r× r matrix, is positive definite. By continuity of the determinant, we
see that if Y = PYP , then Y enjoys the property described above.

Conversely, if Y �= PYP , then we may choose two standard basis vectors
ei and ej for i ≤ r < j , such that the compressions ofX and Y to the subspace
spanned by ei and ej are given by the matrices

X̂ =
(
x 0
0 0

)
, Ŷ =

(
a b

b c

)
for some x > 0, a, c ∈ R and b ∈ C with c and b not both zero. But

det(X̂ + t Ŷ ) = txc + t2(ac − |b|2).
If c �= 0, then det(X̂+t Ŷ ) < 0 for all nonzero t sufficiently small in magnitude
and of the appropriate sign, while if c = 0 then b �= 0 and det(X̂ + t Ŷ ) < 0
for all t �= 0.

Proposition 2.3. Letn ∈ N, letX ∈ �n and letP be the support projection
of X. A necessary and sufficient condition for X to be an extreme point of �n

is that there be no nonzero Hermitian n × n matrix Y having zero diagonal
and satisfying Y = PYP . Consequently, if X is an extreme point of �n, then
rank(X) ≤ √

n.

Proof. X is an extreme point of �n if and only if there is no nonzero
Hermitian n × n matrix Y such that X + tY ∈ �n for all t ∈ R sufficiently
small in magnitude. Now use Lemma 2.2 and the fact that �n consists of the
positive semidefinite matrices with all diagonal values equal to 1.

For the final statement, if r = rank(X) then the set of Hermitian matrices
with support projection under P is a real vector space of dimension r2, while
the space of n×nHermitian matrices with zero diagonal has dimension n2 −n.
If r2 > n, then the intersection of these two spaces is nonzero.

Proposition 2.4. Let X ∈ �n. Suppose f1, . . . , fn is a frame consisting
of n unit vectors in Cr , where r = rank(X), so that X = F ∗F with F =
(f1, . . . , fn) is the corresponding frame operator. (See Lemma 2.1.) Then X
is an extreme point of �n if and only if the only r × r self-adjoint matrix Z
satisfying 〈Zfj , fj 〉 = 0 for all j ∈ {1, . . . , n} is the zero matrix.

Proof. SinceF is an r×nmatrix of rank r , the mapMr(C)s.a. → Mn(C)s.a.
given by Z �→ F ∗ZF is an injective linear map onto PMn(C)s.a.P , where P
is the support projection of X. If Y = F ∗ZF , then Yjj = 〈Zfj , fj 〉. Thus, the
condition for X to be extreme now follows from the characterization found in
Proposition 2.3.
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Proposition 2.5. Let n ∈ N and suppose X ∈ �n satifies rank(X) = 1.
Then X is an extreme point of �n and X ∈ Fn. Moreover, using the notation
introduced in Remark 1.2, we have

(2) conv{X ∈ �n | rank(X) = 1}
=
{
(τ (U ∗

i Uj ))1≤i,j≤n
∣∣∣∣ τ : � → C a positive trace,

τ (1) = 1, πτ (�) commutative

}
and this set is closed in �n.

Notation 2.6. We let Cn denote the set given in (2). Thus, we have Cn ⊆
Fn. Moreover, (cf Remark 1.2), Cn is the set of matrices as in (1) where
(U1, . . . , Un) runs over all n-tuples of commuting unitarires in C∗-algebras A
with faithful tracial state τ .

Proof of Proposition 2.5. By Lemma 2.1, we haveX = F ∗F whereF =
(f1, . . . , fn) for complex numbers fj with |fj | = 1. Using Proposition 2.4,
we see immediately thatX is an extreme point of�n. Thinking of each fj as a
1 × 1 unitary, we have X ∈ Fn and, moreover, X = (τ (U ∗

i Uj ))1≤i,j≤n, where
τ : � → C is the character defined by τ(Ui) = fi ; in fact, it is apparent that
every character on � yields a rank one element of�n. Since the set of traces τ
on � having πτ (�) commutative is convex, this implies the inclusion ⊆ in (2).

That the left-hand-side of (2) is compact follows from Caratheodory’s the-
orem, because the rank one projections form a compact set. If τ : � → C
is a positive trace with τ(1) = 1 and πτ (�) commutative, then τ = ψ ◦ πτ
for a state ψ on the C∗-algebra completion of πτ (�). Since every state on a
unital, commutative C∗-algebra is in the closed convex hull of the characters
of that C∗-algebra, τ is itself the limit in norm of a sequence of finite convex
combinations of characters of �. Thus, X = (τ (U ∗

i Uj ))1≤i,j≤n is the limit of
a sequence of finite convex combinations of rank one elements of �n, and we
have ⊇ in (2).

