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CONSTRUCTION OF OPERATORS WITH PRESCRIBED
ORBITS IN FRÉCHET SPACES WITH A

CONTINUOUS NORM

ANGELA A. ALBANESE

Abstract
Let X be a separable, infinite dimensional real or complex Fréchet space admitting a continuous
norm. Let {vn : n ≥ 1} be a dense set of linearly independent vectors of X. We show that there
exists a continuous linear operator T on X such that the orbit of v1 under T is exactly the set
{vn : n ≥ 1}. Thus, we extend a result of Grivaux for Banach spaces to the setting of non-normable
Fréchet spaces with a continuous norm. We also provide some consequences of the main result.

1. Introduction

Let X be a separable, infinite dimensional Fréchet space over the scalar field
K, where K denotes either the real field R or the complex field C. Let L (X)

denote the space of all continuous linear operators from X into itself. Then an
operator T ∈ L (X) is called hypercyclic if there exists a vector x ∈ X such
that the orbit of x under T , that is, Orb(T , x) = {x, T (x), T 2(x), . . .}, is dense
in X. Such a vector x is called a hypercyclic vector for T .

Rolewicz [17] was the first to study hypercyclicity of operators in classical
Banach spaces. He showed that no finite dimensional linear vector space sup-
ports a hypercyclic operator, and that if B denotes the backward shift, i.e.,
B(xn)n = (xn+1)n, then for any a > 1 the operator T = aB is hypercyclic
on �p, 1 ≤ p < ∞, and c0, and for any a > 0 it is hypercyclic on the space
ω = KN of all scalar sequences. He also asked in [17] whether any separable,
infinite dimensional Banach space supports a hypercyclic operator. This ques-
tion was solved in the affirmative, independently, by Ansari [1] and Bernal [2]
for Banach spaces. This result was also extended to the non-normable Fréchet
case by Bonet and Peris in [6]. The proofs of [1], [2] and [6] rely on a res-
ult of Salas [18, Theorem 3.3], who completely characterized the hypercyclic
weighted shift operators on �p, 1 ≤ p < ∞, and c0. Hypercyclic operators
have been intensely studied during last years, the research starting with the
investigations of Godefroy and Shapiro [9]; see the survey papers [5], [11],
[12] and the references therein.
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Solving a problem of Halperin, Kitai and Rosenthal [13], Grivaux [10,
Theorem 3.1] showed that if {vn : n ≥ 1} is any countable set of linearly
independent vectors in a separable, infinite dimensional Banach space X, then
there exists an operator T ∈ L (X) such that Orb(T , v1) contains the set
{vn : n ≥ 1}. This result was proved in [13] in the case X is a Hilbert space.
Her proof relies on the existence result of hypercyclic operators given in [1],
and on a deep technical lemma, [10, Lemma 2.1], concerning the existence of
a topological isomorphism between any two dense sets of linearly independent
vectors in separable, infinite dimensional Banach spaces. She also provided in
such a paper some interesting consequences of [10, Lemma 2.1, Theorem 3.1].
For instance, she showed that any dense infinite dimensional linear subspace
M of countable dimension of a separable, infinite dimensional Banach space
X can be written as M = K[T ](x), i.e., M = {p(T )(x) : p ∈ K[X]}, for
some hypercyclic operator T ∈ L (X) and some hypercyclic vector x ∈ M .
We recall the following well-known result: if X is a separable, infinite dimen-
sional Banach space over K, T ∈ L (X) is a hypercyclic operator and x is any
hypercyclic vector for T , then K[T ](x) is a dense invariant hypercyclic linear
subspace for T , i.e., every non-zero vector of K[T ](x) is hypercyclic for T ,
see the works of Bourdon [7], Herrero [14], Bès [3] and Wengenroth [19].
Thus, she obtained that every normed space of countable dimension supports
an operator which has no non-trivial invariant closed set. This result is related
to the “Invariant Set Problem”. In contrast to the results of Grivaux, among
other things Bonet, Frerick, Peris and Wengenroth showed in [4, Proposi-
tion 3.3] that neither Grivaux’s main result [10, Theorem 3.1] nor the technical
[10, Lemma 2.1] holds for non-normable Fréchet spaces. More precisely, they
proved that there exists a dense linearly independent sequence in the Fréchet
space ω of all complex sequences that cannot be the orbit of a hypercyclic
operator on ω, and that every countable product of copies of a separable, in-
finite dimensional Banach space X contains two dense linearly independent
sequences of vectors such that their linear spans are not isomorphic. They
also provided an example of a countable dimensional locally convex space
admitting no transitive operator (and hence, no hypercyclic operators), [4,
Proposition 3.2].

