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APPROXIMATION BY INVERTIBLE ELEMENTS
AND THE GENERALIZED E-STABLE

RANK FOR A(D)R AND C(D)sym

RAYMOND MORTINI and RUDOLF RUPP

Abstract
We determine the generalized E-stable ranks for the real algebra, C(D)sym, of all complex valued
continuous functions on the closed unit disk, symmetric to the real axis, and its subalgebra A(D)R
of holomorphic functions. A characterization of those invertible functions in C(E) is given that
can be uniformly approximated on E by invertibles in A(D)R. Finally, we compute the Bass and
topological stable rank of C(K)sym for real symmetric compact planar sets K .

1. Introduction and notation

Let A(D) denote the disk algebra; that is the algebra of all continuous functions
on the closed unit disk D that are holomorphic in {z ∈ C : |z| < 1}. Its real
counter part, A(D)R, is the algebra (over R) of all functions in A(D) that are real
on the interval [−1, 1]. This algebra plays a prominent role in control theory.
We remark that A(D) is the complexification

c

A of A = A(D)R. Indeed, by
definition

c

A = {u + iv : u, v ∈ A}. For f ∈ A(D), let f̌ be defined as

f̌ (z) = f (z),

Choose u = (f + f̌ )/2 and v = (f − f̌ )/(2i). Then u, v ∈ A(D)R and
f = u + iv.

In this paper we look upon A(D)R as a function algebra defined on D (see
[12]). Our goal in section two is to determine the generalized E-stable rank for
A(D)R and to characterize those functions zero free on E that can be uniformly
approximated on E by elements invertible in A(D)R. Only recently it has been
shown (see [22] and [14]) that the Bass and topological stable rank of A(D)R

coincide:
bsr(A(D)R) = tsr(A(D)R) = 2.

The concept of E-stable rank has been introduced in [13]. Let A be a real
or complex algebra of functions on D. We say that for a closed set E ⊆ D the
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generalized E-stable rank of A is one (denoted by gsrE(A) = 1) if for every
pair of elements in A with |f |+ |g| ≥ δ > 0 on E there exists h ∈ A such that
f + gh has no zeros on E. Similarly, if gsrE(A) is not one and if (f1, f2, g) is
a triple in A with |f1|+|f2|+|g| ≥ δ > 0 on E, then we say that gsrE(A) = 2
if there exists (a1, a2) and (h1, h2) ∈ A2 such that

a1(f1 + gh1) + a2(f2 + gh2) has no zeros on E.

In [13], it was shown that for any closed subset E of D, one has
gsrE(A(D)) = 1. It turns out that the situation for A(D)R is quite different
(see Theorem 2.4).

In the third section we will be concerned with the real symmetric algebras

C(K)sym = {f ∈ C(K), f complex valued and real symmetric},
where K ⊆ C is compact and real symmetric. Recall that a closed set E ⊆ D
is real symmetric if E coincides with its reflection E∗ = {z : z ∈ E} with
respect to the real axis. The set E ∪ E∗ is called the symmetrization of E.
Real symmetric functions are those that are defined on a real symmetric set E

and satisfy f (z) = f (z) for all z ∈ E. It is clear that A(D)R is the set of real
symmetric functions in A(D). In section three we will compute the Bass and
topological stable rank of the algebras C(K)sym, thus answering questions in
[23]. We also determine the generalized E-stable ranks for C(D)sym.

Next we briefly recall several definitions. Let A be a real or complex Banach
function algebra on a compact set X. We assume that A separates the points
of X and has as unit the constant function 1. The zero set of f ∈ A is the set
Z(f ) = {z ∈ X : f (z) = 0}.

An n-tuple (f1, . . . , fn) ∈ An is said to be invertible (or unimodular), if
there exists (x1, . . . , xn) ∈ An such that

∑n
j=1 xjfj = 1. The set of all invertible

n-tuples is denoted by Un(A). An (n + 1)-tuple (f1, . . . , fn, g) ∈ Un+1(A) is
called reducible if there exists (a1, . . . , an) ∈ An such that (f1+a1g, . . . , fn+
ang) ∈ Un(A).

Let E ⊆ X be closed. A pair (f, g) ∈ A2 is said to be E-reducible (or
reducible over E), if there exists a ∈ A such that f + ag �= 0 on E.

The Bass stable rank of A, denoted by bsr(A), is the smallest integer n

such that every element in Un+1(A) is reducible. If no such n exists, then
bsr(A) = ∞ (see [2]).

The topological stable rank, tsr(A), of A is the least integer n for which
Un(A) is dense in An, or infinite if no such n exists.

The approximate stable rank, appsr(A), of A is the least integer n such that
for every A-convex set E in the character space of A the Gelfand transform of
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any n-tuple (f1, . . . , fn) ∈ An satisfying
∑n

j=1 |f̂j | ≥ δ > 0 on E can be uni-
formly approximated on E by the Gelfand transform of n-tuples (a1, . . . , an)

that are invertible in A.
In [16] it is mentioned (without proof) that appsr(A) coincides in case of

a uniform algebra A over C with the dense stable rank, dsr(A), of A that was
introduced by Corach and Suárez [7, p. 542]. Moreover, they noticed that
bsr(A) ≤ dsr(A) ≤ tsr(A). Since we are dealing here with real algebras, it
is nice to have a direct proof that bsr(A) ≤ appsr(A) ≤ tsr(A). This will be
given in the appendix.