Remark 2.7. We see immediately from (2) that Cn is a closed convex set
that is closed under conjugation with diagonal unitary matrices and permutation
matrices; also, since the set of rank one elements of�n is closed under taking
Schur products, so is the set Cn. Furthermore, since Cn lies in a vector space
of real dimension m := n2 − n, by Caratheodory’s theorem every element of
Cn is a convex combination of not more than m+ 1 rank one elements of �n.

An immediate application of Propositions 2.3 and 2.5 is the following.

Corollary 2.8. The extreme points of �3 are precisely the rank one ele-
ments of �3. Moreover, we have

C3 = F3 = G3 = �3.
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Remark 2.9. LetX ∈ Gn and takeA, τ andU1, . . . , Un as in Definition 1.1
so that (1) holds, and assume without loss of generality that τ is faithful on A.
If we identifyMn(A) withA⊗Mn(C), then we haveX = n(τ ⊗ idMn(C))(P ),
where P is the projection

P = 1

n

⎛⎜⎜⎜⎝
U ∗

1

U ∗
2
...

U ∗
n

⎞⎟⎟⎟⎠ ( U1 U2 . . . Un )

in Mn(A). If c = (c1, . . . , cn)
t ∈ Cn is such that Xc = 0, then this yields

τ(Z∗Z) = 0, where Z = c1U1 + · · · + cnUn. Since τ is a faithful, we have
Z = 0.

Proposition 2.10. Let n ∈ N. If X ∈ Gn and rank(X) ≤ 2, then X ∈ Cn.

Proof. If rank(X) = 1, then this follows from Propostion 2.5, so assume
rank(X) = 2. Let τ : � → C be a positive, unital trace such that X =
(τ (U ∗

i Uj ))1≤i,j≤n and let πτ : � → B(L2(�, τ )) be the ∗-representation as
described in Remark 1.2. Let σ : � → πτ (�) be the ∗-representation defined
by σ(Ui) = πτ (U1)

∗πτ (Ui) for each i ∈ {1, . . . , n} and let τ ′ = τ ◦σ . Then τ ′
is a positive, unital trace on � and the matrix (τ ′(U ∗

i Uj ))1≤i,j≤n is equal to X.
Furthermore, πτ ′(U1) = I . Consequently, we may without loss of generality
assume πτ (U1) = I .

Let e1, . . . , en denote the standard basis vectors of Cn. Let i, j ∈ {2, . . . , n},
with i �= j . Since rank(X) = 2, there are c1, ci, cj ∈ C with c1 �= 0 such that
X(c1e1+ciei+cj ej ) = 0. By Remark 2.9, we haveπτ (c1I+ciUi+cjUj ) = 0.
We do not have ci = cj = 0, so assume ci �= 0. If cj = 0, then πτ (Ui) is
a scalar multiple of the identity, while if cj �= 0, then πτ (Ui) and πτ (Uj )
generate the same C∗-algebra, which is commutative. In either case, we have
that the ∗-algebras generated by πτ (Ui) and πτ (Uj ) commute with each other.
Therefore, πτ (�) is commutative, and X ∈ Cn.

Corollary 2.11. G4 �= �4.

Proof. Combining Proposition 2.10 and Proposition 2.5, we see that G4

has no extreme points of rank 2. It will suffice to find an extreme pointX of�4

with rank(X) = 2. By Proposition 2.4, it will suffice to find four unit vectors
f1, . . . , f4 spanning C2 such that the only self-adjoint Z ∈ M2(C) satisfying
〈Zfi, fi〉 = 0 for all i = 1, . . . , 4 is the zero matrix. It is easily verified that
the frame

f1 =
(

1
0

)
, f2 =

(
0
1

)
, f3 =

(
1/

√
2

1/
√

2

)
, f4 =

(
i/

√
2

1/
√

2

)
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does the job, and, with F = (f1, f2, f3, f4), this yields the matrix

(3) X = F ∗F =

⎛⎜⎜⎜⎜⎝
1 0 1√

2
i√
2

0 1 1√
2

1√
2

1√
2

1√
2

1 1+i
2

−i√
2

1√
2

1−i
2 1

⎞⎟⎟⎟⎟⎠ ∈ �4\G4.