We observe that ω and every countable product of copies of an infinite
dimensional Banach space X are all examples of non-normable Fréchet spaces
no admitting a continuous norm. So, it is natural to consider the following
question: do the Banach results mentioned above carry over to the setting of
non-normable Fréchet spaces which admit a continuous norm?

The aim of this note is to show that all the Banach results of Grivaux [10]
mentioned above continue to be hold in the setting of Fréchet spaces admitting
a continuous norm.
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2. Preliminaries

Throughout this paper, the following notation will be used.
Let X be an infinite dimensional Fréchet space over the scalar field K, where

either K = R or K = C, and let {‖·‖k}∞k=1 be an increasing sequence of semi-
norms defining the lc-topology of X. Then Xk denotes the local Banach space
generated by ‖·‖k , i.e., Xk is the completion of the quotient normed space
(X/ Ker ‖ · ‖k, ‖·‖k). Let πk: X → Xk the canonical map. Then X = projk Xk

is the (reduced) projective limit of the sequences of Banach spaces {Xk}∞k=1.
For each k ∈ N, we set Uk := {x ∈ X : ‖x‖k ≤ 1} (so, the set {Uk}∞k=1

forms a basis of 0-neighbourhoods in X) and define the dual seminorm ‖·‖′
k

of ‖·‖k on the topological dual X′ of X by

‖f ‖′
k := sup{|f (x)| : ‖x‖k ≤ 1} = sup{|f (x)| : ‖x‖k = 1}, f ∈ X′,

i.e, ‖·‖′
k is the gauge of the polar Ůk of Uk in X′. Let X′

k := {f ∈ X′ :
‖f ‖′

k < ∞} the linear span of Ůk endowed with the norm topology defined
by ‖·‖′

k . Then (X′
k, ‖·‖′

k) is a Banach space and the transpose map πt
k of the

canonical map πk is an isometry from the strong dual of the Banach space Xk

(i.e., the completion of (X/ Ker ‖·‖k, ‖·‖k)) onto (X′
k, ‖·‖′

k). Therefore, every
f ∈ (X/ Ker ‖·‖k, ‖·‖k)

′ defines a continuous linear functional g = f ◦ πk ∈
X′ with ‖g‖′

k < ∞. We observe that X′ = ⋃∞
k=1 X′

k holds algebraically.
The strong operator topology τs in the space L (X) of all continuous linear

operators from X into itself is determined by the family of seminorms

‖S‖k,x := ‖S(x)‖k, S ∈ L (X),

for each x ∈ X and k ∈ N, in which case we write Ls(X). Denote by B(X) the
collection of all bounded subsets of X. The topology τb of uniform convergence
on bounded sets is defined in L (X) via the seminorms

‖S‖k,B := sup
x∈B

‖S(x)‖k, S ∈ L (X),

for each B ∈ B(X) and k ∈ N; in this case we write Lb(X). For (X, ‖·‖)
a Banach space, τb is the operator norm topology in L (X) and hence, it is
generated by the norm

‖S‖ := sup
‖x‖≤1

‖S(x)‖, S ∈ L (X).

The identity operator on X is denoted by I .
From now on, X (always) denotes a Fréchet space which admits a con-

tinuous norm. Then we (may) assume that each ‖·‖k is a norm on X and
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hence, the local Banach space Xk is the completion of the normed space
(X, ‖·‖k). For every k ∈ N, the canonical map πk: X → Xk is then the in-
clusion map and has dense range. It follows that πt

k(f ) = f |X for all f ∈ X′
k

and that X′
k can be identified with a σ(X′, X)-dense linear subspace of X′.

Denoting by ‖·‖k the operator norm defining the lc-topology of Lb(Xk), i.e.,
‖S‖k = supx∈Xk,‖x‖k≤1 ‖S(x)‖k for S ∈ L (Xk), we observe that

‖S‖k = sup
x∈X,‖x‖k≤1

‖S(x)‖k, S ∈ L (Xk),

because X is dense in Xk . We point out that if S ∈ L (X) satisfies

‖S(x)‖k ≤ c‖x‖k, x ∈ X,

for some k ∈ N and c > 0, then S extends to a continuous linear operator on
Xk , say S, so that ‖S‖k ≤ c. For y ∈ X and f ∈ X′, the tensor product f ⊗ y

denotes the continuous linear operator on X defined by (f ⊗ y)(x) = f (x)y

for x ∈ X. We observe that if f ∈ X′
k for some k ∈ N (hence, ‖f ‖′

k < ∞),
then we have, for each h ∈ N, that

‖(f ⊗ y)(x)‖h = |f (x)|‖y‖h ≤ ‖f ‖′
k‖y‖h‖x‖k, x ∈ X.