Since we are using this concept only for the algebras A = A(D)R and
C(D)sym, it suffices to know that the A-convex sets for C(D)sym are just the
compact real symmetric subsets of D and that the A-convex sets for A(D)R are
those real symmetric compact sets in D that have no holes. Here, as usual, a
hole of a compact set K ⊆ C is a bounded component of C \ K .

We refer the reader to [3], [4], [5], [6], [10], [13], [14], [19], [20], [21],
[22], [23], [26] for a glimpse on several aspects and computations of stable
ranks.

We conclude this section with the following notation, that will be used
throughout the paper. For a subset E ⊆ X and a function defined on X, let
‖f ‖E := sup{|f (x)| : x ∈ E} and ‖f ‖∞ = sup{|f (x)| : x ∈ X}. Finally, let
D+ = {z ∈ D : Im z ≥ 0} and D− = {z ∈ D : Im z ≤ 0}.

2. The real disk algebra A(D)R

Lemma 2.1. Let f ∈ A(D) and g ∈ A(D)R. Suppose that (f, g) ∈ U2(A(D)).
Then there exist h, u ∈ A(D)R, u invertible in A(D)R, such that f f̌ +hg = u.
In particular, if (f, g) ∈ U2(A(D)R), then (f 2, g) is reducible in A(D)R.

Proof. Since bsr(A(D)) = 1, (see [10], [5]), there exists a ∈ A(D) so
that f + ag =: v is invertible in A(D). Note that g = ǧ since g ∈ A(D)R.
Conjugation then gives f̌ + ǎg = v̌. Mutiplying both equations yields

f f̌ + [(af̌ + ǎf ) + aǎg]g = vv̌.

The assertion now follows from the facts that af̌ + ǎf and aǎ ∈ A(D)R and
that vv̌ is invertible in A(D)R.

Lemma 2.2. Let (f0, . . . , fn)be an (n+1)-tuple inA(D) satisfying
∑n

j=0 |fj |
≥ δ > 0 on some closed set E ⊆ D. Then there exists (a1, . . . , an) ∈ A(D)n

such that f0 + ∑n
j=1 ajfj �= 0 on E.

Proof. Since A(D) is a separating algebra, there exists by [24, Lemma 2.5,
p. 244] bj ∈ A(D) such that

∑n
j=0 bjfj �= 0 on E. Then

(
f0,

∑n
j=1 bjfj

)
is a
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pair in A(D) satisfying |f0|+
∣∣∑n

j=1 bjfj

∣∣ ≥ δ̃ > 0 on E. Since gsrE(A(D)) =
1 ([13]), there exists a ∈ A(D) so that f0 + a

∑n
j=1 bjfj �= 0 on E.

Proposition 2.3. gsrE(A(D)R) ≤ 2 for any closed set E ⊆ D.

Proof. Let (f1, f2, f3) be a triple in A(D)R satisfying |f1| + |f2| + |f3| ≥
δ > 0 on E. We may assume that E is real symmetric, otherwise consider the
set E ∪ E∗. By Lemma 2.2, there exists (a2, a3) ∈ A(D)2 so that

s := f1 + a2f2 + a3f3 �= 0 on E.

Conjugation gives

š = f1 + ǎ2f2 + ǎ3f3 �= 0 on E.

Multiplying s with š yields

sš = f 2
1 + b2f2 + b3f3 �= 0 on E,

where bj ∈ A(D)R.
Since tsr(A(D)R) = 2, we may approximate the pair (f1, b2) uniformly on

D by an invertible pair (u, v) ∈ U2(A(D)R) so that uf1 + vf2 + b3f3 �= 0 on
E. Now b3 = g1u + g2v for some gj ∈ A(D)R. Thus

uf1 +vf2 +b3f3 = uf1 +vf2 +(g1u+g2v)f3 = u(f1 +g1f3)+v(f2 +g2f3),

a function that does not vanish on E. Hence gsrE(A(D)R) ≤ 2.

Theorem 2.4. Let E ⊆ D be closed. Then

(1) gsrE(A(D)R) = 1 if and only if E ∩ [−1, 1] is totally disconnected or
empty.

(2) gsrE(A(D)R) = 2 if and only if E ∩ [−1, 1] contains an interval.

Proof. In view of Proposition 2.3, assertion (2) is the negation of (1). To
show (1), we first note that if E ∩ [−1, 1] is not totally disconnected (and not
empty), then there exists an interval [a, b] ⊆ E ∩ [−1, 1]. But then the pair(
z − a+b

2 , (z − a)(z − b)
)

is not reducible over [a, b] nor over E, since any
representation z − a+b

2 + h(z − a)(z − b) contains a zero within [a, b]. Thus
gsrE(A(D)R) �= 1 in that case.

Now suppose that E ∩ [−1, 1] is totally disconnected or empty. We may
assume that E is real symmetric, otherwise consider the set E ∪ E∗. Let
f, g ∈ A(D)R satisfy |f | + |g| ≥ δ > 0 on E. Since gsrE(A(D)) = 1 ([13]),
there exists k ∈ A(D) such that s := f + kg �= 0 on E. Note that f = f̌ as
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well as g = ǧ. Conjugation then gives š = f + ǩg �= 0 on E. Multiplication
yields that

sš = f 2 + [(k + ǩ)f + (kǩ)g]g �= 0 on E.

But ǩ +k and kǩ are in A(D)R. Hence f 2 +ag �= 0 on E for some a ∈ A(D)R.
Since the real symmetric polynomials are dense in A(D)R (see for example

[12] or [22]), there exists p ∈ A(D)R ∩ C[z] such that pf + ag �= 0 on E. By
moving a little bit the zeros of p (non real zeros in pairs), we may assume that
p and g have no zeros in common in D.

