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CUSTOM MONOTONICITY METHODS

MARTIN SCHECHTER

Abstract
In this paper we show how hypotheses for many problems can be significantly reduced if we
employ the monotonicity method. Applications are given.

1. Introduction

Consider the problem

(1.1) −�u = f (x, u), x ∈ �; u = 0 on ∂�,

where � ⊂ Rn is a bounded domain whose boundary is a smooth manifold,
and f (x, t) is a continuous function on �̄ × R. In [12], the author and W. Zou
assumed the following:

(a1) There are constants c1, c2 ≥ 0 such that

|f (x, t)| ≤ c1 + c2|t |s ,
where 0 ≤ s < (n + 2)/(n − 2) if n > 2.

(a2) f (x, t) = o(t) as t → 0, uniformly in x.

(a3) Either
F(x, t)/t2 → ∞ as t → ∞

or
F(x, t)/t2 → ∞ as t → −∞,

where
F(x, t) =

∫ t

0
f (x, s) ds.

We proved

Theorem 1. Under hypotheses (a1), (a2), (a3) the boundary value problem

(1.2) −�u = βf (x, u), x ∈ �; u = 0 on ∂�,

has a nontrivial solution for almost every positive β.
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In this theorem, there was a trade off. The hypothesis (a3) is significantly
weaker than the one usually assumed for superlinear problems. Moreover, the
main hypotheses (a2), (a3) involve only the primative F(x, t) of f (x, t) rather
than f (x, t) itself. This allows much more freedom for the function f (x, t).
However, the theorem is proved only for almost every positive β, not for any
particular value of β. The proof of this theorem was based on the results of
our paper [11]. Our method was to use the monotonicity trick introduced by
Struwe in [14], [15] for minimization problems. (This trick was also used by
others to solve Landesman-Lazer type problems, for bifurcation problems, for
Hamiltonian systems and Schrödinger equations.) We applied this method to
linking situations.

The purpose of the present paper is to prove the theorem under even weaker
assumptions which can allow sublinear problems as well. In particular, we can
prove

Theorem 2. In place of hypothesis (a2) assume that there is a positive
λ̃ ≤ λ0 such that

(1.3) 2F(x, t) ≤ λ̃t2, |t | ≤ δ

for some δ > 0, and in place of hypothesis (a3) assume that there are a λ > λ̃

and an eigenfunction ϕ corresponding to the first eigenvalue λ0 of −�u such
that

(1.4) sup
r>0

∫
�

[νr2ϕ2 − 2F(x, rϕ)] dx < ∞

holds for all ν satisfying λ̃ < ν < λ. Then the boundary value problem

(1.5) −�u = βf (x, u), x ∈ �; u = 0 on ∂�,

has a nontrivial solution for almost every β in the interval [λ0/λ, λ0/λ̃].

Corollary 3. The conclusion of Theorem 2 holds if there is a λ̃ ≤ λ0 such
that

(1.6) 2F(x, t) ≤ λ̃t2, |t | ≤ δ

for some δ > 0 and either

(1.7) 2F(x, t) ≥ λt2 − W+(x, t), t > 0,

or

(1.8) 2F(x, t) ≥ λt2 − W−(x, t), t < 0,
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holds for some λ > λ̃, where the W±(x, t)/t2 ≤ W(x) ∈ L1(�) satisfy

W±(x, t)/t2 → 0 a.e. as t → ±∞,

as the case may be.

Corollary 4. Assume hypotheses (a1) and

lim sup
t→0

F(x, t)/t2 ≤ 0, x ∈ �.

Assume also that there is an an eigenfunction ϕ corresponding to the first
eigenvalueλ0 of−�u such that (1.4) holds for all positive ν. Then the boundary
value problem

(1.9) −�u = βf (x, u), x ∈ �; u = 0 on ∂�,

has a nontrivial solution for almost every positive β.