Remark 2.12. We cannot have Cn = Fn for all n, because by an easy
modification of Kirchberg’s proof of Proposition 4.6 of [6], this would im-
ply that M2(C) can be faithfully represented in a commutative von Neumann
algebra. (This argument shows that for some n there must be two-by-two unit-
aries V1, . . . , Vn such that the matrix (tr2(V

∗
i Vj ))1≤i,j≤n does not belong to

Cn.) In fact, in Proposition 3.6 we will show F6 �= C6. However, we don’t
know whether Fn = Cn holds or not for n = 4 or n = 5.

3. Real matrices

The main result of this section is the following, which easily follows from the
usual representation of the Clifford algebra.

Theorem 3.1. For every n ∈ N, we have

Mn(R) ∩�n ⊆ Fn.

We first recall the representation of the Clifford algebra. Let � be a linear
map from a real Hilbert space H into the bounded, self-adjoint operators
B(K )s.a., for some complex Hilbert space K , satisfying

(4) �(x)�(y)+�(y)�(x) = 2〈x, y〉IH , (x, y ∈ H).
The real algebra generated by range of � is uniquely determined by H and
called the real Clifford algebra.

Consider a real Hilbert space H of finite dimension r with its canonical
basis {ei}. Let

U =
(

1 0
0 −1

)
, V =

(
0 1
1 0

)
, I2 =

(
1 0
0 1

)
.

Then the real Clifford algebra ofH has the following representation by 2r ×2r

matrixes
�(x) =

∑
λiU

⊗i−1 ⊗ V ⊗ I
⊗(n−i)
2 ,
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where x = ∑
λiei . It easy to check that the relation (4) is satisfied. Moreover

if ‖x‖ = 1 then �(x) is symmetry, i.e. �(x)∗ = �(x) and �(x)2 = I .

Proof of Theorem 3.1. Let r be the rank of X. By Lemma 2.1, there are
unit vectors f1, . . . , fn ∈ Rr such that Xi,j = 〈fi, fj 〉 for all i and j . Taking
� as described above, we get 2r × 2r unitary matrices�(fi) (in fact, they are
symmetries), and from (4) we have tr(�(fi)�(fj )) = 〈fi, fj 〉.

Below is the result for real matrices that is entirely analogous to Proposi-
tion 2.3.

Proposition 3.2. Let n ∈ N, letX ∈ Mn(R)∩�n and let P be the support
projection of X. A necessary and sufficient condition for X to be an extreme
point of Mn(R) ∩�n is that there be no nonzero Hermitian real n× n matrix
Y having zero diagonal and satisfying Y = PYP . Consequently, if X is an
extreme point of Mn(R) ∩�n and r = rank(X), then r(r + 1)/2 ≤ n.

Proof. This is just like the proof of Proposition 2.3, the only difference
being that the dimension of PMn(R)s.a.P for a projection P of rank r is
r(r + 1)/2.

Corollary 3.3. If n ≤ 5, then

(5) Mn(R) ∩�n ⊆ Cn.

Proof. From Proposition 3.2, we see that every extreme pointX ofMn(R)∩
�n for n ≤ 5 has rank r ≤ 2. But X ∈ Fn ⊆ Gn, by Theorem 3.1, so using
Proposition 2.10, it follows that all extreme points of Mn(R) ∩ �n lie in Cn.
Since Cn is closed and convex (see Proposition 2.5), the inclusion (5) follows.

Of course, we also have the result for real matrices (and real frames) that
is analogous to Proposition 2.4, which is stated below. The proof is the same.

Proposition 3.4. Let X ∈ Mn(R) ∩ �n. Suppose f1, . . . , fn is a frame
consisting of n unit vectors in Rr , where r = rank(X), so that X = F ∗F with
F = (f1, . . . , fn) is the corresponding frame operator. (See Lemma 2.1.) Then
X is an extreme point ofMn(R)∩�n if and only if the only real Hermitian r×r
matrix Z satisfying 〈Zfj , fj 〉 = 0 for all j ∈ {1, . . . , n} is the zero matrix.