Now we use that E ∩ [−1, 1] is totally disconnected. If xj is a zero of p

in [−1, 1], we move it a little bit on the real axis, so that the new polynomial
p̃ has no zeros on E ∩ [−1, 1], that it has no zeros in common with g in D
and that p̃f + ag �= 0 on E. If E ∩ [−1, 1] = ∅, then we let p̃ = p. Since
p̃ ∈ A(D)R, we know that

p̃(z) = r

n∏
j=1

(z − tj )

m∏
j=1

(z − zj )(z − zj ),

where r ∈ R, tj ∈ R, tj /∈ E, and Im zj > 0. If the order of the zero tj of p̃ is
odd, we multiply p̃ as well as a with the factor z− tj . Let ã (respectively q), be
the product of a (respectively p), with these linear factors. Then ã and q belong
to AR(D). Moreover we have that qf +ãg �= 0 on E and that Z(q)∩Z(g) = ∅.

Note that q can be written as

q(z) = r

n∏
j=1

(z − sj )
2mj

m∏
j=1

(z − zj )(z − zj ),

where the sj ∈ R are pairwise distinct and do not belong to E.
Next we use the fact that the reducibility of (f1, g) and (f2, g) implies that

of (f1f2, g). Hence, by Lemma 2.1, we obtain that (q, g) is reducible; that is
u := q + �g is invertible in A(D)R for some � ∈ A(D)R. This implies that

qf + ãg = (u − �g)f + ãg = uf + (ã − �f )g.

Since qf + ãg �= 0 on E, we conclude that f + Rg has no zeros on E for
some R ∈ A(D)R. Thus gsrE(A(D)R) = 1.

Next we will solve the following problem: which zero free functions on a
closed set E ⊆ D can be uniformly approximated on E by functions invertible
in A(D)R. Let us recall that if f ∈ A(D) does not vanish on the polynomial
convex set E, then ‖f −epn‖E → 0 for some sequence of polynomials (see [7]
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and [13]). Now a first attempt at a proof in A(D)R could work as follows: let pn

be polynomials with ‖epn − f ‖E → 0. Then e(pn+p̌n)/2 converges uniformly
on E to f . But this does not hold for any f , since for example the identity
map z cannot be uniformly approximated on E = [−1, −1/2] ∪ [1/2, 1] by
invertible functions in A(D)R. The reason for the erroneous approach above
is that on E the ∗-transform of the square root is not the square root of the
∗-transform (where the ∗ denotes the operation of taking complex conjugates):
(
√

f )(
√

f )∗ �= (
√

f )(
√

f ∗ ). For instance we may take E = [−1, −1/2] and
f (z) = z. Then on E we have

√
f (x) = √

f ∗ (x) = i
√|x| and (

√
f )∗(x) =

−i
√|x|; so (

√
f )(

√
f )∗(x) = |x|, but (

√
f )(

√
f ∗ )(x) = −|x|.

This led us to the following theorem. Recall that the dense stable rank (or
approximate stable rank) of A(D) is one ([7], [13]) and that a compact set
K ⊆ D is polynomial convex (or equivalently A(D)-convex) if and only if K

has no holes.

Theorem 2.5. The following assertions hold:

(1) appsr(A(D)R) = 2.

(2) Suppose that E ⊆ D is closed. If E ∪ E∗ is not polynomial convex,
then there exists f ∈ A(D)R, f zero free on E, that cannot be uniformly
approximated on E by invertible functions in A(D)R.

(3) There exist polynomial convex sets E ⊆ D for which E ∪ E∗ is not
polynomial convex.

(4) There exist closed, non-polynomial convex sets E ⊆ D for which E∪E∗
is polynomial convex.

(5) Let E ⊆ D be compact and suppose that E ∪ E∗ is polynomial convex.
Then a function f ∈ A(D)R, zero free on E, can be uniformly approx-
imated on E by invertibles in A(D)R if and only if f has constant sign
on E ∩ [−1, 1].

If E ∩ [−1, 1] = ∅, then this latter condition is redundant.

Proof. (1) Let (f, g) ∈ A(D)2
R and suppose that |f | + |g| �= 0 on the

A(D)R-convex set E. Since the topological stable rank of A(D)R = 2 (see
[22]), we may approximate (f, g) by an invertible tuple (u, v) ∈ U2(A(D)R).
Thus appsr(A(D)R) ≤ 2. On the other hand, since the function z cannot be
uniformly approximated on the set E = [−1, −1/2] ∪ [1/2, 1] by functions
invertible in A(D)R, we obtain that appsr(A(D)R) > 1.

(2) Let C be a hole of K := E ∪ E∗, that is C is a bounded component
of C \ K . Then C ⊆ D. If C ∩ [−1, 1] = ∅ we fix a point a ∈ C and if
C ∩ [−1, 1] �= ∅, we fix a point r ∈ C ∩ ]−1, 1[. The functions ft given by
ft (z) = (z − a)(z − a), whenever t = a and ft (z) = z − r whenever t = r ,
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belong to A(D)R, are zero free on E, but cannot be uniformly approximated
on E by functions un invertible in A(D)R. In fact, suppose that un ∈ A(D)R

converges to ft uniformly on E, hence, due to symmetry, on K , too. Then on
∂C, a set that is contained in K , we have

|ft − un| ≤ max
∂C

|ft − un| ≤ ε < min
∂C

|ft | ≤ |ft | + |un|

whenever n is large. So Rouché’s theorem implies that un has a zero within
C ⊆ D.