Note that Corollaries 3 and 4 allow a wide range of functions f (x, t) both
superlinear and sublinear for the conclusion of Theorem 1 to hold for a β

interval. Also note that it recaptures Theorem 1 in the super-linear case. Our
method centers about the construction of a collection K0 of subsets K such
that

(1.10) A ∈ K0, B ∩ K 	= φ, K ∈ K0

together with

(1.11) a0 := sup
A

G < ∞, b0 := inf
B

G > G(0),

holding for a C1 functional G implies the existence of a Palais-Smale (PS)
sequence, i.e., a sequence {uk} ⊂ E such that

(1.12) G(uk) → a, a0 ≤ a ≤ b0, ‖G′(uk)‖ → 0.

Our main theorems are presented in Sections 3 and 4. Proofs are given in
Section 6 and 7. Applications are given in Section 5.

2. Flows

Let E be a Banach space, and let �0 be the set of all continuous maps σ = σ(t)

from E × [0, 1] to E such that

(1) σ(0) is the identity map,

(2) for each t ∈ [0, 1], σ(t) is a homeomorphism of E onto E,
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(3) σ ′(t) is piecewise continuous on [0, 1] and satisfies

(2.1) ‖σ ′(t)u‖ ≤ const., u ∈ E, t ∈ [0, 1],

(4)

(2.2) σ (t)0 = 0, t ∈ [0, 1].

The mappings in �0 are called flows. We have customized them for our pur-
poses. The property (2.2) is not usually assumed. We make use of this property
in our applications. We note the following.

Remark 5. If σ1, σ2 are in �0, define σ3 = σ1 ◦ σ2 by

σ3(s) =
{

σ1(2s), 0 ≤ s ≤ 1
2 ,

σ2(2s − 1)σ1(1), 1
2 < s ≤ 1.

Then σ1 ◦ σ2 ∈ �0.

3. Sandwich systems

Let E be a Banach space. We define a nonempty collection K0 of nonempty
subsets K ⊂ E to be a custom sandwich system if K0 has the following
property:

σ(1)K ∈ K0, σ ∈ �0, K ∈ K0.

This property of K0 takes into account the special nature of �0. We have

Theorem 6. Let K0 be a custom sandwich system, and let G(u) be a C1

functional on E. Define

(3.1) a := inf
K∈K0

sup
K

G,

and assume that a is finite and G(0) < a. Assume, in addition, that there is a
constant C0 such that for each δ > 0 there is a K ∈ K0 satisfying

(3.2) sup
K

G ≤ a + δ,

such that the inequality

(3.3) G(u) ≥ a − δ, u ∈ K,

implies ‖u‖ ≤ C0. Then there is a bounded PS sequence {uk} ⊂ E such that

(3.4) G(uk) → a, ‖G′(uk)‖ → 0.



custom monotonicity methods 137

The advantage of this theorem is the fact that for most applications there is
need to add appropriate hypotheses to obtain a convergent subsequence. This
is usually achieved by hypotheses that cause the PS sequence to be bounded.
Theorem 6 obviates this requirement.

Theorem 7. Let K0 be a custom sandwich system, and let G(u) be a C1

functional on E. Assume that there are subsets A, B of E such that

(3.5) a0 := sup
A

G < ∞, b0 := inf
B

G > G(0),

A ∈ K0 and

(3.6) B ∩ K 	= φ, K ∈ K0.

Then a given by (3.1) satisfies b0 ≤ a ≤ a0. Assume, in addition, that there is
a constant C0 such that for each δ > 0 there is a K ∈ K0 satisfying (3.2) such
that the inequality (3.3) implies ‖u‖ ≤ C0. Then there is a bounded sequence
{uk} ⊂ E satisfying (3.4).

Definition 8. We shall say that sets A, B in E form a custom sandwich
pair if A is a member of a custom sandwich system K0 and B satisfies (3.6).

We have

Theorem 9. Let A be a continuous curve in E connecting 0 and ∞, and
let B the boundary of a bounded open set in E containing 0. Then A, B form
a custom sandwich pair.

4. The parameter problem

Let E be a reflexive Banach space with norm ‖ ·‖. Suppose that G ∈ C 1(E, R)

is of the form: G(u) := I (u) − J (u), u ∈ E, where I, J ∈ C 1(E, R) map
bounded sets to bounded sets. Define

Gλ(u) = λI (u) − J (u), λ ∈ ,

where  is an open interval contained in (0, +∞). Assume one of the following
alternatives holds.