Although Corollary 3.3 shows that every element ofMn(R)∩�n for n ≤ 5
is in the closed convex hull of the rank one operators in �n, it is not true
that every element of Mn(R) ∩�n lies in the closed convex hull of rank one
operators in Mn(R) ∩�n, even for n = 3, as the following example shows.
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Example 3.5. Consider the frame

f1 =
(

1
0

)
, f2 =

(
0
1

)
, f3 = 1√

2

(
1
1

)
of three unit vectors in R2. It is easily verified that the only real Hermitian
2 × 2 matrix Z such that 〈Zfi, fi〉 = 0 for all i = 1, 2, 3 is the zero matrix.
Thus, by Proposition 3.4,

X =
⎛⎜⎝

1 0 1√
2

0 1 1√
2

1√
2

1√
2

1

⎞⎟⎠
is a rank-two extreme point ofM3(R)∩�3. However, an explicit decomposition
as a convex combination of rank one operators in �3 is

X = 1

2

⎛⎜⎝
1 i 1+i√

2

−i 1 1−i√
2

1−i√
2

1+i√
2

1

⎞⎟⎠+ 1

2

⎛⎜⎝
1 −i 1−i√

2

i 1 1+i√
2

1+i√
2

1−i√
2

1

⎞⎟⎠ .

Proposition 3.6. We have

M6(R) ∩�6 �⊆ C6 .

Thus, we have F6 �= C6.

Proof. We construct an example ofX ∈ (M6(R)∩�6)\C6. In fact, it will
be a rank-three extreme point of M6(R) ∩�6.

Consider the frame

f1 =
( 1

0
0

)
,

f4 = 1√
2

( 1
1
0

)
,

f2 =
( 0

1
0

)
,

f5 = 1√
2

( 0
1
1

)
,

f3 =
( 0

0
1

)
,

f6 = 1√
3

( 1
1
1

)

of six unit vectors in R3. It is easily verified that the only real Hermitian 3 × 3
matrixZ such that 〈Zfi, fi〉 = 0 for all i ∈ {1, . . . , 6} is the zero matrix. Thus,
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by Proposition 3.4,

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1√
2

0 1√
3

0 1 0 1√
2

1√
2

1√
3

0 0 1 0 1√
2

1√
3

1√
2

1√
2

0 1 1
2

√
2
3

0 1√
2

1√
2

1
2 1

√
2
3

1√
3

1√
3

1√
3

√
2
3

√
2
3 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is a rank-three extreme point of M6(R) ∩�6. The nullspace of X is spanned
by the vectors

v1 = (
1√
2
, 1√

2
, 0,−1, 0, 0

)t
v2 = (

0, 1√
2
, 1√

2
, 0,−1, 0

)t
v3 = (

1√
3
, 1√

3
, 1√

3
, 0, 0,−1

)t
.

Suppose, to obtain a contradiction, that we have X ∈ C6. Then there is a
commutative C∗-algebraA = C()with a faithful tracial state τ and there are
unitaries I = U1, U2, . . . , U6 ∈ A such that X = (

τ(U ∗
i Uj )

)
1≤i,j≤6. Taking

the vectors v1, v2 and v3, above, by Remark 2.9 we have

U4 = 1√
2
(U1 + U2)(6)

U5 = 1√
2
(U2 + U3)(7)

U6 = 1√
3
(U1 + U2 + U3).(8)

Fixing any ω ∈ , we have that ζj := Uj(ω) is a point on the unit circle T,
(1 ≤ j ≤ 6). From (6) and |ζ4| = 1, we get ζ1 = ±iζ2 and similarly from (7)
we get ζ3 = ±iζ2. However, from (8), we then have

ζ6 ∈
{

1 − 2i√
3
ζ2,

1√
3
ζ2,

1 + 2i√
3
ζ2

}
,

which contradicts |ζ6| = |ζ2| = 1.
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4. Nonempty interior

In this section, we show that the interior of Fn and, in fact, of Cn, is nonempty,
when considered as a subset of�n. (Since Cn = �n for n = 1, 2, 3, this needs
proving only for n ≥ 4.)

Given X ∈ �n, let

aX = sup{t ∈ [0, 1] | tX + (1 − t)I ∈ Fn}
cX = sup{t ∈ [0, 1] | tX + (1 − t)I ∈ Cn}.

Of course, cX ≤ aX. We now show that cX is bounded below by a nonzero
constant that depends only on n. In particular, we have that the identity element
lies in the interior of Cn, when this is taken as a subset of the affine space of
self-adjoint matrices having all diagonal entries equal to 1.

Proposition 4.1. Let n ∈ N, n ≥ 3, and let X ∈ �n. Then

(9) cX ≥ 6

n2 − n
.

Moreover, if λ0 is the smallest eigenvalue of X, then

(10) cX ≥ min

(
6

(n2 − n)(1 − λ0)
, 1

)
.