(3), (4) see the figures.

E � E* E � E*

E

E
1*

0

E

Figure 1. Polynomial convexity

(5) First we deal with the case where E ∩ [−1, 1] �= ∅.
Let f, un ∈ A(D)R and assume that f has no zeros on E and that un is

invertible in A(D)R. Suppose that ‖un − f ‖E → 0. Let x0, x1 ∈ E ∩ [−1, 1]
satisfy f (x0) < 0 and f (x1) > 0. Then un(x0) < 0 and un(x1) > 0 for
n large enough. Since un is real valued on [−1, 1], we see that un admits a
zero between x0 and x1. Hence un cannot be invertible in A(D)R. Thus f has
constant sign on E ∩ [−1, 1].

Conversely, let K = E ∪ E∗ be polynomial convex. Suppose that f ∈
A(D)R has constant sign on E ∩ [−1, 1], say f > 0 there, and that f does
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not vanish on E. Due to symmetry, f has no zeros on K , either. Since the
polynomials with real coefficients are dense in A(D)R (see, e.g., [12]), we may
assume without loss of generality that f is a polynomial that has no zeros on
K and is positive on K ∩ [−1, 1]. Note that K ∩ [−1, 1] = E ∩ [−1, 1]. Say

f (z) = r

n∏
j=1

(z − rj )
nj

m∏
j=1

(z − zj )(z − zj ),

where r1 < r2 < · · · < rn, nj ∈ N and Im zj > 0. Without loss of generality,
let r > 0. Note that the zj can appear several times. We claim that in small
real symmetric neighborhoods, U , of K the polynomial f can be represented
as f = hȟ for some holomorphic function h. To this end, let us consider the
polynomial

p(z) = r

n∏
j=1

(z − rj )
nj .

Since
∏m

j=1(x − zj )(x − zj ) > 0 on [−1, 1], p > 0 on K ∩ [−1, 1].
Let S = {x ∈ R : p(x) ≤ 0} and � = C \ S. Note that K ⊆ �. Let

�+ = � ∩ {z ∈ C : Im z > 0} and �− = � ∩ {z ∈ C : Im z < 0}. There is a
well defined holomorphic square root q := √

p of p on �+ with

lim
z→x
z∈�+

Im q(z) = 0

whenever p(x) > 0.
Now we apply Schwarz’s reflection principle (see [18, p. 237]), to deduce

that q admits a holomorphic extension to �. This function, that we denote by
q, too, clearly is symmetric with respect to the real axis; that is q(z) = q(z)

for z ∈ �. Hence, using our notation q̌(z) = q(z), we see that on small
neighborhoods U of K , the polynomial p admits the representation p = qq̌.
Thus, on U ,

f (z) =
(

q(z)

m∏
j=1

(z − zj )

)(
q(z)

m∏
j=1

(z − zj )

)
.

In other words, on small symmetric neighborhoods, U , of K our polynomial
f can be written as f = hȟ, h holomorphic on U .

Now we continue in the same way as in the paper [13] of the first author.
Since K has no holes, we may use Borsuk’s theorem (see [1, p. 99]), to con-
clude that there is a well defined continuous logarithm of h on K . This function,
denoted by log h, is holomorphic in the interior of K (see [1, p. 111]). Thus
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log h ∈ A(K). Hence, by Mergelyan’s theorem, log h can be uniformly ap-
proximated by polynomials on K , say ‖pn − log h‖K → 0. Thus un := epn

tends uniformly to h on K . Symmetrization shows that ǔn tends uniformly to
ȟ on K . Hence unǔn tends uniformly to f on K . Since unǔn is invertible in
A(D)R, we are done.

Now suppose that E ∩ [−1, 1] = ∅ and that K = E ∪ E∗ is polynomial
convex. Then the proof above works, too, by passing if necessary, to −f if
f ≤ 0 on [−1, 1].

For a set E ⊆ C, let E◦ be the set of its interior points. The set of all
holomorphic functions on a domain � is denoted by H(�).

Corollary 2.6. Let E ⊆ D be closed and real symmetric. Suppose that
E has no holes. Then a function q, invertible in C(E), is the uniform limit
(on E) of restrictions to E of invertible functions in A(D)R if and only if
q ∈ C(E)sym ∩ H(E◦), and q has constant sign on E ∩ [−1, 1] whenever this
set is not empty.

Proof. Suppose that ‖fn − q‖E → 0 for some sequence of invertible
functions, (fn), in A(D)R. Then q ∈ C(E)sym ∩ H(E◦). Now, as in the proof
of Theorem 2.5 (5), first paragraph, if E ∩ [−1, 1] �= ∅, then q has constant
sign on E ∩ [−1, 1].

Next we prove the converse. Since E has no holes, we may use Mergelyan to
approximate q on E by polynomials pn. Then (pn + p̌n)/2 tends to (q + q̌)/2.
But q ∈ C(E)sym; so we have a sequence, fn, of polynomials in A(D)R that
converges to q on E. For n large enough, we may assume that fn does not
vanish on E and that fn has constant sign on E ∩ [−1, 1]. The assertion now
follows by Theorem 2.5 (5).

Corollary 2.7. Let E ⊆ D be closed. Then every function in A(D)R

that does not vanish on E can be uniformly approximated on E by invertible
functions in A(D)R (we say that E is admissible) if and only if E ∪ E∗ is
polynomial convex and exactly one of the following properties holds:

(1) E ∩ [−1, 1] = ∅;

(2) E ∩ [−1, 1] is a singleton;

(3) E ∩ [−1, 1] is an interval.