(H1) I (u) ≥ 0 for all u ∈ E and I (u) + |J (u)| → ∞ as ‖u‖ → ∞, or

(H2) I (u) ≤ 0 for all u ∈ E and |I (u)| + |J (u)| → ∞ as ‖u‖ → ∞.

Furthermore, we suppose that K0 is a custom sandwich system satisfying

(H3) a(λ) := infK∈K0 supK Gλ < ∞ for any λ ∈ .
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Theorem 10. Assume that (H1) (or (H2)) and (H3) hold. Then we have

(1) For almost all λ ∈  there exists a constant k0(λ) := k0 (depending
only on λ) such that for each δ > 0 there exists a K ∈ K0 such that
supK Gλ ≤ a(λ) + δ and

(4.1) ‖u‖ ≤ k0 whenever u ∈ K and Gλ(u) ≥ a(λ) − δ.

(2) For almost all λ ∈  there exists a bounded sequence uk(λ) ∈ E such
that

‖G′
λ(uk)‖ → 0, Gλ(uk) → a(λ) := inf

K∈K0

sup
K

Gλ, k → ∞.

Corollary 11. The conclusions of Theorem 10 hold if we replace hypo-
thesis (H3) with

(H′
3) There is a custom sandwich pair A, B such that

(4.2) a0 := sup
A

Gμ < ∞, Gμ(0) < b0 := inf
B

Gμ

for each μ ∈ .

5. Some applications

Many elliptic semi-linear problems can be described in the following way. Let
� be a domain in Rn, and let A be a self-adjoint operator on L2(�). We assume
that A ≥ λ0 > 0 and that

(5.1) C∞
0 (�) ⊂ D := D(A 1/2) ⊂ Hm,2(�)

for some m > 0, where C∞
0 (�) denotes the set of test functions in � (i.e.,

infinitely differentiable functions with compact supports in �), and Hm,2(�)

denotes the Sobolev space. If m is an integer, the norm in Hm,2(�) is given by

(5.2) ‖u‖m,2 :=
( ∑

| μ|≤m

‖Dμu‖2

)1/2

.

Here Dμ represents the generic derivative of order |μ| and the norm on the
right hand side of (5.2) is that of L2(�). We shall assume that m is an integer.
As an example of such an operator, we can take A to be an elliptic partial
differential operator of the form

A =
∑

|μ|≤2m

aμ(x)Dμ,
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with sufficiently smooth coefficients. If

(Au, u) ≥ λ0‖u‖2, u ∈ Hm,2(�),

with λ0 > 0, then A has a selfadjoint extension satisfying the hypotheses
given above.

Let q be any number satisfying

(5.3)
2 < q < 2n/(n − 2m),

2 < q < ∞,

2m < n,

n ≤ 2m,

and let f (x, t) be a Carathéodory function on �×R. This means that f (x, t) is
continuous in t for a.e. x ∈ � and measurable in x for every t ∈ R. Throughout
this section we make the following assumptions:

(A) The function f (x, t) satisfies

(5.4) |f (x, t)| ≤ V0(x)q |t |q−1 + V0(x)qW0(x)

and

(5.5) f (x, t)/V0(x)q = o(|t |q−1) as |t | → ∞,

where V0(x) > 0 is a function such that

(5.6) ‖V0u‖q ≤ C‖u‖D, u ∈ D

and W0 is a function in L∞(�). Here

(5.7) ‖u‖q :=
(∫

�

|u(x)|q dx

)1/q

,

and

(5.8) ‖u‖D := ‖A 1/2u‖.
If � and V0(x) are bounded, then (5.6) will hold automatically by the Sobolev
inequality. However, there are functions V0(x) which are unbounded and such
that (5.6) holds even on unbounded regions �. With the norm (5.8), D becomes
a Hilbert space. Define

(5.9) F (x, t) :=
∫ t

0
f (x, s) ds
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and

(5.10) G(u) := ‖u‖2
D − 2

∫
�

F(x, u) dx.