Thus, f ⊗ y ∈ L (Xh) for all h ≥ k.
For other undefined notation and results on Fréchet spaces we refer to [15].

3. The results

We recall that X denotes a Fréchet space (resp., a vector space) over K, where
either K = R or K = C, and that X′ (resp., X∗) denotes the topological dual
(resp., algebraic dual) of X.

We begin with two lemmas, the first of which is of algebraic type and will
be used to prove the second lemma.

Lemma 3.1. Let X be a vector space. Let S: X → X be a linear operator
and let e ∈ X, e∗ ∈ X∗. If S is invertible and e∗(S−1(e)) �= −1, then the linear
operator T : X → X defined by

(1) T (x) = S(x) + e∗(x)e, x ∈ X,

is invertible, i.e., T is bijective.

The proof of Lemma 3.1 is straightforward and hence we can skip it.
The next lemma shows that any two dense sets of linearly independent

vectors of a separable, infinite dimensional Fréchet space X which admits a
continuous norm, are isomorphic. Hence, we extend to the setting of separable
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Fréchet spaces with a continuous norm a result due to Grivaux [10, Lemma 2.1]
for separable Banach spaces. Actually, the general idea of the proof is inspired
by [10, Lemma 2.1], but the proof requires dealing with new technical details
of different kind because the involved space X is not Banach. The main ob-
struction is due to the fact that the usual criterion of invertibility of operators
on Banach spaces (i.e., if ‖S‖ < 1 then I − S is invertible with continuous
inverse) no longer holds in the setting of operators on Fréchet spaces. To avoid
this, we give a method to construct operators which are continuous and satisfy
such a criterion in each local Banach space Xk of the underlying Fréchet space
X, thereby obtaining the invertibility at each step.

Lemma 3.2. Let X be a separable, infinite dimensional Fréchet space which
admits a continuous norm. Let V = {vn : n ≥ 1} and W = {wn : n ≥ 1}
be two dense sets of linearly independent vectors of X. Then there exists a
topological isomorphism L ∈ L (X) such that L(V ) = W .

Proof. Let {‖·‖k}∞k=1 denote an increasing sequence of norms defining the
lc-topology of X. Let ε ∈ (0, 1) and (εn)

∞
n=1 be a sequence of positive real

numbers such that
∑∞

n=1 εn < ε. Then there exists a sequence {Ln}n≥0 of linear
operators on X such that L0 = I and, for every n ≥ 1,

(1) Ln ∈ L (X) and is invertible in L (X) (i.e., there exists L−1
n ∈ L (X)),

(2) Ln extends to a continuous linear operator on Xk , denoted again by Ln

and hence Ln ∈ L (Xk), and such an extension is invertible in L (Xk)

for k ≥ 1,

(3) ‖Ln − Ln−1‖k < εn/(maxn−1
h=0 ‖L−1

h ‖h+1) for 1 ≤ k ≤ n,

(4) there exist two positive integers pn and qn such that Lnvn = wpn
and

L−1
n wn = vqn

,

(5) Ln = Ln−1 on span{v1, . . . , vn−1, vq1 , . . . , vqn−1} for n ≥ 2.

The proof is given by induction. Let us begin by constructing L1. Since ‖·‖1

is a norm on X, X′
1 is σ(X′, X)-dense in X′ and hence, there exists x ′

1 ∈ X′
1

such that x ′
1(v1) = 1. By the denseness of W in X, for any 0 < α < 1, there

is wp1 ∈ W such that the vector e1 := wp1 − v1 satisfies

(2) ‖e1‖1 <
α

‖x ′
1‖′

1

.

We then define an operator K1: X → X via

K1(x) := x + x ′
1(x)e1, x ∈ X.
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Since x ′
1 ∈ X′

1, we have, for every k ≥ 1, that

‖K1(x)‖k = ‖x + x ′
1(x)e1‖k ≤ ‖x‖k + |x ′

1(x)‖‖e1‖k

≤ ‖x‖k + ‖x ′
1‖′

1‖x‖1‖e1‖k ≤ (
1 + ‖x ′

1‖′
1‖e1‖k

) ‖x‖k.

Therefore, K1 ∈ L (X) and, in particular, K1 also extends to a continuous
linear operator on Xk for all k ≥ 1. Denote such extension operators again by
K1 (hence, we have that K1 ∈ L (Xk) for k ≥ 1).