Proof. We assume that E ∪ E∗ is polynomial convex. Then each of the
properties (1),(2), and (3) imply that any function f ∈ A(D)R not vanishing
on E has constant sign on E ∩ [−1, 1]. The assertion that E is admissible, now
follows from Theorem 2.5 (5).

To prove the converse, we first note that by Theorem 2.5 (2), E ∪ E∗ is
polynomial convex whenever E is admissible.
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Now let us assume that E ∩ [−1, 1] is neither empty, nor a singleton. Let
x = min(E ∩ [−1, 1]) and y = max(E ∩ [−1, 1]). Then x < y. We claim
that E ∩ [−1, 1] = [x, y]. Indeed, assuming not, there would exist a function
f ∈ A(D)R of the form f (z) = z−r , r ∈ [−1, 1]\E, with f (x) < 0, f (y) > 0
f �= 0 on E. By Theorem 2.5 (5), that function cannot be approximated on
E by invertibles and so E would not be admissible. This contradiction shows
that E ∩ [−1, 1] is an interval.

We conclude this section with a result connected to the generalized E-
stable rank. It extends a special case, where E is the whole algebra spectrum,
of Corach and Suárez [5, p. 636].

Theorem 2.8. Let A = (A, ‖·‖) be a real or complex Banach function
algebra on a compact Hausdorff space X. Suppose that ‖·‖ dominates the
sup-norm on X. For g ∈ A consider the sets

RE(g) = {f ∈ A : (f, g) is E-reducible}
and

IE(g) = {f ∈ A : inf
x∈E

|f (x)| + |g(x)| > 0}.

Then RE(g) is open-closed in IE(g) whenever E is A-convex. In particular,
if φ : [0, 1] → IE(g) is a continuous curve and (φ(0), g) is E-reducible, then
(φ(1), g) is E-reducible.

Proof. To show that RE(g) is open inside IE(g), let f ∈ RE(g); that is
f + ag �= 0 on E for some a ∈ A. Choose f̃ sufficiently close to f (with
respect to the norm on A). Then, on E,

|f̃ + ag| ≥ |f + ag| − ‖f̃ − f ‖∞ ≥ |f + ag| − ‖f̃ − f ‖ ≥ δ > 0.

Hence f̃ ∈ RE(g).
To see that RE(g) is closed within IE(g) whenever E is A-convex, we use

the facts that the spectrum or character space of the restriction algebra

B := (A|E, ‖·‖E)

equals E (see [8, p. 39] for complex algebras and [11, p. 125] for real algebras).
Thus, by [5], [6] or [20]1, the set

R(g) = {b ∈ B : (b, g) reducible}
1 Note that the proofs given there hold for real function algebras as well.
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is open-closed in

I (g) = {r ∈ B : (r, g) invertible}.
Now suppose that f ∈ IE(g) and that fn ∈ RE(g) converges to f in the

norm of A. The restrictions to E of these functions belong to B. So f |E ∈
I (g) and fn|E ∈ R(g). Since R(g) is (uniformly) closed in I (g) and that
‖·‖ dominates the sup-norm on X, we obtain that f |E ∈ R(g). Therefore
the element f + xg is invertible in B for some x ∈ B. Now we uniformly
approximate x ∈ B on E by a function h ∈ A; so f + hg �= 0 on E. Hence
(f, g) is E-reducible. Thus RE(g) is closed within IE(g).

3. The algebra of real symmetric continuous functions on compact
planar sets

For a compact real symmetric set K ⊆ C we recall that C(K)sym denotes the
real algebra of complex valued, continuous functions on K with f (z) = f (z)

for z ∈ K . We may extend these functions in a symmetric way to the whole
plane: in fact, let ϕ be any Tietze extension of f to C and let

F(z) = ϕ(z) + ϕ(z)

2
.

Then F(z) = F(z) for all z ∈ C and F = f on K .
Let C+ = {z ∈ C : Im z ≥ 0} be the closed upper-half plane and recall that

D+ = D ∩ C+. We use the following notation: if (f1, f2) is a pair of complex-
valued functions, then f := (f1, f2) and |f | := √|f1|2 + |f2|2. If Sn−1 is the
unit sphere in Rn, then C(E, S3) is the set of pairs f = (f1, f2) of functions
fj ∈ C(E, C) such that |f | = 1 on E. Similarly, C(E, S1) is the set of pairs
f = (f1, f2) of functions fj ∈ C(E, R) such that |f | = 1 on E.

Theorem 3.1. tsr(C(D)sym) = 2.

Proof. 1. We first note that tsr(C(D)sym) > 1, since invertible functions in
C(D)sym have constant sign on [−1, 1], hence cannot uniformly approximate
the monom z.

2. Next we show that tsr(C(D)sym) ≤ 2. Let f = (f1, f2) ∈ (C(D)sym)2

and
En = {z ∈ D+ : |f(z)| ≥ 1/n}.

Step 1. Suppose that En ∩ [−1, 1] �= ∅. We claim that there is an R2-valued
extension of the tuple f/|f | ∈ C(En ∩ [−1, 1], S1) to f̃n ∈ C([−1, 1], S1).

In fact, let gn ∈ C([−1, 1], R) be a real valued continuous function van-
ishing exactly on En ∩ [−1, 1]. Then the triple (f1, f2, gn) is invertible in
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C([−1, 1], R). Since bsr(C([−1, 1], R)) = 2 (see [26]), there exist h1,n, h2,n ∈
C([−1, 1], R) such that

(f1 + h1,ngn, f2 + h2,ngn)

is invertible in C([−1, 1], R). Now the pair

f̃n := (f1 + h1,ngn, f2 + h2,ngn)/|(f1 + h1,ngn, f2 + h2,ngn)|
is the desired extension. We point out that f̃n is R2-valued.