It follows that G is a continuously differentiable functional on the whole of D

(cf., e.g., [6]).

For μ > 0, we let

(5.11) Gμ(u) := μ‖u‖2
D − 2

∫
�

F(x, u) dx.

We wish to obtain a solution of

(5.12) μAu = f (x, u), u ∈ D.

By a solution of (5.12) we shall mean a function u ∈ D such that

(5.13) μ(u, v)D = (f (·, u), v), v ∈ D.

If f (x, u) is in L2(�), then a solution of (5.13) is in D(A ) and solves (5.12)
in the classical sense. Otherwise we call it a weak (or semi-strong) solution.

We assume that λ0 is a simple isolated eigenvalue of A having a bounded
eigenfunction ϕ(x). In addition, we assume that there is a positive number
λ̃ ≤ λ0 such that

(5.14) 2F(x, t) ≤ λ̃t2, |t | < δ

for some positive constant δ. Moreover, we assume that

(5.15) sup
r>0

∫
�

[νr2ϕ2 − 2F(x, rϕ)] dx < ∞

for each ν satisfying λ̃ < ν < λ for some λ > λ̃. We have

Theorem 12. Under the above hypotheses, the equation

(5.16) Au = βf (x, u), u ∈ D

has at least one nontrivial solution for almost all β ∈ [λ0/λ, λ0/λ̃].

Proof. We apply Corollary 11. We let N be the eigenspace E(λ0), and we
take M = N⊥. We note that (5.14) implies

(5.17) Gμ(u) ≥ (μ − η)ρ2, ‖u‖D = ρ
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for ρ > 0 sufficiently small, where η = λ̃/λ0. To see this, let u = w + y,
where w ∈ M and y ∈ N . Note that there is a ρ > 0 such that

‖y‖D ≤ ρ ⇒ |y(x)| ≤ δ/2, y ∈ E(λ0).

Now suppose u satisfies

(5.18) ‖u‖D ≤ ρ and |u(x)| ≥ δ

for some x ∈ �. Then for those x ∈ � satisfying (5.18) we have

δ ≤ |u(x)| ≤ |w(x)| + |y(x)| ≤ |w(x)| + (δ/2).

Hence |y(x)| ≤ δ/2 ≤ |w(x)|,
and consequently,

(5.19) |u(x)| ≤ 2|w(x)|
for all such x. Now we have by hypothesis (A) and (5.14)

Gμ(u) ≥ μ‖u‖2
D − λ̃

∫
|u|<δ

u2 dx − C

∫
|u|>δ

(|V u|q + V q |u|) dx

≥ μ‖u‖2
D − λ̃‖u‖2 − C ′

∫
|u|>δ

|V u|q dx

≥ (μ − η)‖y‖2
D + μ‖w‖2

D − λ̃‖w‖2 − C ′′
∫

2|w|>δ

|V w|q dx

in view of the fact that ‖y‖2
D = λ0‖y‖2 and (5.19) holds. Thus, by (5.6),

(5.20)

Gμ(u) ≥ (μ − η)‖y‖2
D +

(
μ − λ̃

λ1
− C ′′′‖w‖q−2

D

)
‖w‖2

D, ‖u‖D ≤ ρ,

where λ1 is the next point in the spectrum of A . We take ρ > 0 to satisfy

η − λ̃

λ1
> C ′′′ρq−2

Consequently,

Gμ(u) ≥ (μ − η)ρ2 +
(

μ − λ̃

λ1
− C ′′′ρq−2 − μ + η

)
‖w‖2

D ≥ (μ − η)ρ2,

‖u‖D = ρ. Thus, (5.17) holds.
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We let A = {rϕ : r ≥ 0} and B = ∂Bρ . By Theorem 9, they form a custom
sandwich pair. Note that

Gμ(rϕ) =
∫

�

[μλ0r
2ϕ2 − 2F(x, rϕ)] dx.