By (2) we also have that |x ′
1(e1)| < α. Since 0 < α < 1, it follows that

0 < 1−α < 1+x ′
1(e1) < 1+α. This implies that 1+x ′

1(e1) �= 0. Therefore,
we can apply Lemma 3.1 and hence, the open mapping theorem to conclude
that K1 is invertible both in L (X) and in L (Xk) for every k ≥ 1. Moreover,
K1(v1) = v1 + x ′

1(v1)e1 = v1 + (wp1 − v1) = wp1 .
If p1 = 1, we take L1 := K1. Otherwise, w1 and wp1 are linearly inde-

pendent vectors of X. Since X′
1 is σ(X′, X)-dense in X′, there exists y ′

1 ∈ X′
1

such that y ′
1(wp1) = 0 and y ′

1(w1) = 1 . By the denseness of V in X, for any
0 < β < 1, there exists vq1 ∈ V such that the vector f1 := vq1 − K−1

1 (w1)

satisfies

(3) ‖f1‖1 <
β

‖K1‖1‖y ′
1‖′

1

.

We then define an operator L−1
1 : X → X via

L−1
1 (x) := K−1

1 (x) + y ′
1(x)f1, x ∈ X.

Since K−1
1 ∈ L (X) (resp., K−1

1 ∈ L (Xk) for all k ≥ 1) and y ′
1 ∈ X′

1, we
can proceed as above to show that L−1

1 ∈ L (X) (resp., that L−1
1 extends to a

continuous linear operator on Xk for all k ≥ 1).
Since y ′

1 ∈ X′
1 and K1 ∈ L (X1), we can apply (3) to obtain that

|y ′
1(K1(f1))| < β. It follows that 0 < 1 − β < 1 + y ′

1(K1(f1)) < 1 + β

as 0 < β < 1. This implies that 1 + y ′
1(K1(f1)) �= 0. Since K−1

1 is invertible
both in X and in Xk for every k ≥ 1, we can apply Lemma 3.1 and hence,
the open mapping theorem, to conclude that L−1

1 is invertible both in L (X)

and in L (Xk) for every k ≥ 1. Moreover, by construction of K1 and of L−1
1 ,

we have that L−1
1 (w1) = K−1

1 (w1) + y ′
1(w1)f1 = K−1

1 (w1) + f1 = vq1 and
that L−1

1 (wp1) = K−1
1 (wp1) + y ′

1(wp1)f1 = K−1
1 (wp1) = v1. It follows that

L1(vq1) = w1 and L1(v1) = wp1 .
Finally, we observe that by construction either L1 = K1 or L−1

1 = K−1
1 +

y ′
1 ⊗ f1. If L1 = K1, we clearly have ‖L1 − K1‖1 = 0. Otherwise, from (3) it
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follows that

‖(L−1
1 − K−1

1 )(x)‖1 = |y ′
1(x)|‖f1‖1 ≤ ‖y ′

1‖′
1‖x‖1‖f1‖1 <

β

‖K1‖1
‖x‖1,

x ∈ X1, i.e., ‖L−1
1 − K−1

1 ‖1 <
β

‖K1‖1
. Consequently, we obtain

‖L1 − K1‖1 = ‖L1K
−1
1 K1 − L1L

−1
1 K1‖1 = ‖L1(K

−1
1 − L−1

1 )K1‖1

≤ ‖L1‖1‖L−1
1 − K−1

1 ‖1‖K1‖1 < β‖L1‖1.

Then, in either case, by (2) we have that

‖L1 − L0‖1 = ‖L1 − L0 − x ′
1 ⊗ e1 + x ′

1 ⊗ e1‖1 = ‖(L1 − K1) + x ′
1 ⊗ e1‖1

≤ ‖L1 − K1‖1 + ‖x ′
1 ⊗ e1‖1 < β‖L1‖1 + α < ε1 = ε1

‖L−1
0 ‖1

if α and β are small enough to satisfy the condition β‖L1‖1 + α < ε1 (here,
‖L−1

0 ‖1 = 1).
Suppose that L1, . . . , Ln have already been constructed in such a way that

all properties (1)–(5) are satisfied.
If n + 1 ∈ {q1, . . . , qn}, we take Kn+1 := Ln. Otherwise, vn+1 does not

belong to the vector space span {v1, . . . , vn, vq1 , . . . , vqn
}because the vectorsvi

are linearly independent. Since X′
1 is σ(X′, X)-dense in X′, we can find x ′

n+1 ∈
X′

1 such that x ′
n+1(vn+1) = 1 and x ′

n+1(vi) = 0 for i ∈ {1, . . . , n, q1, . . . , qn}.
By the denseness of W in X, for any 0 < α < 1, there is wpn+1 in W so that
the vector en+1 := wpn+1 − Ln(vn+1) satisfies

(4) ‖en+1‖n+1 <
α

maxn
h=0 ‖L−1

h ‖h+1

1

‖x ′
n+1‖′

1

.