Proof. We have X = (xij )
n
i,j=1 with xii = 1 for all i = 1, . . . , n. Denote

G = {σ ∈ Sn | σ(1) < σ(2) < σ(3)}. Then

#G =
(
n

3

)
(n− 3)!.

Let Uσ = (uij ) be the permutation unitary matrix where uij = δi,σ (i). Then
U ∗XU = (xσ−1(i)σ−1(j))i,j . Define the block-diagonal matrix

Bσ =
⎛⎝ 1 xσ(1)σ (2) xσ(1)σ (3)

xσ(2)σ (1) 1 xσ(2)σ (3)

xσ(3)σ (1) xσ(3)σ (2) 1

⎞⎠⊕ In−3.

Using Corollary 2.8 (and Remark 2.7), we easily see Bσ ∈ Cn.
Let Jσ = {(σ (1), σ (2)), (σ (1), σ (3)), (σ (2), σ (3))}. Put Xσ = U ∗BσU .

Then

(Xσ )k� =

⎧⎪⎨⎪⎩
0, if (k, �) �∈ {(1, 1), . . . , (n, n)} ∪ Jσ ,

1, if k = �,

xk�, if (k, �) ∈ Jσ .
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Since for any k < � we have

#{σ ∈ G | σ(1) = k, σ (2) = �orσ(1) = k, σ (3) = �orσ(2) = k, σ (3) = �}
= ((n− �)+ (�− k − 1)+ (k − 1))(n− 3)! = (n− 2)!

it follows that the matrix
X′ = 1

#G

∑
σ∈G

Xσ

has entries x ′
ii = 1, and x ′

k� = 6
n2−nxk� if k �= �.

Since Cn is closed under conjugating with permutation matrices, we have
Xσ ∈ Cn for all σ ∈ G. But then the average X′ also belongs to Cn. This
implies (9).

Now (10) is an easy consequence of (9). Indeed, if λ0 = 1, then X is the
identity matrix and cX = 1. If λ0 < 1, then let Y = 1

1−λ0
(X − λ0I ). We have

Y ∈ �n, and

(1 − t)I + tY =
(

1 − t

1 − λ0

)
I + t

1 − λ0
X.

This implies cX ≥ min
(
1, cY

1−λ0

)
.

Given an n × n matrix A = (aij )1≤i,j≤n, let A denote matrix whose (i, j)
entry is the complex conjugate of aij . If A is self-adjoint, then so is A, and
these two matrices have the same eigenvalues (and multiplicities).

Lemma 4.2. Let X ∈ �n and let d > 0 be such that

I + d

(
X −X

2

)
∈ Fn.

Then aX ≥ d/(d + 1). If n ≤ 5 and

(11) I + d

(
X −X

2

)
∈ Cn,

then cX ≥ d/(d + 1).

Proof. The matrix (X + X)/2 is real and lies in �n. Using Theorem 3.1,
we have (X +X)/2 ∈ Fn. Thus, we have

1

d + 1
I + d

d + 1
X = 1

d + 1

(
I + d

(
X −X

2

))
+ d

d + 1

(
X +X

2

)
∈ Fn.

If n ≤ 5 and (11) holds, then we similarly apply Corollary 3.3.
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Example 4.3. Consider the matrix X as in (3), from Corollary 2.11. From
Proposition 4.1 and closedness of Fn, we know 1

2 ≤ cX ≤ aX < 1. It would
be interesting to know the precise value of aX, in order to have a concrete
example of an element on the boundary of F4 in �4.

Since

X −X

2
=

⎛⎜⎜⎜⎝
0 0 0 i√

2

0 0 0 0

0 0 0 i
2

− i√
2

0 − i
2 0

⎞⎟⎟⎟⎠
has norm

√
3/2 and since it is conjugate by a permutation matrix to an element

of M3(C)⊕ C, using Corollary 2.8 we have that (11) holds with d = 2/
√

3.
A slightly better value is obtained by letting Y be the result of conjugation of
X with the diagonal unitary diag(1, 1, 1, e−iπ/4). Then

Y − Y

2
=

⎛⎜⎜⎜⎝
0 0 0 i

2

0 0 0 − i
2

0 0 0 0

− i
2

i
2 0 0

⎞⎟⎟⎟⎠
which has norm 1/

√
2 and similarly yields d = √

2. Applying Lemma 4.2
gives cX = cY ≥ √

2/(1 + √
2) ≈ 0.586.
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