By (5.15) and (5.17), we see that (4.2) holds for each Gμ, for λ̃/λ0 < μ < λ/λ0

with b0 > 0. Apply Corollary 11, and take β = 1/μ.

Proof of Theorem 2. Since the Dirichlet problem (1.2) is a special case
of problem (5.16), Theorem 12 implies Theorem 2.

Proof of Corollary 3. We know that ϕ does not change sign in �. We
take it to be positive and satisfy ‖ϕ‖D = 1. Since

Gμ(±rϕ) =
∫

�

[μλ0r
2ϕ2 − 2F(x, ±rϕ)] dx,

we have by (1.7) or (1.8)

Gμ(±rϕ)/r2 ≤ μλ0 − λ +
∫

�

[W±(x, ±rϕ)/r2ϕ2]ϕ2 dx → μλ0 − λ < 0

as r → ∞, as the case may be. This shows that (4.2) holds. Apply Corollary 11.

6. Finding the sequences

We proceed to the proof of Theorem 6. Let M = C0 + 1. Then

‖σ(1)v‖ ≤ M

whenever σ ∈ �0 satisfies ‖σ ′(t)‖ ≤ 1 and v ∈ E satisfies ‖v‖ ≤ C0. If the
theorem were false, then there would be a δ > 0 such that

(6.1) ‖G′(u)‖ ≥ 3δ

when

(6.2) u ∈ {u ∈ E : ‖u‖ ≤ M + 1, |G(u) − a| ≤ 3δ}.
Take δ < 1/3 so small that G(0) < b0 − 2δ. Since G ∈ C1(E, R), for
each θ < 1 there is a locally Lipschitz continuous mapping Y (u) of Ê =
{u ∈ E : G′(u) 	= 0} into E such that

(6.3) ‖Y (u)‖ ≤ 1, θ‖G′(u)‖ ≤ (G′(u), Y (u)), u ∈ Ê
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(cf., e.g., [6]). Take θ > 2/3. Let

Q0 = {u ∈ E : ‖u‖ ≤ M + 1, |G(u) − a| ≤ 2δ},
Q1 = {u ∈ E : ‖u‖ ≤ M, |G(u) − a| ≤ δ},
Q2 = E \ Q0,

η(u) = d(u, Q2)/[d(u, Q1) + d(u, Q2)].

It is easily checked that η(u) is locally Lipschitz continuous on E and satisfies

(6.4)

⎧⎨
⎩

η(u) = 1, u ∈ Q1,

η(u) = 0, u ∈ Q̄2,

η(u) ∈ (0, 1), otherwise.

Let
W(u) = −η(u)Y (u).

Then ‖W(u)‖ ≤ 1, u ∈ E.

By Theorem 4.5 of [7], for each v ∈ E there is a unique solution σ(t)v of

(6.5) σ ′(t) = W(σ(t)), t ∈ R+, σ (0) = v.

We have

(6.6)

dG(σ(t)v)/dt = −η(σ (t)v)(G′(σ (t)v), Y (σ (t)v))

≤ −θη(σ )‖G′(σ )‖
≤ −3θδη(σ ).

Let K ∈ K0 satisfy the hypotheses of the theorem. Let v be any element of
K ∩ Q1. Then ‖v‖ ≤ C0. If there is a t1 ≤ 1 such that σ(t1)v /∈ Q1, then

(6.7) G(σ(1)v) < a − δ,

since ‖σ(1)v‖ ≤ M ,
G(σ(1)v) ≤ G(σ(t1)v),

and the right hand side cannot be greater than a + δ by (6.6). On the other
hand, if σ(t)v ∈ Q1 for all t ∈ [0, 1], then we have by (6.6)

G(σ(1)v) ≤ a + δ − 3δθ < a − δ.

If v ∈ K \ Q1, then we must have

G(σ(1)v) ≤ G(v) < a − δ,
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since G(v) ≥ a − δ would put v into Q1. Hence

(6.8) G(σ(1)v) < a − δ, v ∈ K.