We then define an operator Kn+1: X → X by

Kn+1(x) := Ln(x) + x ′
n+1(x)en+1, x ∈ X.

Using properties (1) and (2) of the inductive step and the fact that x ′
n+1 ∈ X′

1,
we can proceed as above to show that Kn+1 ∈ L (X) (resp., that Kn+1 extends
to a continuous linear operator on Xk for all k ≥ 1).

Since x ′
n+1 ∈ X′

1 ⊂ X′
n+1, ‖x ′

n+1‖′
n+1 ≤ ‖x ′

n+1‖′
1 and L−1

n ∈ L (Xn+1), the
property (3) of inductive step together with (4) imply that |x ′

n+1(L
−1
n (en+1))| <

α. It follows that 0 < 1 − α < 1 + x ′
n+1(L

−1
n (en+1)) < 1 + α as 0 < α < 1.

This implies that 1 + x ′
n+1(L

−1
n (en+1)) �= 0. Since by properties (1) and (2) of

the inductive step Ln is invertible both in L (X) and in L (Xk) for every k ≥ 1,
we can apply again Lemma 3.1 together with the open mapping theorem to
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conclude that Ln+1 is invertible both in L (X) and in L (Xk) for every k ≥ 1.
Moreover, by construction Kn+1(vn+1) = wpn+1 and, by properties (4) and
(5) of the inductive step, Kn+1(vk) = Lk(vk) = wpk

and that Kn+1(vqk
) =

Lk(vqk
) = wk for every 1 ≤ k ≤ n.

Let us construct Ln+1. If n + 1 ∈ {p1, . . . , pn+1}, we take Ln+1 := Kn+1.
Otherwise, wn+1 does not belong to the vector space span{wp1 , . . . , wpn+1 ,

w1, . . . , wn} because the vectors wj are linearly independent. Since X′
1 is

σ(X′, X) dense in X′, we can find y ′
n+1 ∈ X′

1 such that y ′
n+1(wn+1) = 1 and

y ′
n+1(wi) = 0 if i ∈ {1, . . . , n, p1, . . . , pn+1}. By the denseness of V in X,

for any 0 < β < 1, there exists an element vqn+1 in V for which the vector
fn+1 := vqn+1 − K−1

n+1(wn+1) satisfies

(5) ‖fn+1‖n+1 <
β

maxn+1
h=1 ‖Kn+1‖h

1

‖y ′
n+1‖′

1

.

We then define an operator L−1
n+1: X → X via

L−1
n+1(x) := K−1

n+1(x) + y ′
n+1(x)fn+1, x ∈ X.

Since K−1
n+1 ∈ L (X) (resp., K−1

n+1 ∈ L (Xk) for all k ≥ 1) and y ′
n+1 ∈ X′

1, we
can proceed as in the first step to show that L−1

n+1 ∈ L (X) (resp., that L−1
n+1

extends to a continuous linear operator on Xk for all k ≥ 1).
Since y ′

n+1 ∈ X′
1 ⊂ X′

n+1, ‖y ′
n+1‖′

n+1 ≤ ‖y ′
n+1‖′

1 and Kn+1 ∈ L (Xn+1),
inequality (5) implies that |y ′

n+1(Kn+1(fn+1))| < β. It follows that 0 <

1 − β < 1 + y ′
n+1(Kn+1(fn+1)) < 1 + β as 0 < β < 1. This implies

that 1 + y ′
n+1(Kn+1(fn+1)) �= 0. Since K−1

n+1 is invertible both in X and in
Xk for every k ≥ 1, we can apply Lemma 3.1 and hence, the open mapping
theorem, to conclude that L−1

n+1 is invertible both in L (X) and in L (Xk)

for every k ≥ 1. Moreover, by construction of Kn+1 and of L−1
n+1, we have

that L−1
n+1(wn+1) = vqn+1 and that the operators K−1

n+1 and L−1
n+1 coincide on

span{wp1 , . . . , wpn+1 , w1, . . . , wn}. Thus, for every 1 ≤ k ≤ n + 1,
L−1

n+1(wpk
) = K−1

n+1(wpk
) = vk so that Ln+1(vk) = wpk

. In particular, Ln+1 =
Ln on span{v1, . . . , vn}. We also have, for every 1 ≤ k ≤ n, that L−1

n+1(wk) =
K−1

n+1(wk) = vqk
so that Ln+1(vqk

) = wk and Ln+1 = Ln on span{vq1 , . . . , vqn
}.