If En ∩ [−1, 1] = ∅, then we let f̃n = (1, 0).

Step 2. Next we claim that there exists an extension of f/|f | ∈ C(En, S
3)

to f̂n ∈ C(D+, S3).

In fact, define Fn = (F1,n, F2,n) by

Fn(z) = f(z)/|f(z)| whenever z ∈ En,(3.1)

Fn(z) = f̃n(z) whenever z ∈ [−1, 1](3.2)

and extend continuously to C by Tietze. Note that Fn is well defined, due to
Step 1. Now let Gn ∈ C(D+, R) be a real valued continuous function van-
ishing exactly on En ∪ [−1, 1]. Then the triple (F1,n, F2,n, Gn) is invertible
in C(D+, C). Since bsr(C(D+, C)) = 2 (see [26]), there exist H1,n, H2,n ∈
C(D+, C) such that

(F1,n + H1,nGn, F2,n + H2,nGn)

is invertible in C(D+, C). Now the pair

f̂n = (F1,n + H1,nGn, F2,n + H2,nGn)/|(F1,n + H1,nGn, F2,n + H2,nGn)|
is the desired extension.

Step 3. We claim that |f − (|f | + 1/n) f̂n| ≤ 3/n on D+.

Indeed, for z ∈ En we have f(z) = |f(z)|f̂(z) for some C2-valued function
f̂ . Since on En both functions f̂ and f̂n coincide, we obtain∣∣f − (|f | + 1

n

)
f̂n

∣∣ = ∣∣|f |(f̂ − f̂n) − 1
n

f̂n
∣∣ = 1

n
|f̂n| = 1/n on En.

For z ∈ D+ \ En and |f(z)| �= 0, we have |f(z)| ≤ 1/n; hence for these z∣∣f − (|f | + 1
n

)
f̂n

∣∣ ≤ |f | · |f/|f | − f̂n| + 1
n
|f̂n|(3.3)

≤ 1
n

· 2 + 1
n

= 3
n
.(3.4)

For z ∈ D+ \ En and |f(z)| = 0, the assertion is obvious since |f̂n| = 1.
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Step 4. In the steps above we have found a C2-valued function

gn := (|f | + 1/n)f̂n

with |f − gn| ≤ 3/n on D+. Note that gn is R2-valued on [−1, 1]. Thus we can
use reflection to define a C2-valued function 	n on D (whose components are
in C(D)sym) so that |f − 	n| ≤ 3/n on D and such that |	n| ≥ 1

n
> 0 on D.

This shows that tsr(C(D)sym) ≤ 2.

For the reader’s convenience, we present a second proof, based only on
approximation theory, and not on the algebraic theory of the Bass stable rank.

Proof. Let (f1, f2) ∈ (C(D)sym)2. Choose ε > 0. On [−1, 1] we uni-
formly approximate the real-valued functions fj by two polynomials pj with
real coefficients so that p1 and p2 have no common zeros in C. Then there
exists r > 0 such that |pj − fj | < ε on {z ∈ D+ : 0 ≤ Im z ≤ r}. Let 	 be a
C∞ function satisfying 	 = 0 on E := {

z ∈ D+ : 0 ≤ Im z ≤ 1
3 r

}
, 	 = 1

on
{
z ∈ D+ : Im z ≥ 3

4 r
}

and 0 ≤ 	 ≤ 1. Similarly, let 
 be such a function
with 
 = 1 on

{
z ∈ D+ : Im z ≥ 1

4 r
}
, 
 = 0 on

{
z ∈ D+ : Im z ≤ 1

8 r
}

and
0 ≤ 
 ≤ 1.

Define Fj = 	fj + pj (1 − 	), j = 1, 2. We note that Fj = pj on E. Let

δ := min{|p1(z)| + |p2(z)| : z ∈ D}.
Obviously, δ > 0. Note that δ depends on ε. Since tsr(C(D, C)) = 2 (see [26]
and [17]), there exists an invertible pair (u1, u2) ∈ C(D, C) such that

‖F1 − u1‖∞ + ‖F2 − u2‖∞ < min{ε, δ/2}.
Now let hj = 
uj + Fj (1 − 
).

(i) We claim that (h1, h2) is an invertible pair in C(D+, C). In fact, let
z ∈ D+, Im z ≥ r/4. Then 
(z) = 1; hence hj (z) = uj (z) and so |h1(z)| +
|h2(z)| > 0. If z ∈ D+, Im z ≤ r/3, then Fj (z) = pj (z) and so

hj = 
uj + Fj (1 − 
) = 
(uj − Fj ) + pj .

Hence, for these z,

|h1| + |h2| ≥ |p1| + |p2| − (|u1 − F1| + |u2 − F2|) ≥ δ − δ/2 = δ/2 > 0.

(ii) Next we show that ‖h1 − f1‖D+ + ‖h2 − f2‖D+ ≤ 4ε.
To see this, we observe that

|Fj−fj | = |	fj+pj (1−	)−fj | = |fj (	−1)+(1−	)pj | = (1−	)|fj−pj |.
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For z ∈ D+ with Im z ≤ r , we have that |fj − pj | ≤ ε. For z ∈ D+ with
Im z ≥ 3

4 r , 	(z) = 1. Thus |Fj − fj | ≤ ε on D+.
Next, we have that |uj − Fj | < ε. Finally,

|hj − Fj | = |
uj + Fj (1 − 
) − Fj | = |
||uj − Fj | ≤ ε.