Next, we note that σ ∈ �0. To see this, note that η(u) = 0 when G(u) < a−2δ.
Since G(0) < a − 2δ and G(σ(t)0) decreases as t increases, we see that
σ ′(t)0 = 0 for t ∈ [0, 1]. By hypothesis, K̃ = σ(1)K ∈ K0. This means that

(6.9) G(w) < a − δ, w ∈ K̃.

But this contradicts the definition (3.1) of a. Hence (6.1) cannot hold for u

satisfying (6.2). This proves the theorem.

Proof of Theorem 7. Since A ∈ K0, clearly a ≤ a0, Moreover, for any
K ∈ K0, we have

b0 = inf
B

G ≤ inf
B∩K

G ≤ sup
B∩K

G ≤ sup
K

G.

Hence, b0 ≤ a. Apply Theorem 6.

Proof of Theorem 9. Take

K0 = {σ(1)A : σ ∈ �0}.
If σ ∈ �0 and v ∈ A ∩ ∂BR , then

‖σ(1)v − v‖ =
∥∥∥∥
∫ 1

0
σ ′(t)v dt

∥∥∥∥ ≤ 1.

Consequently,

‖σ(1)v‖ ≥ ‖v‖ − ‖σ(1)v − v‖ ≥ R − 1 → ∞ as R → ∞.

Since σ(1)0 = 0, we see that σ(1)A ∩ B 	= φ.

7. The monotonicity trick

We now give the proof of Theorem 10.
Proof. We prove conclusion (1) assuming the first alternative hypothesis

(H1).
By (H1), the map λ �→ a(λ) is nondecreasing. Hence, a′(λ) := da(λ)/dλ

exists for almost every λ ∈ . From this point on, we consider those λ where
a′(λ) exists. For fixed λ ∈ , let λn ∈ (λ, 2λ) ∩ , λn → λ as n → ∞. Then
there exists n̄(λ) such that

(7.1) a′(λ) − 1 ≤ a(λn) − a(λ)

λn − λ
≤ a′(λ) + 1 for n ≥ n̄(λ).
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Next, we note that there exist Kn ∈ K0, k0 := k0(λ) > 0 such that

(7.2) ‖u‖ ≤ k0 whenever Gλ(u) ≥ a(λ) − (λn − λ).

In fact, by the definition of a(λn), there exists Kn such that

(7.3) sup
Kn

Gλ(u) ≤ sup
Kn

Gλn
(u) ≤ a(λn) + (λn − λ).

If Gλ(u) ≥ a(λ) − (λn − λ) for some u ∈ Kn, then, by (7.1) and (7.3), we
have that

(7.4)

I (u) = Gλn
(u) − Gλ(u)

λn − λ

≤ a(λn) + (λn − λ) − a(λ) + (λn − λ)

λn − λ

≤ a′(λ) + 3,

and it follows that

(7.5)

J (u) = λnI (u) − Gλn
(u)

≤ λn(a
′(λ) + 3) − Gλ(u)

≤ λn(a
′(λ) + 3) − a(λ) + (λn − λ)

≤ 2λ(a′(λ) + 3) − a(λ) + λ.

On the other hand, by (H1), (7.1), and (7.3),

(7.6)

J (u) = λnI (u) − Gλn
(u)

≥ −Gλn
(u)

≥ −(a(λn) + (λn − λ))

≥ −(a(λ) + (λn − λ)(a′(λ) + 2))

≥ −a(λ) − λ|a′(λ) + 2|.
Combining (7.4)–(7.6) and (H1), we see that there exists k0(λ) := k0 (depend-
ing only on λ) such that (7.2) holds.

By the choice of Kn and (7.1), we see that

Gλ(u) ≤ Gλn
(u)

≤ sup
Kn

Gλn
(u)

≤ a(λn) + (λn − λ)

≤ (a′(λ) + 1)(λn − λ) + a(λ) + (λn − λ)

≤ a(λ) + (a′(λ) + 2)(λn − λ)
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for allu ∈ Kn. We taken sufficiently large to ensure that |a′(λ)+2|(λn−λ) < δ.
This proves conclusion (1). Conclusion (2) now follows from Theorem 6. The
proof under hypothesis (H2) is similar, and is omitted.
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