We have so shown that Ln+1 satisfies properties (1), (2), (4) and (5).
Finally, we observe that by construction either Ln+1 = Kn+1 or L−1

n+1 =
K−1

n+1 +y ′
n+1 ⊗fn+1. If Ln+1 = Kn+1, we clearly have, for 1 ≤ k ≤ n+1, that

‖Ln+1−Kn+1‖k = 0. Otherwise, using (5) and proceeding as above, one shows
that ‖L−1

n+1 − K−1
n+1‖k <

β

maxn+1
h=1 ‖Kn+1‖h

for every 1 ≤ k ≤ n + 1. Consequently,

we obtain that ‖Ln+1 − Kn+1‖k ≤ β‖Ln+1‖k for every 1 ≤ k ≤ n + 1. Then,
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in either case, by (4) we obtain as in the first step, for 1 ≤ k ≤ n + 1, that

‖Ln+1 − Ln‖k <
εn+1

maxn
h=0 ‖L−1

h ‖h+1
,

if α and β are enough small to have β‖Ln+1‖k+ α

maxn
h=0 ‖L−1

h ‖h+1
<

εn+1

maxn
h=0 ‖L−1

h ‖h+1
.

So, Ln+1 also satisfies property (3). This completes the induction proof.
Now, we set L := I + ∑∞

n=0(Ln+1 − Ln). Then, the operator L is well
defined in X (resp., in Xk for k ≥ 1) and belongs to L (X)) (resp., to L (Xk) for
k ≥ 1). Indeed, for a given k ∈ N, by property (3) we have that ‖Ln+1−Ln‖k <

εn+1 for every n ≥ k − 1. Since
∑

n≥k−1 εn+1 < ε, it follows that the series∑∞
n=0 ‖Ln+1−Ln‖k converges. Therefore, since k is arbitrary, we can conclude

that L is well defined both in X and in each Xk . Moreover, by property (2) we
have, for every k ∈ N, that

‖L(x)‖k ≤ ‖x‖k +
∥∥∥∥

k−2∑
n=0

(Ln+1 − Ln)(x)

∥∥∥∥
k

+
∞∑

n=k−1

‖(Ln+1 − Ln)(x)‖k

≤ (1 + ck + ε)‖x‖k,

x ∈ Xk , with ck a suitable positive constant. Since X ⊆ Xk , this ensures that
L ∈ L (X) and that L ∈ L (Xk) for every k ≥ 1. Moreover, L is invertible in
each L (Xk). Indeed, fix any k ∈ N. Then, by property (2) we can write

(6) L = Lk−1 +
∞∑

n=k−1

(Ln+1 − Ln) = Lk−1

[
I + L−1

k−1

∞∑
n=k−1

(Ln+1 − Ln)

]

in Xk . On the other hand, by property (3), we have, for every n ≥ k − 1, that

(7)

‖L−1
k−1(Ln+1 − Ln)‖k ≤ ‖L−1

k−1‖k‖Ln+1 − Ln‖k

≤ ‖L−1
k−1‖k

εn+1

maxn
h=0 ‖L−1

h ‖h+1
≤ εn+1.

Since the series
∑∞

n=k−1(Ln+1−Ln) converges in Lb(Xk) and L−1
k−1 ∈ L (Xk),

from (7) it follows

(8)

∥∥∥∥L−1
k−1

∞∑
n=k−1

(Ln+1 − Ln)

∥∥∥∥
k

=
∥∥∥∥

∞∑
n=k−1

L−1
k−1(Ln+1 − Ln)

∥∥∥∥
k

≤
∞∑

j=k

εj < ε < 1.
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Combining (6) with (8) and property (2), we can conclude that the operator L

is invertible in L (Xk). Therefore, there exist two positive constants ak and bk

such that

(9) ak‖x‖k ≤ ‖Lx‖k ≤ bk‖x‖k, x ∈ Xk.

Since X ⊆ Xk and k is arbitrary, from (9) it follows that L is an injective
continuous and open linear operator from X into X. Moreover, in view of
properties (4) and (5), we can argument as in [10, Lemma 2.1] to conclude
that L(V ) = W . As V and W are dense subsets of X, this equality together
with (9) imply that the operator L is also surjective. Therefore, L is invertible
in L (X), i.e., L is a topological isomorphism of X.

Remark 3.3. The topological isomorphisms constructed in Lemma 3.2
are of the form L = I + K with K a nuclear operator on each Xk (hence,
K is a nuclear operator on X). Actually, by a slight modification in the proof
of Lemma 3.2 we can show that, for every h ∈ N there exists a topological
isomorphism L ∈ L (X) of the form L = I + K such that L(V ) = W ,
‖L − I‖h < ε and ‖L−1 − I‖h < ε

1−ε
.