To sum up, we get that on D+

|hj − fj | ≤ |hj − Fj | + |Fj − fj | ≤ 2ε.

(iii) Note that hj = Fj = pj on [−1, 1]; in particular hj is real there.
Reflection and Steps (i) and (ii) above now yield the desired assertion on the
topological stable rank of C(D)sym.

We will use Theorem 3.1 to determine the generalized E-stable ranks for
C(D)sym.

Theorem 3.2. gsrE(C(D)sym) ≤ 2 for any closed set E ⊆ D.

Proof. Let (f1, f2, f3) ∈ (C(D)sym)3. We assume that |f1|+ |f2|+ |f3| �=
0 on E. Then there exists (x1, x2, x3) ∈ C(D)3

sym such that on E one has

1 = ∑3
j=1 xjfj . Indeed, on K := E ∪ E∗, let

Xj := fj∑3
n=1 |fn|2

.

Then any symmetric Tietze extension xj of Xj to D satisfies on E the Bezout
equation above.

By Theorem 3.1, tsr(C(D)sym) = 2. Hence there exists, for every ε > 0,
an invertible pair (u, v) ∈ U2(C(D)sym) such that ‖u − x1‖ + ‖v − x2‖ < ε.
When ε is taken sufficiently small, then

F := uf1 + vf2 + x3f3 �= 0 on E.

Now x3 = au + bv for some (a, b) ∈ C(D)2
sym. Thus

F = uf1 + vf2 + (au + bv)f3 = u(f1 + af3) + v(f2 + bf3).

This shows that gsrE(C(D)sym) ≤ 2.

Corollary 3.3. Let K ⊆ C be compact and real symmetric. Then

1 ≤ bsr(C(K)sym) ≤ tsr(C(K)sym) ≤ 2.
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Proof. The third inequality follows from Theorem 3.1 and the fact every
function in C(K)sym, K ⊆ D, admits an extension to C(D)sym. The other
inequalities hold for any commutative unital Banach algebra.

We are now able to give a complete determination of the Bass and topolo-
gical stable ranks for C(K)sym. This answers questions posed in [23].

Theorem 3.4. Let K ⊆ C be compact and real symmetric. Then

(1) bsr(C(K)sym) = tsr(C(K)sym) = 1 if and only if K◦ = ∅ and K ∩ R is
totally disconnected or empty;

(2) bsr(C(K)sym) = tsr(C(K)sym) = 2 if and only K◦ �= ∅ or K ∩ R
contains an interval.

Proof. Note that statement (2) is the negation of (1) in view of Corol-
lary 3.3.

Now statement (1) for the Bass stable rank is Theorem 6.5 in [23]. So it
remains to prove the assertion for the topological stable rank. Suppose that
K◦ = ∅ and that K ∩ R is totally disconnected. Let f ∈ C(K)sym. Consider
the set

En = {
z ∈ K : |f (z)| ≥ 1

n

}
.

Choose gn ∈ C(K) so that gn ≡ 0 on En and gn ≡ 1 on Z(f ). Then its
symmetrization hn given by hn(z) = (gn(z) + gn(z))/2 belongs to C(K)sym.
Due to the fact that En and Z(f ) are real symmetric, hn ≡ 0 on En and hn ≡ 1
on Z(f ). So the pair (f, hn) is invertible in C(K)sym. Since bsr(C(K)sym) = 1,
there exists h ∈ C(K)sym so that un := f + hhn is invertible. But as in the
proof of Theorem 3.1, Step 3,∣∣∣∣f − (|f | + 1

n

) un

|un|
∣∣∣∣ ≤ 3

n
.

Hence we have approximated f by invertibles. Thus tsr(C(K)sym) = 1.
On the other hand, if K◦ �= ∅ or if K ∩ R contains an interval I , then

tsr(C(K)sym) ≥ max{tsr(C(I, R)), tsr(C(S, C))},
where S is a closed disk contained in K◦ \ R; (this easily follows from the
fact that real-valued functions on I and complex-valued functions on S have
symmetric extensions to K). But by [26], [17] and [9, p. 44]

tsr(C(I, R)) = 2

and
tsr(C(S, C)) = 2.
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Thus tsr(C(K)sym) ≥ 2. Applying Corollary 3.3, now yields the assertion
that tsr(C(K)sym) = 2 whenever K ∩ R contains an interval or K◦ �= ∅.

The companion to Theorem 2.4 now follows immediately (due the fact that
gsrK(C(D)sym) = bsr(C(K)sym) for real symmetric compact subsets K of D.)
Note that the results are quite different when comparing A(D)R and C(D)sym.

Corollary 3.5. Let K ⊆ D be compact and real symmetric. Then

(1) gsrK(C(D)) = 1 if and only if K◦ = ∅ and K ∩ [−1, 1] is totally
disconnected or empty;

(2) gsrK(C(D)) = 2 if and only K◦ �= ∅ or K∩[−1, 1] contains an interval.

Our final result will be the analogue of Theorem 2.5 for C(D)sym. This will
give us a characterization of those zero free functions on E ⊆ D that cannot
only be approximated, but extended by invertible functions in C(D)sym.

We will need the following topological lemma.

Lemma 3.6. Let E be a real symmetric, polynomial convex set in D. Then
K := (E ∩ D+) ∪ [−1, 1] is polynomial convex.

Before we begin with the proof, let us note that this assertion is not correct
if E is no longer real symmetric. Just take for E the upper half circle.

Proof. It suffices to show that any given point ξ ∈ D \ E with Im ξ > 0
can be connected to w = 2i by a continuous arc entirely contained in {z ∈
C : Im z > 0} \ E. This will show that C \ K is connected. Since E has no
holes, there exists a piecewise linear arc � in C \ E with no pieces parallel to
the axis, such that �(0) = w and �(1) = ξ . If � does not meet the real axis,
then we are done. If � ∩ R �= ∅, say Im �(ts) = 0, then we may assume that
Im �(t) changes sign at ts . Now let 0 ≤ t0 < t1 < t2 < · · · < t2n+1 = 1
be chosen so that Im � > 0 on X+ = ⋃n

j=0]t2j , t2j+1[ and Im � < 0 on
X− = ⋃n

j=1]t2j−1, t2j [. Since E is real symmetric, the piecewise reflected arc

�∗ given by �∗(t) = �(t) for t ∈ X+ and �∗(t) = �(t) for t ∈ X− is the
desired arc when perturbed a little bit at the points tj .

Theorem 3.7. The following assertions hold:

(1) appsr(C(D)sym) = 2.

(2) Suppose that E ⊆ D is closed. If E ∪ E∗ is not polynomial convex, then
there exists f ∈ C(D)sym, f zero free on E, that cannot be uniformly
approximated on E by invertible functions in C(D)sym.

(3) Let E ⊆ D be real symmetric and polynomial convex. Then a function
f ∈ C(E)sym, zero free on E, can be extended to an invertible function
in C(D)sym if and only if f has constant sign on E ∩ [−1, 1].
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If E ∩ [−1, 1] = ∅, then this latter condition is redundant.

Proof. (1) This follows from Theorem 3.4 and the fact that bsr(A) ≤
appsr(A) ≤ tsr(A) (see the appendix).

(2) This works also in the same way as in the case A(D)R; just replace
Rouché’s theorem by its “continuous” counterpart given in [25].

(3) The sign condition being necessary (proof as in Theorem 2.5 (5)), it
suffices to show sufficiency. So assume that f ∈ C(E)sym has constant sign
on K := E ∩ [−1, 1], whenever K �= ∅. Say f > 0 on K . Then log f is well
defined on K and admits a continuous real-valued extension, L, to [−1, 1]. If
K = ∅, we choose L ≡ 0 on [−1, 1]. Now let

F̃ =
{

eL on [−1, 1]

f on E ∩ D+.

Then F̃ is well defined and continuous on the polynomial convex set

(E ∩ D+) ∪ [−1, 1].

Since F̃ has no zeros it admits a zero-free extension F̂ to D+ (Borsuk’s
theorem [1, p. 99]). Note that F̂ is real valued on [−1, 1]. The function F

given by

F(z) =
{

F̂ (z) if z ∈ D+

F̂ (z) if z ∈ D−

is now the desired zero free extension of f to D.

Appendix

The goal of this appendix is to show how the dense, respectively approximate
stable ranks are related to the Bass and topological stable rank. As noted in
Section 1, this is mentioned for complex uniform algebras in [16]. A proof
based on the original definitions of the notions of bsr(A) and dsr(A) in the
category of surjective, respectively dense algebra morphisms, was communic-
ated to me by Daniel Suárez. We present here a different approach that is more
adapted to our setting (see also [4], Theorem 1.13).

Theorem 3.8. Let A be a (real or complex) commutative, unital Banach
algebra and let M(A) denote its character space. Then the following assertions
are equivalent:

(1) bsr(A) ≤ n;

(2) For any g ∈ A, ε > 0, and f ∈ Un(Â|E) with E = Z(g) := {x ∈
M(A) : ĝ(x) = 0} there exist F ∈ Un(A) such that ‖F̂ − f‖E < ε.
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Proof. “(1) ⇒ (2)” Let f ∈ Un(Â|E). Choose h ∈ An so that ‖ĥ−f‖E < ε.

Since M(Â|E) = E, the function |f |, and hence |ĥ|, do not vanish on E for
small ε > 0. Thus (h, g) ∈ Un+1(A). Since bsr(A) ≤ n, there is x ∈ An so
that F := h + gx ∈ Un(A). On E we have that F̂ = ĥ and so ‖F̂ − f‖E < ε.

“(2) ⇒ (1)” Let (f, g) ∈ Un+1(A). Then f̂ ∈ Un(Â|E), where E = Z(g).
By our hypothesis, there is Fj ∈ Un(A) so that

(3.5) ‖F̂j − f̂‖E → 0 as j → ∞.

Consider the curves φj (t) = tFj + (1 − t)f , 0 ≤ t ≤ 1. In view of (3.5),
we have that for j ≥ j0, the (n + 1)-tuples (φj (t), g) are invertible and so
φj : [0, 1] → In(g), where

In(g) = {h ∈ An : (h, g) ∈ Un+1(A)}.
Now fix j ≥ j0. For t = 1, we get that (φj (1), g) = (Fj , g) is reducible,

since Fj is invertible. Because the set

Rn(g) = {h ∈ An : (h, g) reducible in A}
is open-closed in In(g) (see [5, p. 636]), (φj (0), g) = (f, g) is reducible, too.

Corollary 3.9. Let A be a (real or complex) commutative, unital Banach
algebra. Then bsr(A) ≤ appsr(A) ≤ tsr(A).

Proof. The second inequality is obvious. The first one follows with the
definition of appsr(A) from Theorem 3.8 and the fact that the zero set Z(g) is
always A-convex.
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