Remark 3.4. Let X be a separable, infinite dimensional Fréchet space
which admits a continuous norm. If V = {vn : n ≥ 1} and W = {wn :
n ≥ 1} are two dense sets of linearly independent vectors in X, then for every
m ∈ N there exists a topological isomorphism L on X such that L(V ) =
W and L(vi) = wi for 1 ≤ i ≤ m. Indeed, by Lemma 3.2 there exists a
topological isomorphism L0 = I + K0 on X, with K0 a nuclear operator,
such that L0(V ) = W . Then, for every 1 ≤ i ≤ m, L0(vi) = wpi

for some
pi ∈ N, where by construction pi �= pj if i �= j . Without of loss of generality,
we may suppose that pi �= i for 1 ≤ i ≤ m (eventually, by deleting the
indeces i for which pi = i). Therefore, the vectors w1, . . . , wm, wp1 , . . . wpm

are linearly independent and hence, since X′
1 is σ(X′, X) dense in X′, there

exist y ′
1, . . . , y

′
m, y ′

p1
, . . . , y ′

pm
∈ X′

1 such that y ′
j (wi) = δij , y ′

j (wpi
) = 0,

y ′
pj

(wi) = 0 and, y ′
pj

(wpi
) = δij for i, j = 1, . . . , m. We then define a

continuous linear projection P on X by setting

P(x) =
m∑

i=1

y ′
i (x)wi +

m∑
i=1

y ′
pi

(x)wpi
, x ∈ X.

Hence, Im P = span{w1, . . . , wm, wp1 , . . . wpm
} and X = Ker P ⊕ Im P . We

point out that P is also (extends to) a continuous linear projection P on each
Xk because y ′

1, . . . , y
′
m, y ′

p1
, . . . , y ′

pm
(resp., w1, . . . , wm, wp1 , . . . wpm

) belong
to X′

1 (resp., X) and hence, to X′
k (resp., Xk).
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Next, we consider an operator L1: X → X defined by

L1(x) = (I − P)(x) +
m∑

i=1

y ′
i (x)wpi

+
m∑

i=1

y ′
pi

(x)wi, x ∈ X.

Since X = Ker P ⊕ Im P and Im P = span{w1, . . . , wm, wp1 , . . . wpm
}, L1 is

a topological isomorphism on X (resp., on Xk for k ≥ 1). Moreover, L(wi) =
wpi

and L(wpi
) = wi for i = 1, . . . , m. Then L := L1L0 is a topological

isomorphism on X (resp., on Xk for k ≥ 1) such that, for i = 1, . . . , m,
L(vi) = L1(L0(vi)) = L1(wpi

) = wi . Finally, we observe that

L1 − I =
m∑

i=1

(wi − wpi
) ⊗ (y ′

pi
− y ′

i )

and hence, L1 − I is a nuclear operator on X (resp., on Xk for k ≥ 1). Since
we can write L = L1L0 = I + L1[L−1

1 (L1 − I ) + K0], it follows that L has
the same form of L0, i.e., L = I + K , with K a nuclear operator on X (resp.,
on Xk for k ≥ 1.

We observe that Lemma 3.2 shows that “any two dense subspaces of count-
able algebraic dimension of a separable Fréchet space X which admits a con-
tinuous norm, are isomorphic”, thus obtaining an extension of a result which is
well-known for separable Hilbert spaces and was shown to be also valid in sep-
arable Banach spaces by Grivaux [10, Lemma 2.1]. In contrast to Lemma 3.2
and [10, Lemma 2.1], Bonet, Frerick, Peris and Wengenroth have shown in
[4] that every countable product of copies of an infinite dimensional Banach
space X contains two dense linearly independent sequences of vectors such
that their spans are not isomorphic.

We can now state and show the main result of this paper.

Theorem 3.5. Let X be a separable, infinite dimensional Fréchet space
which admits a continuous norm. Let V = {vn : n ≥ 1} be a dense set of
linearly independent vectors of X. Then there exists an operator T ∈ L (X)

of the form T = I + K , with K a nuclear operator on X, such that the orbit
of v1 under T is exactly the set {vn : n ≥ 1}.

Proof. By the existence theorem of [6, Theorem 1] (see, also [1], [2]) there
exists a hypercyclic surjective operator on X. Since X admits a continuous
norm and hence, X �� ω, the hypercyclic surjective operators constructed in
[6, Lemma 3] are of the form I + K , with K a nuclear operator on X.

Let T0 = I + K0 be a hypercyclic surjective operator on X and x0 be a
hypercyclic vector for T0. Then the orbit of x0 under T0, i.e., W := {T n

0 (x0) |
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n ≥ 0}, is a dense set of linearly independent vectors of X. We can now apply
Lemma 3.2 and Remark 3.4 to the sets V and W to conclude that there exists
a topological isomorphism L on X such that L(v1) = x0 and L(V ) = W .
Next, we consider the operator T = L−1T0L. So, T ∈ L (X) and T n(v1) =
L−1T n

0 (x0) for every n ≥ 0. Thus, the orbit of v1 under T is the set L−1(W),
i.e., the set V . Finally, we observe that T is of the form T = I + K , where
K = L−1K0L and hence, K is a nuclear operator on X.

We end the paper by collecting some consequences of Theorem 3.5 along
the lines of [10]. Their proofs are also inspired by [10] and based on the results
obtained above.

Corollary 3.6. Let X be a separable, infinite dimensional Fréchet space
which admits a continuous norm. Let M be a dense, infinite dimensional sub-
space of X of countable algebraic dimension. For every non-zero vector x in
M , there exists an operator T ∈ L (X) such that M = K[T ](x).

Proof. Fix any non-zero x ∈ M . Let V = {vn : n ≥ 1} be a dense
algebraic basis of M with v1 = x. Then we apply Theorem 3.5 to the set V to
exhibit an operator T ∈ L (X) such that the orbit of v1 under T is exactly the
set V . Hence, M is exactly equal to K[T ](v1) as V is an algebraic basis of M .

Corollary 3.7. Let M be an infinite dimensional metrizable locally convex
space of countable algebraic dimension. If the completion of M is a Fréchet
space X which admits a continuous norm, then there exists an operator T ∈
L (M) such that every non-zero vector of M is hypercyclic for T , i.e., T has
no non-trivial invariant closed set.

Proof. Since X is a separable, infinite dimensional Fréchet space which
admits a continuous norm, we can consider the operator T ∈ L (X) obtained
in Corollary 3.6. Then the space M is invariant under T . Moreover, the orbit of
v1 under T is dense in M and hence, in X. The operator T is then hypercyclic
and satisfies M = K[T ](v1). This implies that every non-zero vector of M is
hypercyclic for T , see [3], [7], [14]. So, to complete the proof it suffices to
consider the restriction of T to M , i.e., T |M .

Remark 3.8. We point out that Corollary 3.7 no longer holds in general
locally convex spaces of countable algebraic dimension. Indeed, in [4, Propos-
ition 3.2(b)] it is shown that there exists a countable dimensional locally convex
space admitting no transitive operator and hence, no hypercyclic operators.

We denote by HC (X) the set of all hypercyclic operators on X and by
HC (X) the closure of HC (X) in Lb(X). The set HC (X) is always non-void,
see [1], [2], [6]. For a given linear subspace M of X, we denote by HC M(X)
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the set of operators S on X such that M is a hypercyclic linear subspace for S.
Then we have

Corollary 3.9. Let X be a separable, infinite dimensional Fréchet space
which admits a continuous norm. Let M be a linear subspace of X of countable
algebraic dimension. Then the set HC M(X) is dense in HC (X) with respect
to the lc-topology of Lb(X).

Proof. We observe that it suffices to show that the set HC M(X) is dense
in HC (X) with respect to the lc-topology of Lb(X), i.e., that for every T0 ∈
HC (X), ε > 0, k ∈ N and B ∈ B(X) there exists T ∈ HC M(X) such that
‖T − T0‖k,B = supx∈B ‖(T − T0)(x)‖h < ε.

Fix T0 ∈ HC (X), ε > 0, k ∈ N and B ∈ B(X). Then the operator T0 is
hypercyclic and hence, there exists a dense hypercyclic linear subspace V for
T0, see [3], [7], [14]. Since T0 ∈ L (X), there exist also h ≥ k and c > 0 such
that ‖T0(x)‖k ≤ c‖x‖h for all x ∈ X. Moreover, by Lemma 3.2 and Remark 3.3
for any 0 < α < 1 there exists a topological isomorphism L on X such that
L(M) ⊆ V and ‖L − I‖h < α, ‖L−1 − I‖h < α

1−α
. Then T = L−1T0L ∈

HC M(X) and ‖(T − T0)(x)‖k ≤ cdα‖L−1‖k + d ′ α
1−α

for every x ∈ B, with
d = supx∈B ‖x‖h < ∞ and d ′ = supx∈B ‖T0(x)‖h < ∞ as B ∈ B(X) and
T0 ∈ L (X). If α is small enough, it follows that supx∈B ‖(T − T0)(x)‖k < ε

and the proof is complete.
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